ArticlePDF Available

Food Functionality of Collagenous Protein Fractions Recovered from Fish Roe by Alkaline Solubilization

Authors:

Abstract and Figures

This study investigated the potential of collagenous protein fractions (CPFs) as functional foods. The specific CPFs studied were recovered from the roe of bastard halibut (BH), Paralichthys olivaceus; skipjack tuna (ST), Katsuwonus pelamis; and yellowfin tuna (YT), Thunnus albacares through the alkaline solubilization process at pH 11 and 12. The buffer capacity, water-holding capacity and solubility of CPFs with pH-shift treatment were significantly better at alkaline pH (10-12) than at acidic pH (2.0). At pH-shift treatment (pH 2 and 12), the foaming capacities of CPFs from ST and YT were improved compared to those of controls, but they were unstable compared to BH CPFs. The emulsi-fying activity index (EAI, m 2 /g protein) of CPFs (controls) was 16.0-21.1 for BH, 20.1-23.9 for ST and 9.3-13.7 for YT (P<0.05). CPFs adjusted to pH 12 showed improved EAI and YT CPFs showed significantly greater emulsifying ability than those from BH and ST. CPFs recovered from fish roe are not only protein sources but also have a wide range of food functionalities, confirming the high availability of fish sausage and surimi-based products as protein or reinforcing materials for functional foods and alternative raw materials.
Content may be subject to copyright.
한수지 51(4), 351-361, 2018
351
Copyright © 2018 The Korean Society of Fisheries and Aquatic Science pISSN:0374-8111, eISSN:2287-8815
Korean J Fish Aquat Sci 51(4),351-361,2018
Original Article
유엔식량농업기구
(Food and Agriculture Organization of the
United Nations, FAO)
통계에
따르면
, 2015
년의
어업생산
량은
2
억톤이라고
하였으며
(FAO, 2015),
최근
10
년간
,
우리
나라의
총어업생산량은
평균
327
만톤
수준이다
(MOF, 2017).
이들
어업생산물의
가공
제품
제조
발생하는
머리
,
껍질
,
frame,
비늘
,
내장
,
등의
비가식
가공부산물이
어류
생산량
30-60%
차지하고
(Narsing Rao et al., 2014; Klomklao
and Benjakul, 2016),
가공공정
중에서는
수세수
자숙수와
같은
가공처리수들이
원료
처리량의
10
이상이
발생한다
(Lee et al., 2017; Yoon et al., 2017).
수산가공부산물
가공
처리수의
영양적
가치는
해양생물자원의
단백질
급원으로서
잠재력을
가지고
있지만
,
극히
일부분만이
비료나
동물사료
용으로
이용될
,
가공처리수와
함께
대부분
폐기물로
처리됨
으로서
환경문제를
야기하게
된다
.
따라서
수산가공
부산물로
부터
주요구성분인
단백질을
회수하고자
하는
노력은
산업적
이용을
위한
저비용의
새로운
단백질을
생산하는
것이
가능하
때문에
매우
중요하다
(Heu et al., 2006; Kang et al., 2007;
Kang et al., 2015; Kim et al., 2015; Lee et al., 2016b; Lee et
al., 2017; Yoon et al., 2017).
수산가공부산물
가공처리수
로부터
단백질자원의
회수와
이용에
관한
연구는
효소
(Kim et
al., 2014)
저해제
(Lee et al., 2016a),
콜라겐
젤라틴
(Heu
et al., 2010; Lee et al., 2016b),
가공처리수
(Lee et al., 2017;
Yoon et al., 2017)
같은
유용
기능성분의
회수
,
단백질
농축
(Lee et al., 2016a; Binsi et al., 2017; Yoon et al., 2018b),
어류 알로부터 알칼리 가용화공정을 통해 회수한 Collagenous Protein
획분의 식품 기능특성
윤인성
1
·김진수
1,2
·허민수
1,3
*
1
경상대학교 수산식품산업화 기술지원센터,
2
경상대학교 해양식품생의학과/해양산업연구소,
3
경상대학교 식품영양학과/해양산업연구소
Food Functionality of Collagenous Protein Fractions Recovered from
Fish Roe by Alkaline Solubilization
In Seong Yoon
1
,
Jin-Soo Kim
1,2
and Min Soo Heu
1,3
*
1
Research Center for Industrial Development of Seafood, Gyeongsang National University, Tongyeong 53064, Korea
2
Department of Seafood and Aquaculture Science/Institute of Marine Industry, Gyeongsang National University, Tongyeong
53064, Korea
3
Department of Food and Nutrition/Institute of Marine Industry, Gyeongsang National University, Jinju 52828, Korea
This study investigated the potential of collagenous protein fractions (CPFs) as functional foods. The specic CPFs
studied were recovered from the roe of bastard halibut (BH),
Paralichthys olivaceus
; skipjack tuna (ST),
Katsuwonus
pelamis
; and yellown tuna (YT),
Thunnus albacares
through the alkaline solubilization process at pH 11 and 12.
The buffer capacity, water-holding capacity and solubility of CPFs with pH-shift treatment were signicantly better at
alkaline pH (10-12) than at acidic pH (2.0). At pH-shift treatment (pH 2 and 12), the foaming capacities of CPFs from
ST and YT were improved compared to those of controls, but they were unstable compared to BH CPFs. The emulsi-
fying activity index (EAI, m2/g protein) of CPFs (controls) was 16.0-21.1 for BH, 20.1-23.9 for ST and 9.3-13.7 for
YT (P<0.05). CPFs adjusted to pH 12 showed improved EAI and YT CPFs showed signicantly greater emulsifying
ability than those from BH and ST. CPFs recovered from sh roe are not only protein sources but also have a wide
range of food functionalities, conrming the high availability of sh sausage and surimi-based products as protein or
reinforcing materials for functional foods and alternative raw materials.
Key words: Collagenous protein fractions, Functionality, Fish roes, Alkaline solubilization
This is an Open Access article distributed under the terms of
the Creative Commons Attribution Non-Commercial Licens
(http://creativecommons.org/licenses/by-nc/3.0/) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited.
https://doi.org/10.5657/KFAS.2018.0351 Korean J Fish Aquat Sci 51(4) 351-361, August 2018
Received 25 May 2018; Revised 13 June 2018; Accepted 6 July 2018
*Corresponding author: Tel: +82. 55. 772. 1440 Fax: +82. 55. 772. 1430
E-m ail address: minsheu@gnu.ac.kr
윤인성
김진수
허민수
352
분리물
(Lee et al., 2016c),
효소
가수분해물
(Noh et al., 2013;
Intarasirisawat et al., 2014)
제조
식품기능성
(Park et al.,
2016; Binsi et al., 2017; Yoon et al., 2018b),
항산화성
그리고
이의
생리활성
(Heu et al., 2009; Intarasirisawat et al., 2014)
대하여
많은
연구가
이루어졌다
.
이들
연구에서
단백질
회수를
위한
주요
공정에는
추출을
회수
(Kim et al., 2014; Lee et al., 2016b),
건조
(Binsi et al.,
2017),
가열처리
(Lee et al., 2016; Yoon et al., 2018b),
단백질
용해도
특성을
이용한
유기용매
염을
이용한
분획
(Kim et
al., 2012; Kim et al., 2014),
/
알칼리
가용화
침전
(Kristins-
son et al., 2005; Lee et al., 2016c)
등을
포함하고
있다
.
특히
,
알칼리
가용화공정은
가공부산물
원료의
지방
,
내인성
효소의
불활성화
,
불순물
연구목적이외의
가용성
단백질을
제거할
목적으로
적용하여
,
알칼리
불용성의
잔사로부터
collagen
이나
gelatin
회수하는데
응용하고
있으며
,
이와
달리
등전점
가용
/
침전공정은
다양한
원료로부터
/
알칼리를
이용하여
단백
성분을
가용화한
(
불용성
잔사가
발생
),
가용화획분에
하여
단백질의
용해도가
최소가
되는
등전점
부근에서
단백질
침전시켜
회수하는
방법이다
(Nolsoe and Underland, 2009;
Lee et al., 2016c; Alvarez et al., 2018).
그러나
원료의
단백질
성분은
사용하는
알칼리
또는
산의
농도와
사용량에
따라
가용
공정
중에
30-60%
정도가
가용화
되고
,
나머지
부분은
불용
성의
잔사로
남게
된다
(Nolsoe and Underland, 2009; Lee et
al., 2016c; Yoon et al., 2018a).
한편
,
수산가공부산물
중에서
어류
(sh roe)
알과
알집을
포함한
것을
말하며
,
알부민
(11%),
오보글로불린
(75%)
라겐
(13%)
단백질
(Sikorski, 1994; Heu et al., 2006)
필수
지방산
(Mahmoud et al., 2008)
풍부한
고영양성의
식품
재자
원이지만
,
연어나
철갑상어
알의
캐비어
(caviar),
명란
,
대구알
직접적인
수산가공품으로의
이용은
몇몇
어종의
알에
국한
되어있다
.
우리나라의
대표
양식어류인
넙치
(BH, bastard halibut
Para-
lichythys olivaceus
),
원양어획
어류로서
대표적인
통조림
가공
원료인
가다랑어
(ST, skipjack tuna
Katsuwonus pelamis
)
다랑어
(YT, yellown tuna
Thunnus albacares
)
영양적인
기호성인
면에서
우리나라를
비롯한
세계에서
널리
소비되
어류이다
.
이러한
다소비
어류는
섭취
가공
시에
다량의
가공부산물이
발생하게
되며
,
특히
영양가가
높은
알의
발생량
전체중량의
1.5-3%
차지한다
(Intarasirisawat et al., 2011;
Chalamaiah et al., 2013).
앞서의
연구
(Lee et al., 2016c; Yoon et al., 2018a)
에서
어류
알의
알칼리
가용화
공정
중에서
회수한
알칼리
불용성획분의
식품성분
특성은
주요
구성분이
단백질로서
영양적으로
우수
하였으며
,
아미노산
조성분석을
통해
어류
보다
Gly, Pro
Ala
조성비가
2-4
배가량
높아
콜라겐
(Heu et al., 2010; Lee
et al., 2016b)
아미노산
조성비와
유사하여
collagenous pro-
tein fraction
이라고
보고한
있다
.
따라서
연구에서는
대부분
식품소재로
이용되지
못하는
,
가다랑어
황다랑어
알의
알칼리
가용화공정을
통해
수한
알칼리
불용성획분으로서
collagenous protein fraction
(CPF,
콜라겐성
단백질획분
)
대하여
, pH-shift
처리에
따른
완충능
,
보수력
,
거품
형성능
유화
형성능
등의
식품기능특
성을
분석하고
,
어육
소시지
또는
연제품과
같은
수산가공식품
비롯한
다양한
식품가공품의
단백질
강화
또는
대체
가공소
재로서의
이용
가능성에
대해
구명하고자
하였다
.
