PatentPDF Available


The disclosure describes an algal system for improving water quality through the use of algae. In example embodiments, the algal system comprises an elongate device including algae enclosed therein and capable of reducing at least the levels of nitrates and phosphates in water directed through the device. The algae may be capable of also reducing E. coli bacteria, other bacteria, and viruses in the water. Preferably, the algae comprises a filamentous green algae, including without limitation, Spirogyra grevilleana algae. In one example embodiment, the algal system comprises an elongate device and an elongate cartridge that is preconfigured to treat certain chemical compounds, bacteria, and viruses, and certain other characteristics of water. The cartridge is delivered to the site where the water is to be treated and installed in the field, possibly replacing an existing cartridge. After use, algae may be processed into biofuel.
... This study focuses on the filamentous green alga, Spirogyra grevilleana, as a potential biofilter capable of decreasing of E. coli concentrations as well as nutrients levels in freshwater lakes. Potential positive effects of algae on water quality have been established through prior experimentation and research [3] [4]. ...
Full-text available
The freshwater alga Spirogyra grevilleana was used in an experimental biofiltration system to reduce levels of Escherichia coli, nitrates, and phosphates. Water collected from a 2.32 ha lake in Atlanta, Georgia, USA was pumped at a constant rate (6.17 × 10-1 m3·hr-1) through the algal filtration devices with low and high concentrations of S. grevilleana. Effluent water was tested over time for E. coli, nitrate, phosphate, dissolved oxygen, and pH levels. Both concentrations of S. grevilleana reduced E. coli by 100% and significantly reduced nitrate concentrations (30% ± 13%) and phosphate concentrations (23% ± 5%) while maintaining dissolved oxygen and pH at normal levels. Utilizing S. grevilleana in an algal filtration device could potentially provide a sustainable, flexible, and low-cost method of E. coli reduction in freshwater lakes worldwide. Initial results indicate that the use of S. grevilleana in conjunction with an algal filtration device is potentially capable of creating potable water.
ResearchGate has not been able to resolve any references for this publication.