재료 방법
재료
넙치
(BH,
Paralichythys olivaceus
)
통영시
소재
수산시장
에서
살아있는
채로
구입하여
,
실험실로
운반한
,
알을
적출하
실험에
사용하였으며
,
가다랑어
(ST,
Katsuwonus pelamis
)
황다랑어
(YT, yellown tuna
Thunnus albacares
)
알은
원산업
(Dongwon F&B Co. Ltd., Changwon, Korea)
으로부터
동결상태로
분양을
받아
사용하였다
.
실험에
사용하기
전까지
polyethylene bag
밀봉하여
-70
에서
보관하였다
.
Collagenous protein fraction (CPF)의 회수
어류
알로부터
CPFs
회수는
Lee et al. (2016c)
단백질
리물
회수공정
중의
알칼리
가용화공정에
따라
제조하였다
.
,
동결된
100 g
대하여
6
배량
(w/v)
탈이온수를
가하고
질기
(Polytron® PT 1200E, Kinematica AG, Luzern, Switzer-
land)
균질화
(12,500 rpm, 3 min)
다음
, 2 N NaOH
용하여
각각
pH 11 (
최종농도
2.2-4.9 mM NaOH)
12 (
종농도
3.3-5.9 mM NaOH)
조절하였다
.
이어서
알칼리
용화
(4, 1 h)
과정을
거친
다음
,
원심분리를
실시하였다
(Su-
pra 22K, Hanil Science Industrial Co. Ltd., Incheon, Korea;
12,000
g
, 4, 30 min).
이때
얻어진
원심분리
잔사는
동결건조
통해
분말화하여
, CPFs
로서
각각
BHCPF-11, BHCPF-12,
STCPF-11, STCPF-12, YTCPF-11
YTCPF-12
표시하고
,
식품기능성의
분석에
사용하였다
.
단백질농도
식품기능성을
측정을
위한
1% (w/v) CPFs
분산액의
단백
농도는
Lowry et al. (1951)
방법에
따라
표준단백질로서
bovine serum albumin
사용하여
구한
검량선을
통해
측정
하였다
.
완충능
CPFs
완충능
(buffer capacity)
Park et al. (2016)
방법
따라
측정하였다
.
, 300 mg
시료에
30 mL
탈이온수를
가하여
1% (w/v)
분산액을
조제한
다음
,
소량의
0.5 N NaOH
또는
HCl
첨가하면서
, pH 2-12
범위에서
1
단위씩의
pH
어류 알 Collagenous Protein Fractions의 식품기능특성
353
화하는데
소요되는
NaOH
HCl
부피를
기록하였다
.
이때
pH
조정을
위해
첨가한
알칼리와
산의
양과
분산액의
피를
측정하여
pH
분산액의
NaOH
HCl
최종농도를
계산하였다
.
이를
통해
시료별
완충능은
1 g
시료에
대하여
1
단위의
pH
변화하는데
필요한
평균
mM NaOH
또는
HCl
농도로
나타내었다
.
보수력
CPFs
보수력
(WHC, water holding capacity)
Park et al.
(2016)
방법에
따라
측정하였다
.
, 50 mL
원심관에
300
mg
시료와
30 mL
탈이온수를
가해
실온에서
10
분간
vor-
tex mixer
격렬하게
혼합하여
1%
분산액
(
대조군
)
조제하
였으며
,
아울러
0.5 N NaOH
또는
HCl
첨가하면서
pH 2-12
범위에서
2
단위씩의
pH
조정한
pH
분산액도
조제하였
.
이어서
이들
분산액을
원심분리
(12,000
g
, 20 min, 4)
다음
,
잔사의
무게를
측정하여
대조군과
pH
실험구에
대한
보수력을
아래의
식을
통하여
나타내었다
.
WHC (g/g protein) = Weight of pellet (g)-Weight of sample (g)
Weight of sample (g)×C
여기서
C
단백질
함량
(%)
의미하였다
.
용해도
CPFs
단백질
용해도
(protein solubility)
Park et al.
(2016)
방법에
따라
측정하였다
. 30 mL
탈이온수에
300
mg
시료를
혼합하여
1%
분산액을
조제한
다음
, 0.5 N HCl
NaOH
분산액의
pH
2-12
범위에서
2
단위씩
pH
조정
하였다
.
이들
분산액은
실온에서
30
동안
안정화시킨
다음
,
원심분리
(12,000
g
, 20 min)
실시하였다
.
시료만
분산시킨
조구
(control)
pH
분산액의
상층액에
대한
단백질의
도는
Lowry et al. (1951)
방법에
따라
측정하고
,
분산액의
피를
곱하여
단백질함량을
계산하였다
.
시료의
단백질
량은
20 mg
시료에
0.5 N NaOH
사용하여
완전히
가용화
,
이의
단백질농도와
부피를
측정하여
구하였다
.
이를
시료의
단백질
용해도는
다음의
식에
따라
계산하고
,
측정결
과는
최소
3
반복하여
실시하여
평균
±
표준편차로
나타내었
.
아울러
대조구와
pH
조정한
실험구간의
단백질
용해도를
상호
비교하였다
.
Solubility (%) = Protein content in supernatant ×100
Total protein content in sample
거품형성능
CPFs
거품성
(FC, foaming capacity)
거품안정성
(FS,
foam stability)
Park et al. (2016)
방법에
따라
측정하였다
.
, 25 mL
메스실린더에
10 mL
1%
시료
분산액을
옮겨
담고
,
균질기
(Polytron® PT 1200E, Kinematica AG, Luzern,
Switzerland)
균질화
(12,500 rpm, 1 min)
하였다
.
거품이
성된
시료는
주어진
시간
(0, 15, 30
60 min)
동안
실온에서
정치하면서
,
부피와
거품의
부피를
측정하여
아래의
식에
FC
FS
구하였다
.
아울러
1%
시료
분산액에
대해
2
단위
pH
조정한
시료들에
대해서도
거품형성능
(FC
FS)
측정하여
pH
조정하지
않은
대조구
(control)
상호
비교하
나타내었다
.
Foaming capacity (%) =
VT
×100
V0
Foam stability (%) = (
Ft
Vt
)×100
(
FT
VT
)
이때
VT
균질
직후
부피
, V0
균질전의
부피
, FT
균질
직후
거품의
부피
, Ft
Vt
주어진
시간
(t=15, 30 and 60
min)
경과
후의
거품부피
부피를
의미하였다
.
유화형성능
CPFs
유화능
(EAI, emulsifying activity index)
유화안정
(ESI, emulsion stability index)
Park et al. (2016)
방법
따라
측정하였다
.
시료
(10 mL
1%
분산액
)
식용유
(soybean oil, Ottogi Co. Ltd., Seoul, Korea)
1:3 (v/v)
율로
혼합하여
균질기로
균질화
(12,500 rpm, 1 min)
다음
,
질액이
담긴
메스실린더의
아래쪽에서
일정량
(50 μL)
emul-
sion
취하여
5 mL
0.1% sodium dodecyl sulfate (SDS)
액과
혼합한
다음
,
분광광도계
(UV-2900, Hitachi, Kyoto, Ja-
pan)
사용하여
500 nm
파장에서
균질화한
직후의
흡광도
(A0min)
10
분경과
후의
흡광도
(A10min)
측정하여
아래의
으로
각각
EAI (m2/g protein)
ESI (min)
구하였다
.
EAI (m2/g) = 2×2.303×
A
×
DF
×100
l
×
φ
×
C
이때
, A
500 nm
에서의
흡광도
, DF
희석비
(100),
l
통과하는
cuvette
(1 cm), φ
혼합액
중에
식용유가
지하는
비율
(0.25)
그리고
C
단백질의
농도
(g/mL)
각각
타내었다
.
ESI (min) =
A
0 ×
t
∆A
이때
ΔA
A0min
대한
A10min
흡광도의
차이
, Δt
10
min
의미하였다
.
윤인성
김진수
허민수
354
통계처리
모든
실험은
최소
3
이상
반복
실시하였으며
,
평균
(mean)
표준편차
(standard deviation)
나타내었다
.
데이터는
SPSS
12.0 K (SPSS Inc., Chicago, IL, USA)
통계프로그램을
이용하
ANOVA test
통해
분산분석을
실시하고
, Duncan
다중
위검정법으로
최소유의차검정
(P<0.05)
실시하였다
.
결과 고찰
완충능
어류
알로부터
알칼리
가용화과정을
통해
회수한
콜라겐성
백질획분
(CPFs)
완충능
(buffer capacity)
대한
결과는
Fig.
1
나타내었다
.
먼저
, pH-shift
처리
1%
분산액
(controls)
pH
5.2-6.2
범위를
나타내었다
. pH 2-6
범위의
pH-shift
리에서
, BHCPF-11
12
완충능은
1
단위의
pH
변화시키
는데
각각
평균
36.5
36.7 mM HCl/g protein
소요되었
.
또한
pH 6-12
범위에서
, BHCPF-11
1
단위의
pH
화시키는데
평균
27.2 mM NaOH/g protein
필요하였으며
,
BHCPF-12
요구량
(24.2 mM NaOH/g protein)
상대적으
낮은
것으로
확인되었다
.
한편
STCPF-11
12
경우
, 1
위의
pH
변화시키는데
pH 2-6
범위에서는
각각
평균
17.7
21.7 mM HCl/g protein
소요되었으며
, pH 6-12
범위에
서는
각각
평균
40.6
36.7 mM NaOH/g protein
필요하였
. YTCPF-11
완충능은
20.8 mM HCl/g protein (pH 2-6)
44.2 mM NaOH/g protein (pH 6-12)
1
단위의
pH
변화
시키는데
필요하였으며
, YTCPF-12
완충능
(19.2 mM HCl
38.6 mM NaOH/g protein)
비해
알칼리의
요구량
많은
것으로
나타났다
.
이상의
결과를
통해
,
산성
pH
영역에
Fig. 1. Buffer capacity of collagenous protein fractions (CPFs) recovered from bastard halibut (BH)
Paralichythys olivaceus
, skipjack tuna
(ST)
Katsuwonus pelamis
and yellown tuna (YT)
Thunnus albacares
roe by alkaline solubilization. Data are means±standard deviation
of triplicate determinations. Values with different letter within the pHs are signicantly different at P<0.05 by Duncan's multiple range test.
a
b
b
b
a
a
a
a
a
a
bc
a
a
a
a
b
b
a
a
a
a
c
b
e
d
b
c
c
b
b
b
a
b
b
c
c
a
cd
c
b
b
bc
a
abc
b
de
cd
ab
d
c
b
b
c
a
a
b
d
c
a
cd
c
b
b
c
a
ab
050 100 150 200 250 300 350
2
3
4
5
6
7
8
9
10
11
12
mM of NaOH or HCl/g of protien
pH
YTCPF-12
YTCPF-11
STCPF-12
STCPF-11
BHCPF-12
BHCPF-11
어류 알 Collagenous Protein Fractions의 식품기능특성
355
BH
완충능이
ST
YT
비하여
강한
것으로
나타난
면에
알칼리성
pH
영역에서는
ST
YT
완충능이
BH
하여
높은
것으로
확인되었다
.
그러나
ST
YT
간에는
유의적
차이를
나타내지
않았다
(P>0.05).
또한
알칼리
가용화조건
있어서도
CPFs-11
완충능은
CPFs-12
비하여
알칼리
pH
영역에서
강한
반면에
산성영역에서는
낮았다
.
아울러
공통
적으로
알칼리성
pH
에서의
완충능이
산성
pH
비해
우수하
였다
. Chalamaiah et al. (2013)
의하면
, Mrigal egg
농축분
말은
탈지한
농축분말에
비하여
완충능이
우수하며
,
이는
농축
분말
중의
지질성분이
산과
알칼리
요구량을
높여
완충능에
향을
미친
결과라고
보고하였다
.
또한
1
단위의
pH
변화시
키는데
소요되는
산과
알칼리의
평균필요량이
각각
0.65 mM
HCl
1.22 mM NaOH/g
으로
,
실험의
CPFs
완충능에
현저히
낮았다
. Mrigal (Chalamaiah et al., 2013),
Cyprinus
carpio
Epinephelus tauvina
(Narsing Rao, 2014),
황다랑어
(Park et al., 2016)
가다랑어
(Yoon et al., 2018b)
농축
분말
,
그리고
gum karaya seed
분말
(Narsing Rao and Govard-
hana Rao, 2010)
알칼리
pH
완충능이
산성에
비해서
유의
적으로
높다고
하여
, CPFs
실험결과와
일치하였다
.
보수력
어류
알로부터
회수한
CPFs
보수력
(WHC, water holding
capacity)
대한
결과는
Fig. 2
나타내었다
. WHC
수화
(hydration)
관련한
단백질
기능성으로서
단백질과
함께
또는
오일간의
상호작용으로
식품의
texture
영향을
친다
(Mohamed et al., 2012). pH-shift
처리하지
않은
대조군
(control)
으로서
, 1% BHCPF-11
12
분산액의
WHC
각각
25.2
23.7 g/g protein
이었으며
, STCPFs (6.1
7.4 g/g pro-
tein)
그리고
YTCPFs (5.7
4.4 g/g protein)
WHC
비하
월등히
높은
보수력을
나타내었다
(P<0.05).
아울러
어종
알칼리
가용화조건
간에도
유의적인
차이를
나타내었다
. tilapia
로부터
회수한
단백질
분리물
(protein isolate)
WHC
2.63-
2.51 mL/g (Mohamed et al., 2012)
으로
,
Labeo rohita
(Balas-
wamy et al., 2007),
그리고
Mrigal (1.79 g/g, Chalamaiah et
al., 2013)
단백질
농축물에
비해
,
연구의
CPFs
현저히
높았다
. Narsing Rao et al. (2012)
Chalamaiah et al. (2013)
어류
단백질
농축물이
기름보다
많은
수분을
흡수하며
,
것은
단백질
농축물의
극성기
(COO-
NH3+)
존재로
인해
보다
쉽게
분자와
결합하는
특성에
기인한다고
보고하였고
,
Park et al. (2016)
황다랑어
농축분말의
WHC
4.1-4.7
g/g protein
으로
,
Labeo rohita
(Balaswamy et al., 2007)
축단백질보다
우수하다고
보고한
있으며
,
가다랑어
농축
분말
(Yoon et al., 2018b)
경우
(3.7-3.9 g/g protein)
실험
결과에
비해
낮은
보수력를
나타내었다
.
한편
, pH-shift
처리에
따른
WHCs
변화에
대해서는
,
산성
(pH 2)
에서
, BHCPF-11
12
WHC
각각
23.8
20.5 g/g
protein
이었으나
, STCPF-11
12 (31.6
21.8 g/g protein)
리고
YTCPF-11
12 (25.4
29.2 g/g protein)
비하여
낮은
경향이었다
. BHCPFs (20.3
26.6 g/g protein)
ST-
CPFs (23.6
27.3 g/g protein)
pH 10
에서
그리고
YTCPFs
(25.2
21.6 g/g protein)
pH 12
알칼리성
pH
영역에서
대의
WHC
나타내었다
.
그리고
BH
와는
달리
ST
YT
들의
대조구에
비하여
pH-shift
처리에
의해
pH 2
10-12
범위
에서
우수한
보수력이
확인됨으로서
보수력의
개선효과도
인정
되었다
.
pH
WHC
있어서도
유의적인
차이가
인정되었
으며
(P<0.05),
전체적으로
BH
ST
YT
비하여
보수력에
있어
우수한
경향을
나타내었다
.
이는
정전기적
반발력
(electro-
static repulsion)
증가에
기인한
것으로
,
등전점
(pH 4
6)
근보다
낮은
pH (< pH 4)
또는
높은
pH (>pH 10)
조정한
후의
WHC
증가하였다
(Azadian et al., 2012).
따라서
pH-shift
처리로
인하여
CPFs
입체
구조
변화가
어남으로서
표면에
노출되는
친수성
아미노산이
주변
물에
접근하여
WHC
증가하는
것으로
보인다
.
한편
,
어류
알의
등전점
부근인
pH 4-6
범위에서
어종
모두의
WHC
최소
나타내었는데
이는
pH 4-6
에서
, CPFs
단백질의
응집
(pro-
tein aggregation)
또는
침전
(precipitation)
으로
인해
WHC
현저히
감소하는
결과를
초래하였으며
, Azadian et al. (2012)
silver carp
단백질
분리물의
최소
WHC
등전점
부근인
어류
Fig. 2. Water holding capacity (WHC) of collagenous protein frac-
tions (CPFs) recovered from bastard halibut (BH)
Paralichythys
olivaceus
, skipjack tuna (ST)
Katsuwonus pelamis
and yellown
tuna (YT)
Thunnus albacares
by alkaline solubilization. Data are
means±standard deviation of triplicate determinations. Values with
different letter within the pHs are signicantly different at P<0.05
by Duncan's multiple range test.
a
b
b
b
a
a
a
a
a
a
bc
a
a
a
a
b
b
a
a
a
a
c
b
e
d
b
c
c
b
b
b
a
b
b
c
c
a
cd
c
b
b
bc
a
abc
b
de
cd
ab
d
c
b
b
c
a
a
b
d
c
a
cd
c
b
b
c
a
ab
050 100 150 200 250 300 350
2
3
4
5
6
7
8
9
10
11
12
mM of NaOH or HCl/g of protien
pH
a
bc
ba
a
a
bc d
bd
a
b
ba
a
e
d
a
e
a
cd
b
ab
c
c
cd
cb
cb
d
a
d
b
d
c
de
bd
a
e
a
d
ce
b
c
b
0
10
20
30
40
50
Control 2 4 6 7 8 10 12
pH
WHC (g/g of protein)
BHCPF-11 BHCPF-12 STCPF-11
STCPF-12 YTCPF-11 YTCPF-12
b
a
c
b
aaa
a
a
b
b
a
b
b
b
c
e
c
b
d
b
c
c
a
c
c
a
cc
d
d
b
de
d
b
e
ce
e
bc
d
e
b
dcef
d
0
10
20
30
Control 2 4 6 7 8 10 12
pH
Protein solubility (%)
BHCPF-11 BHCPF-12 STCPF-11
STCPF-12 YTCPF-11 YTCPF-12
윤인성
김진수
허민수
356
(pH 6.3)
pH
에서
관찰되었다고
보고하였다
.
이러한
WHC
감소는
단백질과
(protein-water)
간의
상호작용에
있어
,
백질
아미노산의
극성기
(polar groups)
존재가
중요한
할을
하기
때문에
,
특히
등전점부근에서는
단백질
응집이나
전으로
극성기의
노출이나
존재가
감소되어
나타난
결과이다
(Tan et al., 2014).
단백질 용해도
pH 2-12
범위의
pH-shift
처리
유무에
따른
어류
CPFs
용해도
(protein solubility)
측정한
결과는
Fig. 3
같다
.
단백
용해도는
거품
형성능
,
유화
형성능
형성능
등과
같은
단백질
기능성에
영향을
미치는
중요한
매개변수
(parameters)
이다
(Kinsella 1976; Mohan et al., 2007; Azadian et al., 2012).
pH-shift
처리하지
않은
대조구
(control)
경우
, BHCPF-11
12
용해도는
각각
17.2%
21.5%
상호간에는
의적인
차이를
나타내었으며
, pH 2
12
pH-shift
처리한
BHCPF-11
단백질
용해도는
각각
16.3
20.3%
로서
BH-
CPF-12 (14.0
13.0%)
보다
유의하게
높았다
(P<0.05).
STCPF-11
12
pH-shift
처리하지
않은
control
용해
도는
각각
1.7%
2.7%
상호간에는
두드러진
차이가
없었
으나
, pH 2
12
에서
STCPF-11
단백질
용해도가
각각
12.1
21.1%
로서
STCPF-12 (11.9
14.6%)
비하여
유의하
높은
용해도를
나타내었다
(P<0.05). YTCPF-11 (1.9%)
12(2.0%)
control
용해도는
STCPFs
와는
차이가
없었으나
,
BHCPFs
비하여
현저히
낮아
어종
간의
차이가
인정되었다
.
한편
pH-shift
처리
pH 2
12
에서
, YTCPF-11
단백질
용해
도는
각각
9.8
13.8%
로서
YTCPF-12 (7.8
8.3%)
보다
의하게
높았다
(P<0.05).
따라서
어종
모두
산성
(pH 2)
칼리성
(pH 12)
pH-shift
처리에서는
CPFs-11
상대적으로
CPFs-12
비하여
단백질
용해도가
우수하였다
.
이러한
결과
pH 2
pH 12
같은
극단의
pH-shift
처리로
주변의
백질이
많은
하전을
띠게
되거나
,
보다
많은
극성기가
노출
됨으로서
단백질
용해도를
향상시킬
있음을
의미하였다
.
울러
단백질
용해도는
단백질
-
단백질
단백질
-
용매
간의
상호
작용에
의해
영향을
받으며
,
단백질의
표면
소수성
-
친수성
균형
의해
영향을
받는다고
하였다
(Mohan et al., 2006; Horax et
al., 2011).
황다랑어
(Park et al., 2016)
가다랑어
(Yoon
et al., 2018b)
가열
-
건조
(cook-dried)
공정을
통해
제조한
백질
농축분말의
용해도는
pH 12-shift
처리를
통해
각각
8.9-
9.5%
12.9-14.2%
로서
,
실험결과에
비추어
, CPFs
용해
도보다
높은
것으로
확인되었다
.
이러한
차이는
가열
-
건조
과정
에서
단백질의
가열변성에
비해
알칼리
가용화과정으로
소수성
잔기의
노출이
보다
많이
일어남에
따른
용해도
감소가
반영된
것이라
판단되었다
(Sikorski and Naczk, 1981).
따라서
등전점
부근
(pH 4-6)
pH
제외한
pH-shift
처리는
단백질의
용해도
개선하는
것으로
나타났다
(Kinsella, 1976).
거품 형성능
Table 1
넙치
(BH),
가다랑어
(ST),
그리고
황다랑어
(YT)
가용화과정에서
회수한
CPFs
식품
기능특성으로서
거품
형성능에
대한
결과를
나타낸
것이다
.
먼저
거품성
(FC, foam-
ing capacity)
경우
,
대조구는
BHCPF-11 (145.8%), BH-
CPF-12 (159.5%)
그리고
STCPF-12 (120.7%)
에서만
거품성
유의적으로
인정되었으나
(P<0.05),
거품안정성
(FS, foam
stability)
경우
BHCPFs
만이
거품형성
60
분까지
41.9-
69.9%
거품이
유지되었다
. pH 2-shift
처리에서
, STCPFs
(144.5
150.1%)
그리고
YTCPFs (151.4
127.2%)
FCs
BHCPFs (111.0
103.2%)
비하여
유의적으로
강한
품성을
나타내었으나
,
이들의
FSs
STCPF-11
YTCPF-11
에서만
일부
인정되었을
뿐이었다
.
또한
BHCPFs
pH 4
에서
그리고
STCPFs
YTCPFs
pH 6
에서
거품성을
나타내지
않았으며
,
이는
등전점
부근인
pH 4
6
에서의
보수력
(WHC,
Fig. 2)
그리고
단백질
용해도
(Fig. 3)
결과와
일치하였다
.
라서
보수력
용해도가
거품성과
밀접한
관련이
있음을
시사
하고
있다
. BHCPFs
FCs
FSs
pH 6-12
범위의
pH-shift
처리에서
거품성
거품안정성이
유지되었으나
, STCPF-12
FCs
FSs
pH 8-12
범위에서
일부
인정되었을
뿐이었다
.
어종
모두
pH 12-shift
처리에서
FCs
FSs
유의적으로
Fig. 3. Protein solubility of collagenous protein fractions (CPFs) re-
covered from bastard halibut (BH)
Paralichythys olivaceus
, skipjack
tuna (ST)
Katsuwonus pelamis
and yellown tuna (YT)
Thunnus
albacares
roe by alkaline solubilization Data are means±standard
deviation of triplicate determinations. Values with different letter
within the pHs are signicantly different at P<0.05 by Duncan's
multiple range test.
a
b
b
b
a
a
a
a
a
a
bc
a
a
a
a
b
b
a
a
a
a
c
b
e
d
b
c
c
b
b
b
a
b
b
c
c
a
cd
c
b
b
bc
a
abc
b
de
cd
ab
d
c
b
b
c
a
a
b
d
c
a
cd
c
b
b
c
a
ab
050 100 150 200 250 300 350
2
3
4
5
6
7
8
9
10
11
12
mM of NaOH or HCl/g of protien
pH
a
bc
ba
a
a
bc d
bd
a
b
ba
a
e
d
a
e
a
cd
b
ab
c
c
cd
cb
cb
d
a
d
b
d
c
de
bd
a
e
a
d
ce
b
c
b
0
10
20
30
40
50
Control 2 4 6 7 8 10 12
pH
WHC (g/g of protein)
BHCPF-11 BHCPF-12 STCPF-11
STCPF-12 YTCPF-11 YTCPF-12
b
a
c
b
aaa
a
a
b
b
a
b
b
b
c
e
c
b
d
b
c
c
a
c
c
a
cc
d
d
b
de
d
b
e
ce
e
bc
d
e
b
dcef
d
0
10
20
30
Control 2 4 6 7 8 10 12
pH
Protein solubility (%)
BHCPF-11 BHCPF-12 STCPF-11
STCPF-12 YTCPF-11 YTCPF-12
어류 알 Collagenous Protein Fractions의 식품기능특성
357
수한
결과를
나타내었으며
,
전체적으로
거품성
거품안정성
결과를
토대로
BHCPFs
ST
YT
비하여
거품
형성능
있어서
우수하였다
(P<0.05).
식품
기능성에서
거품성
(FC)
거품안정성
(FS)
식품의
신선감
(refreshment),
부드러운
촉감
(softening)
그리고
방향성분의
분산과
같은
독특한
특성
부여한다
.
또한
거품이
형성되는
동안
,
새로
생성된
공기
-
계면
(interface)
신속히
흡착되는
단백질들은
계면에서
백질의
되풀림
(unfolding)
단백질분자의
재배치를
거치게
,
단백질이
유연해짐으로서
거품
형성능이
향상된다
(Damo-
daran, 1997; Klomping et al., 2007). Lee et al. (2017)
Yoon
et al. (2017)
단백질농도가
높을수록
거품성이
우수한
경향
나타내며
,
시료중의
단백질
농도가
식품기능성으로서
거품
형성에
있어
중요한
인자라고
보고하였다
. Intarasirisawat et al.
(2012)
Chalamaiah et al. (2015)
어류
단백질
가수분해
물이
효소작용으로
인한
단백질의
저분자화로
용해도가
증가하
거품성이
개선되었다고
하였으며
,
소수성
(hydrophobic)
미노산의
증가로
인해
-
공기
계면에서
급속히
흡착되어
거품
성이
개선된다고
보고한
있다
.
이와
같이
효소처리를
통해
CPFs
단백질
용해도를
보다
개선시킨다면
거품
형성능도
선될
것이라
판단되었다
.
한편
Park et al. (2016)
Yoon et al.
(2018b)
가열
-
건조처리
어류
농축분말은
107.9-111.7%
거품성을
나타내었고
, pH 4-6
범위를
제외한
pH-shift
처리에
일부
용해도
개선을
통한
거품성도
개선되었다고
하였다
.
러나
실험결과에
비하여
거품
형성능에
있어서는
현저히
것으로
확인되었다
.
따라서
어류
알에서
알칼리
가용화공정
통해
회수한
CPFs
가열
-
건조
농축분말에
비해
거품
형성
능으로서의
식품기능성이
우수하였다
.
유화 형성능
유화능
(EAI, emulsifying activity index)
water-oil
계면에
단백질이
oil
흡착하여
emulsion
형성하는
능력이며
,
Table 1. Foaming capacity (FC, %) and foam stability (FS, %) of collagenous protein fractions (CPFs) recovered from bastard halibut (BH)
Paralichythys olivaceus
, skipjack tuna (ST)
Katsuwonus pelamis
and yellown tuna (YT)
Thunnus albacares
roe by alkaline solubilization
Sample Control pH 2 pH 4 pH 6 pH 7 pH 8 pH 10 pH 12
BHCPF-11
FC (%) 145.8±3.7
Bb
111. 0 ±7.5
Dc
100.0±0.0
Eb
119.1±4.7
Ca
117.0±1.2
Cab
119.4±1.3
Cb
142.3±2.5
Bb
188.7±2.2
Aa
15 min 88.0±0.7 - - 98.0±0.2 84.0 ±3.5 83.7±8.3 80.1±9.0 87.8 ±0.8
30 min 79.7±1.9 - - 92.5±1.3 74.7 ±5.3 77.5±3.5 72.5±5.6 83.6 ±2.0
60 min 69.9±0.8 - - 70.7±1.7 63.2 ±1.1 59.4±1.8 61.4±4.9 77.8 ±0.8
BHCPF-12
0 min 159.5±7.5
Ba
103.2±1.5
Dd
100.0±0.0
Db
119.1±9.4
Ca
116.7±5.8
Cab
125.9±2.5
Ca
156.5±6.0
Ba
188.6±4.8
Aa
15 min 67.4±0.3 - - 58.1±0.1 83.1 ±5.0 76.4±8.6 84.3±7.3 89.5 ±2.2
30 min 55.1±0.4 - - - 66.3±4.5 64.5±5.3 78.4 ±9.7 86.4±3.8
60 min 41.9±0.0 - - - 51.3±1.8 45.2±3.9 67.2 ±7.3 79.1±1.5
STCPF-11
FC (%) 100.0±0.0
Dd
144.5 ±0.1
Aa
118.0 ±0.0
Db
100.0 ±0.0
Db
116.9 ±0.1
Cab
120.1 ±0.2
BCa
100.0 ±0.0
Dd
121.7 ±6.6
Ba
15 min -61.8±11.7 - - - - - 78.3±7.5
30 min -58.4±2.3 - - - - - 68.1 ±3.7
60 min -54.3±0.9 - - - - -
STCPF-12
FC (%) 120.7 ±0.5
CDc
150.1 ±8.3
Aa
115.4 ±2.8
Da
100.0 ±0.0
Eb
121.5 ±1.2
Ca
124.3 ±1.6
Ca
122.3 ±2.0
Cc
131.3 ±0.7
Bb
15 min -37.8±0.0 - - - 48.9±0.5 87.8 ±1.9 70.9±0.2
30 min -----52.3±6.3 86.8 ±0.4 62.5±0.9
60 min ------83.4±1.3 -
YTCPF-11
FC (%) 100.0 ±0.0
Dd
151.4 ±0.7
Aa
118.7 ±4.4
Ca
100.0 ±0.0
Db
117.4 ±1.5
Cab
100.0 ±0.0
Dd
100.0 ±0.0
Dd
131.0 ±8.2
Bb
15 min -85.3±13.0 - - - - - 84.9 ±3.2
30 min -84.2±10.3 - - - - - 77.4 ±0.4
60 min -76.3±7.9 - - - - - 67.8 ±0.5
YTCPF-12
FC (%) 100.0 ±0.0
Ed
127.2 ±3.5
Ab
100.0 ±0.0
Eb
100.0 ±0.0
Eb
112.6 ±5.5
Cb
107.5 ±1.0
Dc
100.0 ±0.0
Ed
122.1 ±4.8
Bc
15 min -45.6±1.1 - - - - - 75.6 ±2.2
30 min -------69.1±0.7
60 min -------60.5±0.7
Values represent the mean±SD of n=3. Means with different capital letters within the same row and small letters within same column are
signicantly different at P<0.05 by Duncan's multiple range test. -, Not detected.
윤인성
김진수
허민수
358
안정성
(ESI, emulsion stability index)
형성된
emulsion
일정시간
동안
이를
유지시키는
능력으로
정의된다
(Can
Karaca et al., 2011).
수중
유적형
(oil in water) EAI (m2/g of
protein)
단백질
중량
안정화
계면의
면적의
단위로
시하며
,
이는
새로
생성된
emulsion
형성
안정성을
돕는
백질의
능력을
평가하는
것으로
500 nm
에서
탁도에
의해
결정
된다
(Pearce and Kinsella, 1978).
어류
CPFs
유화능
(EAI)
유화안정성
(ESI)
Table 2
나타내었다
. pH-shift
처리
않은
대조구
(control)
경우
, STCPF-11
12 (20.1
23.9
m2/g of protein)
BHCPFs (16.0
21.1 m2/g of protein)
YTCPFs (9.3
13.7 m2/g of protein)
비하여
유의적으로
우수한
유화능을
나타내었으며
, CPFs-12
CPFs-11
비하
유의적으로
높은
유화능을
나타내어
(P<0.05),
어종
알칼
가용화공정에
따른
차이도
인정되었다
. Park et al. (2016)
Yoon et al. (2018)
황다랑어
가다랑어
가열
-
건조
농축분말의
EAIs
각각
2.3-2.5
3.1-3.7 m2/g of protein
위이며
, egg white (14.7-15.2 m2/g of protein)
비해
현저히
낮은
유화능을
보인다고
하였다
.
실험결과에
비추어
CPFs
농축분말에
비해
월등히
우수한
유화능을
보일
뿐만
아니
egg white
비하여도
유사하거나
우수한
유화능을
나타냄
으로서
유화제로서의
이용가능성이
높을
것으로
판단되었다
.
pH-shift
처리
(pH 2-12)
따른
EAI
변화는
등전점
부근인
pH 4
에서
모든
CPFs (0.9-4.2 m2/g of protein)
완충능
(Fig.
1),
보수력
(Fig. 2),
용해도
(Fig. 3)
거품성
(Table 1)
결과
마찬가지로
가장
낮은
유화능을
나타내어
,
전형적인
단백질
식품기능성을
나타내는
것으로
확인되었다
.
또한
어종
pH 12-shift
처리에서의
EAI (18.8-30.2 m2/g of protein)
pH 2-shift
처리
(6.7-12.3 m2/g of protein)
보다
높은
유화능을
보였다
.
황다랑어
(Park et al., 2016)
가다랑어
(Yoon et al.,
2018)
농축분말의
경우도
알칼리
pH-shift
처리에서
15.4-21.9
m2/g of protein
범위의
유화능을
나타내어
산성
(5.2-5.9 m2/g of
protein)
에서보다
높은
유화능을
나타낸다고
하여
,
실험의
과와
유사하였다
.
한편
,
생성된
emulsion
유지되는
시간으로
나타낸
대조구
유화안정성
(ESI, min)
BHCPFs
대해
20.2-30.6 min,
STCPFs
경우
27.6-66.4 min
그리고
YTCPFs
대해
38.9-
62.0 min
으로
YTCPFs
생성된
emulsion
유지력이
오래
가는
것으로
나타났다
. EAI
20 m2/g of protein
수준으로
화능이
우수한
pH 12-shift
처리
CPFs
ESI
BHCPFs
26.4-28.9 min, STCPFs
경우
24.4-31.5 min
범위
그리고
YTCPFs
대해서
23.5-26.3 min
범위로
pH-shift
처리에
따른
어종간
ESI
차이는
인정되지
않았다
.
Park et al. (2016)
15 m2/g of protein
이상의
EAI
보이는
황다랑어
가열
-
건조
농축분말의
ESI
18.2-20.3 min
그리
positive control
로서
egg white (14.7-26.2 m2/g of protein)
경우
19.7-26.3 min
유화안정성을
나타낸다고
하였으며
,
Table 2. Emulsifying activity index (EAI) and emulsion stability index (ESI) of collagenous protein fractions (CPFs) recovered from bastard
halibut (BH)
Paralichythys olivaceus
, skipjack tuna (ST)
Katsuwonus pelamis
and yellown tuna (YT)
Thunnus albacares
roe by alkaline
solubilization.
Sample BHCPF-11 BHCPF-12 STCPF-11 STCPF-12 YTCPF-11 YTCPF-12
EAI
(m
2
/g protein)
Control 16.0±0.7
Bc
21.1±1.3
Ab
20.1 ±0.3
Bb
23.9±0.5
Ba
9.3 ±0.9
De
13.7±0.8
Bd
pH 2 6.8±0.7
Fb
6.7±1.0
Eb
11.8 ±1.1
Ca
11.7±1.4
Ca
12.3 ±0.8
Ca
12.1±1.2
Ca
pH 4 1.7±0.2
Gc
0.9±0.4
Gd
4.2 ±0.9
Ea
2.4±0.2
Db
2.8 ±0.1
Eb
1.4±0.2
Fcd
pH 6 7.0±0.5
Fb
3.6±1.0
Fc
10.4 ±1.3
Ca
4.1±0.7
Dc
10.3 ±0.5
Da
7.4±0.5
Eb
pH 7 8.2±0.7
Ec
9.5±1.0
CDb
7.3 ±0.3
Dc
11.5±0.3
Ca
10.1 ±0.3
Db
9.3±0.7
Db
pH 8 10.0±0.4
Dbc
8.1±0.3
DEc
10.1 ±1.4
Cbc
11.9±2.9
Cab
13.0 ±1.1
Ca
8.0±0.6
Ec
pH 10 11.7±0.3
Cde
10.9±1.4
Ce
21.8 ±1.1
Bb
24.4±2.3
Ba
17.1 ±1.2
Bc
13.4±0.4
Bd
pH 12 18.9±0.6
Ab
18.8±0.8
Bb
28.8 ±1.0
Aa
29.9±1.4
Aa
30.2 ±0.6
Aa
28.9±0.9
Aa
ESI
(min)
Control 30.6±3.9 20.2 ±7.7 66.4 ±10.8 27.6±3.9 38.9 ±13.5 62.0±15.1
pH 2 16.3±0.2 17.4 ±0.3 14.2 ±0.7 13.9±1.8 17.2 ±1.4 20.1±2.1
pH 4 20.9±2.8 30.3 ±5.6 49.6 ±23.4 45.8±9.0 52.7 ±15.7 77.5±7.1
pH 6 15.0±0.6 18.1 ±1.3 35.3 ±6.5 26.1±2.7 53.0 ±11.8 72.1±7.5
pH 7 15.4±0.7 11.7±0.4 55.7 ±21.9 48.9±13.5 71.3 ±17.4 47.6±8.0
pH 8 18.0±0.9 26.6 ±2.4 21.7 ±3.9 29.5±12.7 28.7 ±5.8 46.6±12.8
pH 10 16.9±1.1 15.4±2.9 28.0 ±1.6 18.2±2.1 34.4 ±5.3 52.9±6.5
pH 12 28.9±1.2 26.4±0.7 31.5 ±3.0 24.4±1.4 23.5 ±3.6 26.3±2.6
Values represent the mean±SD of n=3. Means with different capital letters within the same column and small letters within same row are
signicantly different at P<0.05 by Duncan's multiple range test.
어류 알 Collagenous Protein Fractions의 식품기능특성
359
Yoon et al. (2018)
10 m2/g of protein
이상의
EAI
나타내
가다랑어
가열
-
건조
농축분말의
ESI
18.1-20.1 min
라고
보고하였다
.
이상의
결과와
보고에
비추어
어류
CPFs
가열
-
건조
농축분말에
비해
상대적으로
분자량이
불용
단백질을
함유하고
있어
용해도와
보수력이
낮은
반면에
,
수한
유화능
유화안정성을
나타내는
것으로
확인되었다
.
분자량이
상대적으로
peptide
차지하는
비율이
높거나
소수성
peptide
함량이
많을수록
emulsion
안정성에
기여
하게
되며
,
균질화
과정에서
새로
형성된
oil
방울의
표면에
백질과
peptide
흡착됨으로서
, oil
방울끼리의
결합을
방지하
보호막들이
만들어져
emulsion
형성된다
(Dickinson and
Lorient 1994; Mutilangi et al., 1996).
연구의
CPFs
중에
고분자
단백질
peptide
하전
(charge)
관련된
소수성
(hydrophobic)
친수성
(hydrophilic)
작용기에
의해
수중
유적형
(oil in water)
emulsion
생성되는
것으로
추정되었
(Gbogouri et al., 2004). 3
종의
어류
알로부터
알칼리
가용화
공정을
통해
회수한
collagenous protein
획분
(CPFs)
들은
BH-
CPFs
전반적으로
ST
YT
비하여
완충능
,
보수력
,
용해
,
거품
유화
형성능이
우수하였으며
, STCPFs
YTCPFs
경우도
단백질
용해도를
제외하고는
우수한
식품기능성을
나타내었다
.
앞서의
연구
(Yoon et al., 2018a)
알칼리
불용성
획분의
이화학적
특성과
연구를
통한
식품기능성이
적용
능한
식품가공
수산가공분야에
특히
제면
,
제빵
,
어육
소시
또는
연제품의
단백질강화
식품기능성
개선소재
또는
체소재로서의
이용이
가능할
것이다
.
논문은
2016
해양수산부
재원으로
한국해양과학기술진
흥원의
지원을
받아
수행된
연구의
일부임
(
수산식품산업기술
개발사업
해역별
특성을
고려한
전통수산가공식품
개발
상품화
).
논문은
2014
년도
정부
(
교육과학기술부
)
재원으로
한국
연구재단의
지원을
받아
수행된
기초연구사업의
일부임
(NRF-
2014R1A1A4A01008620).
References
Alvarez C, Lelu P, Lynch SA and Tiwari BK. 2018. Optimised
protein recovery from mackerel whole sh by using sequen-
tial acid/alkaline isoelectric solubilization precipitation (ISP)
extraction assisted by ultrasound. LWT-Food Sci Technol
88, 210-216. https://doi.org/10.1016/j.lwt.2017.09.045.
Azadian M, Nasab MM and Abedi E. 2012. Comparison of
functional properties and SDS-PAGE patterns between
sh protein isolate and surimi produced from silver carp.
Eur Food Res Technol 235, 83-90. https://doi.org/10.1007/
s00217-012-1721-z.
Balaswamy K, Jyothirmayi T and Rao DG. 2007. Chemical
composition and some functional properties of sh egg
(roes) protein concentrate of rohu (Labep rohita). J Food Sci
Technol 44, 293-296.
Binsi PK, Natasha N, Sarkar PC, Ashraf PM, George N and
Ravishankar CN. 2017. Structural, functional and in vitro
digestion characteristics of spray dried sh roe powder stabi-
lised with gum arabic. Food Chem 221, 1698-1708. https://
doi.org/10.1016/j.foodchem.2016.10.116.
Can Karaca A, Low N and Nickerson M. 2011. Emulsifying
properties of chickpea, faba bean, lentil and pea proteins
produced by isoelectric precipitation and salt extraction.
Food Res Int 44, 2742-2750. https://doi.org/10.1016/j.
foodres.2011.06.012.
Chalamaiah M, Balaswamy K, Narsing Rao G, Prabhakara Rao
P and Jyothirmayi T. 2013. Chemical composition and func-
tional properties of mrigal (Cirrhinus mrigala) egg protein
concentrates and their application in pasta. J Food Sci Tech-
nol 50, 514-520. https://doi.org/10.1007/s13197-011-0357-
5.
Chalamaiah M, Hemalatha MD, Jyothirmayi T, Diwan PV,
Bhaskarachary K, Vajreswari A, Ramesh Kumar R and
Dinesh Kumar B. 2015. Chemical composition and im-
munomodulatory effects of enzymatic protein hydrolysates
from common carp (Cyprinus carpio) egg. Nutrition 31,
388-398. http://dx.doi.org/10.1016/j.nut.2014.08.006.
Damodaran S. 1997. Protein-stabilised foams and emulsions.
In: Food proteins and their applications. Damodaran S and
Paraf A, eds. Marcel Dekker, New York, NY, U.S.A., 57-
110.
Dickinson E and Lorient D. 1994. Emulsions. In: Food mac-
romolecules and colloids. Dickinson E and Lorient D, eds.
The Royal Society of Chemistry, London, U.K., 201-274.
FAO (Food and Agriculture Organization). 2015. Global aqua-
culture production (sh stat) [Internet]. Retrieved from http://
www.fao.org/shery/statistics/global-captureproduction/en
on Apr 24, 2018.
Gbogouri GA, Linder M, Fanni J and Parmentier M. 2004. In-
uence of hydrolysis degree on the functional properties of
salmon byproduct hydrolysates. J Food Sci 69, 615-622.
https://doi.org/10.1111/j.1365-2621.2004.tb09909.x.
Heu MS, Ji SG, Koo JG, Kwon JS, Han BW, Kim JG, Kim HJ
and Kim JS. 2009. Improvement on Yield and Functional
Properties of Autoclave-Treated Salmon Frame Extracts us-
ing Commercial Enzymes. Korean J Fish Aquat Sci 42, 537-
544. https://doi.org/10.5657/kfas.2009.42.6.537.
Heu MS, Kim HS, Jung SC, Park CH, Park HJ, Yeum DM, Park
HS, Kim CG and Kim JS. 2006. Food component character-
istics of skipjack (Katsuwonus pelamis) and yellown tuna
(Thunnus albacares) roes. J Kor Fish Soc 39, 1-8. https://doi.
org/10.5657/kfas.2006.39.1.001.
Heu MS, Lee JH, Kim HJ, Jee SJ, Lee JS, Jeon YJ, Shahidi F
윤인성
김진수
허민수
360
and Kim JS. 2010. Characterization of acid-and pepsin-sol-
uble collagens from atsh skin. Food Sci Biotechnol 19,
27-33. https://doi.org/10.1007/s10068-010-0004-3.
Horax R, Hettiarachchy N, Kannan A and Chen P. 2011. Protein
extraction optimisation, characterisation, and functionalities
of protein isolate from bitter melon (Momordica charantia)
seed. Food Chem 124, 545-550. https://doi.org/10.1016/j.
foodchem.2010.06.068.
Intarasirisawat R, Benjakul S, Visessanguan W and Wu J. 2014.
Effects of skipjack roe protein hydrolysate on properties
and oxidative stability of sh emulsion sausage. LWT-
Food Sci Technol 58, 280-286. https://doi.org/10.1016/j.
lwt.2014.02.036.
Intarasirisawat R, Benjakul S, Visessanguan W. 2011. Chemical
compositions of the roes from skipjack, tongol and bonito.
Food Chem 124, 1328-1334. https://doi.org/10.1016/j.food-
chem.2010.07.076
Kang KT, Heu MS, Jee SJ, Lee JH, Kim HS and Kim JS. 2007.
Food component characteristics of tuna livers. Food Sci
Biotechnol 16, 367-373.
Kang SI, Heu MS, Choi BD, Kim KH, Kim YJ and Kim JS.
2015. Investigation of food quality characterization of pro-
cessing by-product (frame muscle) from the sea rainbow
trout Oncorhynchus mykiss. Korean J Fish Aquat Sci 48,
26-35. https://doi.org/10.5657/kfas.2015.0026.
Kim HJ, Lee HJ, Park SH, Jeon YJ, Kim JS and Heu MS.
2015. recovery and fractionation of serine protease inhibi-
tors from bastard halibut paralichthys olivaceus roe. Ko-
rean J Fish Aquat Sci 48, 178-186. https://doi.org/10.5657/
kfas.2015.0178.
Kim JS, Kim MJ, Kim KH, Kang SI, Park SH, Lee HJ and Heu
MS. 2014. Debittering of enzymatic hydrolysate using exo-
peptidase active fractions from the Argentina shortn squid
Illex argentinus hepatopancreas. Korean J Fish Aquat Sci
47, 135-143. https://doi.org/10.5657/kfas.2014.0135.
Kinsella JE. 1976. Functional properties of proteins in food. Crit
Rev Food Sci Nutr 7, 219-225.
Klomklao S and Benjakul S. 2016. Utilization of tuna process-
ing byproducts: Protein hydrolysate from skipjack tuna
(Katsuwonus pelamis) viscera. J Food Process Preserv 41,
e12970. http://dx.doi.org/10.1111/jfpp.12970.
Klompong V, Benjakul S, Kantachote D and Shahidi F. 2007.
Antioxidative activity and functional properties of protein
hydrolysate of yellow stripe trevally (Selaroides leptolepis)
as inuenced by the degree of hydrolysis and enzyme type.
Food Chem 102, 1317-1327. https://doi.org/10.1016/j.food-
chem.2006.07.016.
Kristinsson HG, Theodore AE, Demir N and Ingadottir B. 2005.
A comparative study between acid-and alkali-aided process-
ing and surimi processing for the recovery of proteins from
channel catsh muscle. J Food Sci 70, C298-C306. https://
doi.org/10.1111/j.1365-2621.2005.tb07177.x.
Lee GW, Yoon IS, Kang SI, Lee SG, Kim JI, Kim JS and Heu
MS. 2017. Functionality and biological activity of isolate
processed water generated during protein isolate preparation
of sh roes using an isoelectric solubilization and precipita-
tion process. Korean J Fish Aquat Sci 50, 694-706. https://
doi.org/10.5657/KFAS.2017.0694.
Lee HJ, Kim HJ, Park SH, Yoon IS, Lee GW, Kim YJ, Kim
JS and Heu MS. 2016a. Recovery of serine protease in-
hibitor from sh roes by polyethylene glycol precipitation.
Fish Aquat Sci 19, 25. https://doi.org/10.1186/s41240-016-
0016-x.
Lee HJ, Lee GW, Yoon IS, Park SH, Park SY, Kim JS, Heu MS.
2016c. Preparation and characterization of protein isolate
from yellown tuna Thunnus albacares roe by isoelectric
solubilization/precipitation process. Fish Aquat Sci 19, 14:1-
10. http://dx.doi.org/10.1186/S41240-016-0014-Z.
Lee HJ, Park SH, Yoon IS, Lee GW, Kim JS and Heu MS. 2016b.
Chemical composition of protein concentrate prepared from
yellown tuna Thunnus albacores roe by cook-dried pro-
cess. Fish Aquat Sci 19, 12:1-8. http://dx.doi.org/10.1186/
s41240-016-0012-1.
Lowry OH, Rosebrough NJ, Farr AL and Randall RJ. 1951.
Protein measurement with the Folin phenol reagent. J Biol
Chem 193, 265-275.
Mahmoud KA, Linder M, Fanni J and Parmentier M. 2008.
Characterisation of the lipid fractions obtained by proteolyt-
ic and chemical extractions from rainbow trout (Oncorhyn-
chus mykiss) roe. Process Biochem 43, 376-383. http://
dx.doi.org/10.1016/j.procbio.2008.01.011.
MOF (Ministry of Ocean and Fisheries). 2017. Yearbook of
marine resource [Internet]. Retrieved from http://www.mof.
go.kr/article/view.do?articleKey=18346&boardKey=32&m
enuKey=396&currentPageNo=1 on Apr 24, 2018.
Mohamed BKF, Xia W, Issoufou A and Qixing J. 2012. Inu-
ence of pH shift on functional properties of protein isolated
of tilapia (Oreochromis niloticus) muscles and of soy pro-
tein isolate. Food Bioprocess Technol 5, 2192-2200. https://
doi.org/10.1007/s11947-010-0496-0.
Mohan M, Ramachandran D, Sankar TV and Anandan R. 2007.
Inuence of pH on the solubility and conformational char-
acteristics of muscle proteins from mullet (Mugil cephalus).
Process Biochem 42, 1056-1062. https://doi.org/10.1016/j.
procbio.2007.04.005.
Mutilangi WAM, Panyam D and Kilara A. 1996. Functional
properties of hydrolysates from proteolysis of heat-dena-
tured whey protein isolate. J Food Sci 61, 270-274. https://
doi.org/10.1111/j.1365-2621.1996.tb14174.x.
Narsing Rao G and Govardhana Rao D. 2010. Chemical and
functional characterization of Gum karaya (Sterculia urens
L.) seed meal. Food Hydrocolloids 24, 479-485.
Narsing Rao G. 2014. Physico-chemical, functional and antioxi-
dant properties of roe protein concentrates from Cyprinus
어류 알 Collagenous Protein Fractions의 식품기능특성
361
carpio and Epinephelus tauvina. J Food Pharm Sci 2, 15-22.
Noh Y, Park KH, Lee JS, Kim HJ, Kim MJ, Kim KH, Kim
JG, Heu MS and Kim JS. 2013. Improvement on yield of
extracts from byproducts of Alaska pollock Theragra chal-
cogramma and sea tangle Laminaria japonica using com-
mercial enzymes and its food component characterization.
Korean J Fish Aquat Sci 46, 37-45. https://doi.org/10.5657/
kfas.2013.0037.
Nolsoe H and Undeland I. 2009. The acid and alkaline solubi-
lization process for the isolation of muscle proteins: State
of the Art. Food Bioprocess Technol 2, 1-27. https://doi.
org/10.1007/s11947-008-0088-4.
Park SH, Lee HJ, Yoon IS, Lee GW, Kim JS and Heu MS.
2016. Protein functionality of concentrates prepared from
yellown tuna (Thunnus albacares) roe by cook-dried pro-
cess. Food Sci Biotechnol 25, 1569-1575. http://dx.doi.
org/10.1007/s10068-016-0242-0.
Pearce KN and Kinsella JE. 1978. Emulsifying properties of pro-
teins. Evaluation of a turbidimetric technique. J Agric Food
Chem 26, 716-723. https://doi.org/10.1021/jf60217a041.
Sikorski ZE and Naczk M. 1981. Modication of technological
properties of sh protein concentrates. Crit Rev Food Sci Nutr
14, 201-230. https://doi.org/10.1080/10408398109527305.
Sikorski ZE. 1994. The contents of proteins and other nitrog-
enous compounds in marine animals. In: Seafood proteins.
Sikorski ZE, Pan BS and Shahidi F eds. Chapman and Hall,
New York, NY, U.S.A., 6-12.
Tan ES, Ngoh YY and Gan CY. 2014. A comparative study of
physicochemical characteristics and functionalities of pinto
bean protein isolate (PBPI) against the soybean protein iso-
late (SPI) after the extraction optimisation. Food Chem 152,
447-455. https://doi.org/10.1016/j.foodchem.2013.12.008.
Yoon IS, Kang SI, Park SY, Cha JW, Kim DY, Kim JS and Heu
MS. 2018a. Physicochemical properties of alkaline insol-
uble fractions recovered from bastard halibut Paralichthys
olivaceus and skipjack tuna Katsuwonus pelamis roes by al-
kaline solubilization. Korean J Fish Aquat Sci 51, 230-237.
https://doi.org/10.5657/KFAS.2018.0230.
Yoon IS, Lee GW, Kang SI, Park SY, Kim JS and Heu MS.
2017. Food functionality and biological activity of pro-
cessed waters produced during the preparation of sh roe
concentrates by cook-dried process. Korean J Fish Aquat Sci
50, 506-519. https://doi.org/10.5657/KFAS.2017.0506.
Yoon IS, Lee GW, Kang SI, Park SY, Lee JS, Kim JS and Heu
MS. 2018b. Chemical composition and functional proper-
ties of roe concentrates from skipjack tuna (Katsuwonus
pelamis) by cook-dried process. Food Sci Nutr 00, 1-11.
https://doi.org/10.1002/fsn3.676.
... , (Yoon et al., 2018b), vitellogenin vitellogenin derivatives (Sikorski, 1994;Heu et al., 2006;Park et al., 2016;Yoon et al., 2018a;Kim et al., 2020) (Heu et al., 2006;Mahmoud et al., 2008;Intarasirisawat et al., 2011) . ...
Article
Full-text available
Boil-dried concentrate (BDC) and steam-dried concentrate (SDC) were prepared from olive flounder Paralichthys olivaceus roe using the cook-dried process, and their food functionality and in vitro bioactivity were examined. The buffer capacity of BDC and SDC was found to be stronger in the alkaline region than in the acidic region, and the buffer capacity of SDC was superior to that of BDC. The water holding capacities of these concentrates were 7.6 and 7.4 g/g protein, respectively, both of which were significantly lower than that of freeze-dried concentrate (FDC). The solubility of BDC (13.4%) and SDC (12.7%), foaming capacity of BDC (107.7%) and SDC (110.6%), and oil-in-water emulsifying activity index of BDC (7.7 m2/g) and SDC (9.7 m2/g) were all significantly lower than the corresponding values for FDC (P<0.05). The lower food functionality of BDC and SDC compared with FDC can be attributed to the high-temperature denaturation of proteins during the cook-dried process. The 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging activities (IC50) of SDC (2.5 mg protein/mL) was 60.4 μg/mL, and the angiotensin I converting enzyme inhibitory activity was 80.9%. Olive flounder roe concentrates have good antioxidant and antihypertensive activities, and can be used as materials or ingredients in the processing of seafood and other foods to enhance protein contents and food functionality.
... FRCs - Yoon et al., 2018b), / (Yoon et al., 2018a;Cha et al., 2020) (Yoon et al., 2018c) , FRCs . ...
Article
The purpose of this study was to evaluate the food functional properties and in vitro bioactivity of vacuum freezedried fish roe concentrates (FRCs) prepared from Alaska pollock Theragra chalcogramma (AP), bastard halibut Paralichthys olivaceus (BH) and skipjack tuna Katsuwonus pelamis (ST). All three species showed better buffering capacity on the alkaline side (pH 10-12) than on the acidic side. The water-holding capacities of the FRCs were 3.5, 8.5 and 4.2 g/g protein for AP, BH and ST, respectively, and were significantly higher than that of commercial egg white. The protein solubilities of the FRCs were 42.5% (AP), 50.0% (BH) and 13.9% (ST). The foaming capacities of the FRCs were not significantly different among the species (128.0% for AP, 128.3% for BH, and 143.3% for ST; P>0.05), and their foam stability was maintained at 53.0-74.2% for 60 minutes. The oil-in-water emulsifying activity indexes of AP and BH (19.5 and 20.2 m2/g protein, respectively) were significantly superior to that of ST (P<0.05). The 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis-3-ethylbenzothia-zoline-6-sulfonic acid radical-scavenging activities (IC50, mg/mL) of the FRCs were in the ranges of 1.05-3.26 and 0.13-0.18 mg/mL, respectively, and the angiotensin I converting enzyme inhibitory activity was in the range of 0.97-1.89 mg/mL.
Article
Full-text available
Roe protein hydrolyzates were prepared from protein isolate of olive flounder Paralichthys olivaceus roe using various proteases, and their bioactivity and functional properties were investigated. Pantidase NP-2 (PN, 14.2%) showed the highest degree of hydrolysis, followed by flourzyme (FL, 6.7%) and aroase AP-10 (AA, 6.5%). Free and released amino acid contents were significantly higher in PN (2,931.2 mg/100 g) and FL (2,725.6 mg/100 g) than in the other hydrolyzates (437.3–812.8 mg/100 g). The foaming activities (%) of papain (PA), trypsin (TR), and bromelain (BR) hydrolyzates were 193.4%, 176.7%, and 144.2%, respectively. The emulsifying activity indices of PA, BR, chymotrypsin, and TR (9.5–30.9 m2/g-protein) were superior to those of other the hydrolyzates (2.0–8.0 m2/g-protein, (P<0.05). The 2,2′-azino-bis-3-ethylbenzo- thiazoline-6-sulfonic acid (ABTS+) radical scavenging activities of protamex (PR, 108 µg/mL) and AA (115.5 µg/mL) were more potent (P<0.05). Angiotensin I converting enzyme inhibitory activities of all enzyme hydrolyzates (52.0–83.3%) were more robust compared with that of the control. Among the enzyme hydrolyzates, AA, FL, and PR showed relatively good tyrosinase inhibitory activities compared to that of the control (29.3%). Bioactivity and food functional properties showed that TR, BR, AA, and FL were superior.
Article
Full-text available
We investigated the functional properties and in vitro bioactivity of protein isolates (RPIs) recovered from olive floun�der Paralichthys olivaceus roes by isoelectric solubilization/precipitation process, according to pH-shift treatments. The buffer capacity of RPIs was shown to be stronger in alkaline pH than in acidic pH. Water holding capacity of RPIs was in range of 4.5–5.2 g/g protein with no significant differences (P>0.05). The foaming capacity and emulsifying activ�ity index of RPIs did not show any significant differences between RPI-1 (pH 11/4.5) and 3 (pH 12/4.5), however they were superior to RPI-2 (pH 11/5.5) and 4 (pH 12/5.5). The 2,2′-azino-bis-3-ethylbenzo-thiazoline-6-sulfonic acid radical scavenging activity of RPI-3 (2.5 mg protein/mL) was 102.4 μg/mL, and the angiotensin I converting enzyme inhibitory activity was 30.8%. Among the RPIs, RPI-3 was relatively superior in protein functional properties such as buffer capacity, foaming capacity, emulsification, and anti-oxidative activity. Therefore, we suggest that RPI prepared from olive flounder roes could serve as a potential food resource.
Article
Full-text available
Four roe protein isolates (RPIs) from skipjack tuna were prepared using isoelectric solubilization (pH 11 and 12) and precipitation (pH 4.5 and 5.5) (ISP) at different pH points to evaluate their physicochemical and functional properties and in vitro bioactivities. Moisture (<6.3%) and protein (71%–77%) content were maintained. Sulfur, sodium, phosphorus, and potassium were the major elements, and glutamic acid and leucine were the prevalent amino acids (12.2–12.8 and 9.6–9.8 g/100 g protein, respectively) in RPIs. RPI-1 showed the highest buffering capacity at pH 7–12. RPIs and casein showed similar water-holding capacities. At pH 12, RPI-1(pH 11/4.5) showed the highest solubility, followed by RPI-3(pH 12/4.5), RPI-2(pH 11/5.5), and RPI-4(pH 12/5.5) (p < .05). Oil-in-water emulsifying activity indices of RPI-1 and RPI-3 significantly differed. At pH 2 and 7–12, pH-shift treatment improved the food functionality of RPIs, which was superior to positive controls (casein and hemoglobin). RPI-1 showed ABTS+ radical scavenging (102.7 μg/ml) and angiotensin-converting enzyme inhibitory activities (44.0%).
Article
Full-text available
This study investigated the food and nutritional characteristics of alkaline-insoluble fractions (AIFs) recovered from bastard halibut Paralichthys olivaceus (BH) and skipjack tuna Katsuwonus pelamis (ST) roes using the alkaline solubilization. The moisture content of AIFs ranged from 4.8% to 12.8%, and ST provided significantly better yields (9.5 for STAIF-11 and 7.1 g/100 g roe for STAIF-12) than did BH (P<0.05). The protein content of AIFs ranged from 71.7% to 79.2%, with the highest level yielded by STAIF-11 (6.8 g/100 g roe). The crude fat content of AIFs was 10.9-14.3% and the mineral content was 0.7-3.4%. The major mineral components of AIFs were sulfur, sodium, potassium, and phosphorus. Color values showed that BHAIFs were significantly brighter than STAIFs. Total contents of essential amino acids were significantly higher in STAIFs (47.5-49.5%) than in BHAIFs. The major essential amino acids found in AIFs from both sources were Val, Leu, Lys, and Arg. Therefore, AIFs were significantly superior to whole BH roe in terms of physicochemical and nutritional status, and we identified species-specific differences between BH and ST. Protein is a major component of AIFs recovered from fish roes, which suggests that they have potential for use as a protein source.
Article
Full-text available
The objective of this study was to investigate physicochemical properties of protein concentrate from skipjack tuna roe by a cook‐dried (boiled or steamed‐dried) process, and to evaluate their food functional properties. The yields of boil‐dried concentrate (BDC) and steam‐dried concentrate (SDC) prepared from skipjack tuna roe were 22.4 for BDC and 24.4% for SDC. Their protein yields were 16.8 and 18.4%, respectively. In terms of major minerals of the BDC and SDC, sulfur (853.2 and 816.6 mg/100 g) exhibited the highest levels followed by potassium, sodium and phosphorus. The prominent amino acids of roe protein concentrates (RPCs) were Glu, Asp, Leu and Val. The BDC and SDC showed a higher buffer capacity than egg white (EW) at the pH‐shift range. The pH‐shift treatment significantly improved the water holding capacities of RPCs, except pH 6. But they had a low solubility across the pH‐shift range. The foaming capacities (104%–119%) of BDC and SDC were significantly lower than those of EW (p < .05), and their foam stabilities were not observed. Emulsifying activity index (m²/g protein) of RPCs and EW was 2.3 for BDC, 11.1 for SDC and 18.0 for EW. RPCs in the food and seafood processing industries will be available as egg white alternative protein sources and will be available as ingredients of surimi‐based products in particular.
Article
Full-text available
This study evaluated the protein recovery, functional properties and biological activity of isolate processed water (IPW) generated in the preparation of protein isolates from fish roes (BH, bastard halibut Paralichthys olivaceus; ST, skipjack tuna Katsuwonus pelamis; YT, yellowfin tuna Thunnus albacares) by an isoelectric solubilization and precipitation process. The IPWs contained 2.7-5.4 mg/mL of protein, and the protein losses were 8-21% (P<0.05). The form capacity of IPW-3 for BH and ST, and IPW-4 for YT was 155, 194, and 164%, respectively. The emulsifying activity index (27-43 m2/g) of the YT-IPWs was the strongest, followed by ST (7-29 m2/g) and BH (10-19 m2/g). The 2,2-diphenyl-1-picrylhydrazyl scavenging activities of IPW-1 and -3 were higher than those of IPW-2 and -4. The 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid scavenging activity (IC50, mg/mL) of IPW-2 and -4 was 0.03 mg/mL for BH, 0.04-0.08 mg/mL for ST, and 0.04-0.07 mg/mL for YT. BH IPW-3 had the strongest reducing power (0.41 mg/mL) and superoxide dismutase-like activity (1.68 mg/mL). The angiotensin-I converting enzyme inhibitory activity of IPW-3 was the highest for ST (1.52 mg/mL), followed by BH and YT. The common predominant amino acids in the IPWs were the essential amino acids Val, Leu, Lys, and Arg and the non-essential amino acids Ser, Glu, and Ala.
Article
Full-text available
This study evaluated the protein recovery and functional properties and biological activity of boiled and steamed process water (BPW and SPW, respectively) generated from the preparation of concentrated roe of bastard halibut (BH; Paralichthys olivaceus), skipjack tuna (ST; Katsuwonus pelamis), and yellowfin tuna (YT; Thunnus albacares) using the cook-dry process. The protein loss from the water extracts (EXT) of 100 g of roe protein was 15.05-19.71% and was significantly (P<0.05) higher than that of BPW (5.47-10.34%) and SPW (3.88-8.18%). The foam capacity of BPW (166-203%) and SPW (15-194%) was better than that of EXT. The emulsifying activity index of the original samples was lower than those (15.40-107.86 m2/g) of diluted protein samples. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and the reducing power of BPW and SPW were stronger than those of EXT. The 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS+) radical scavenging activity of EXT (0.028-0.045mg/mL) was significantly higher those of BPW and SPW. The angiotensin I-converting enzyme (ACE) inhibitory activity of SPW was the highest for BH (1.04 mg/mL), followed by YT and ST. The predominant amino acids in SPW were Glu, Ala, Leu, and His. These results demonstrate that processing water containing diluted organic components, including protein, can be consumed directly by humans as a functional reinforcing material after appropriate concentration processes.
Article
Full-text available
Three kinds of roe protein concentrates (RPCs: boil-dried concentrate, BDC; steam-dried concentrate, SDC; freeze-dried concentrate, FDC) were prepared from yellowfin tuna to produce value added products for food applications. The buffer capacities of the RPCs were higher under alkaline than under acidic conditions. The water holding capacities of the RPCs were in range 4.5–4.7 g/g protein at pH 6.0. The protein solubility of the FDC (14.2%) was higher than those of the BDC (5.4%) and SDC (5.5%) at pH 6.0. The foaming capacity of the FDC (156.8%) was higher than those of the BDC (109.7%) and SDC (109.4%); the FDC foam was stable for 60 min. The oil-in-water emulsifying activity index of the FDC (12.2m2/g protein) exceeded those of the BDC and SDC (2.2m2/g protein). Protein concentrates from yellowfin tuna roe may be useful as a potential protein source and as a high-value food ingredient.
Article
Full-text available
The fractionation of serine protease inhibitor (SPI) from fish roe extracts was carried out using polyethylene glycol-4000(PEG4000) precipitation. The protease inhibitory activity of extracts and PEG fractions from Alaska pollock (AP), bastardhalibut (BH), skipjack tuna (ST), and yellowfin tuna (YT) roes were determined against target proteases. All of the roeextracts showed inhibitory activity toward bromelain (BR), chymotrypsin (CH), trypsin (TR), papain-EDTA (PED), andalcalase (AL) as target proteases. PEG fractions, which have positive inhibitory activity and high recovery (%), were thePEG1 fraction (0–5%,w/v) against cysteine proteases (BR and PA) and the PEG4 fraction (20–40 %,w/v) against serineproteases (CH and TR). The strongest specific inhibitory activity toward CH and TR of PEG4 fractions was AP (9278 and1170 U/mg) followed by ST (6687 and 2064 U/mg), YT (3951 and 1536 U/mg), and BH (538 and 98 U/mg). Theinhibitory activity of serine protease in extracts and PEG fractions from fish roe was stronger than that of cysteineprotease toward common casein substrate. Therefore, SPI is mainly distributed in fish roe and PEG fractionationeffectively isolated the SPI from fish roes. Recovery of serine protease inhibitor from fish roes by polyethylene glycol precipitation. Available from: https://www.researchgate.net/publication/305637522_Recovery_of_serine_protease_inhibitor_from_fish_roes_by_polyethylene_glycol_precipitation [accessed Jul 26, 2016].
Article
Full-text available
Isoelectric solubilization/precipitation (ISP) processing allows selective, pH-induced water solubility of proteinswith concurrent separation of lipids and removal of materials not intended for human consumption such asbone, scales, skin, etc. Recovered proteins retain functional properties and nutritional value. Four roe proteinisolates (RPIs) from yellowfin tuna roe were prepared under different solubilization and precipitation condition(pH 11/4.5, pH 11/5.5, pH 12/4.5 and pH 12/5.5). RPIs contained 2.3–5.0 % moisture, 79.1–87.8 % protein, 5.6–7.4%lipidand3.0–3.8 % ash. Protein content of RPI-1 and RPI-2 precipitated at pH 4.5 and 5.5 after alkalinesolubilization at pH 11, was higher than those of RPI-3 and RPI-4 after alkaline solubilization at pH 12 (P< 0.05).Lipid content (5.6–7.4 %) of RPIs was lower than that of freeze-dried concentrate (10.6 %). And leucine and lysineof RPIs were the most abundant amino acids (8.8–9.4 and 8.5–8.9 g/100 g protein, respectively). S, Na, P, K asminerals were the major elements in RPIs. SDS-PAGE of RPIs showed bands at 100, 45, 25 and 15 K. Moisture andprotein contents of process water as a 2’nd byproduct were 98.9–99.0 and 1.3–1.8 %, respectively. Therefore,yellowfin tuna roe isolate could be a promising source of valuable nutrients for human food and animal feeds.
Article
The growing fishery industry needs to find new green-processes in order to provide a solution to the huge amount of wastes and by-products that such industrial activity produces. Currently, around a 40% of the total weight of the mackerel is considered a by-product, because just the fillets are used in the food market. ISP method has been revealed as a useful tool for protein recovering, however the yield of this process is traditionally lower than enzymatic methods. In present work, the use of sequential acid/alkaline extraction and alkaline extraction assisted by ultrasound, have been implemented in order to increase the yield of the process. It has been demonstrated that (i) sequential extraction is able to recover practically 100% of total protein, and (ii) applying ultrasound to alkaline extraction is possible to recover more than 95% of total protein from mackerel by-products. Extracted proteins were characterized according to their size, and the amino acid profile of final product was determined.
Article
Alcalase showed optimum activity against skipjack tuna (Katsuwonus pelamis) viscera at pH 10 and 65C. Enzyme concentration, reaction time and fish viscera/buffer ratio affected the degree of hydrolysis (DH) (P < 0.05). Hydrolysis with an enzyme level of 3% (w/w) for 20 min with fish viscera/buffer ratio of 1:2 (w/v) was found to be the optimum condition. Protein, lipid and ash content of freeze‐dried hydrolysate were 81.04, 6.78 and 12.01% dry weight basis, respectively. It was brownish yellow in color (L* = 62.46, a* = 1.44 and b* = 23.05). The hydrolysate contained a high amount of essential amino acids (43.13%) and had glutamic acid, methionine and aspartic acid as the dominant amino acids. Therefore, protein hydrolysate derived from skipjack tuna viscera could potentially serve as a good source of peptides and amino acids and the production of tuna waste protein hydrolysate has both ecological and economical advantage for the tuna industry. Practical Applications Efficient utilization of fish byproducts, especially viscera, is important for the economic viability of the aquatic food industry. Enzymatic hydrolysis is one of the most effective technologies for recovering value‐added proteins from fish viscera without losing their nutritional value. In this study, protein hydrolysate prepared from skipjack tuna viscera using Alcalase showed high protein content. Hence, it can be used in a wide range of food additives, diet nutrients and pharmaceutical agents.