ArticlePDF Available

Efecto de la inclusión alimenticia de betaína en cerdos en fase de finalización

Authors:

Abstract

El consumidor de carne porcina demanda de un producto de calidad y con menor contenido de grasa, exigiendo que el nutricionista busque nuevas alternativas en la alimentación del cerdo. El objetivo de este estudio fue evaluar el efecto de la inclusión dietaria de betaína. Los parámetros productivos y rendimiento a la canal fueron evaluados, un total de 30 de cerdos machos castrados en fase de finalización (Landrace _ Yorkshire) fueron alimentadas con una dieta control o con la dieta experimental adicionada con 0.1% de betaína durante 29 días. El consumo diario promedio de alimento (CDPA) fue similar en ambos grupos (P>0.05). La ganancia diaria promedio de peso (GDP), conversión alimenticia (CA) y rendimiento a la canal (RC) para los cerdos alimentados con la dieta de betaína fue significativamente mayor (p<0.05) en comparación con la dieta no suplementada. El espesor de grasa dorsal (EGD)fue menor en el grupo experimental (p<0.05). La inclusión alimenticia de betaína al 0.1%en fase de finalización mejora la ganancia diaria de peso, conversión alimenticia y disminuye el contenido de grasa de la canal
Artículo científico / Scientific paper
NUTRICIÓN ANIMAL
pISSN:1390-3799; eISSN:1390-8596
http://doi.org/10.17163/lgr.n28.2018.10
EFECTO DE LA INCLUSIÓN ALIMENTICIA DE BETAÍNA EN
CERDOS EN FASE DE FINALIZACIÓN
EFFECT OF DIETARY INCLUSION OF BETAINE IN FINISHING PIGS
Romel Joaquín Páez Bustillos, Jorge Eduardo Grijalva Olmedo,
Jimmy Rolando Quisirumbay-Gaibor*
Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Av. Universitaria, Quito 170129, Ecuador.
*Autor para correspondencia: jrquisirumbay@uce.edu.ec
Artículo recibido el 27 de noviembre de 2017. Aceptado, tras revisión, el 9 de agosto de 2018. Publicado el 1 de septiembre de 2018.
Resumen
El consumidor de carne porcina demanda de un producto de calidad y con menor contenido de grasa, exigiendo
que el nutricionista busque nuevas alternativas en la alimentación del cerdo. El objetivo de este estudio fue evaluar
el efecto de la inclusión dietaria de betaína. Los parámetros productivos y rendimiento a la canal fueron evaluados,
un total de 30 de cerdos machos castrados en fase de finalización (Landrace ×Yorkshire) fueron alimentadas con
una dieta control o con la dieta experimental adicionada con 0.1% de betaína durante 29 días. El consumo diario
promedio de alimento (CDPA) fue similar en ambos grupos (P>0.05). La ganancia diaria promedio de peso (GDP),
conversión alimenticia (CA) y rendimiento a la canal (RC) para los cerdos alimentados con la dieta de betaína fue
significativamente mayor (p<0.05) en comparación con la dieta no suplementada. El espesor de grasa dorsal (EGD)
fue menor en el grupo experimental (p<0.05). La inclusión alimenticia de betaína al 0.1% en fase de finalización mejora
la ganancia diaria de peso, conversión alimenticia y disminuye el contenido de grasa de la canal
Palabras clave: betaína, cerdos, grasa, canal, nutrición.
122 LAGRANJA:Revista de Ciencias de la Vida 28(2) 2018:122-129.
c
2018, Universidad Politécnica Salesiana, Ecuador.
Efecto de la Inclusión Alimenticia de Betaína en Cerdos en Fase de Finalización
Abstract
The pork consumer demands a quality product with a lower fat content, requiring the nutritionist to look for new
alternatives in the feeding of pigs. The objective of this study was to evaluate the effect of dietary betaine. The per-
formance and dressing proportion were evaluated, a total of 30 finishing barrows (Landrace ×Yorkshire) were fed a
control diet or with the experimental diet added with 0.1% betaine for 29 days. The average daily feed intake (CD-
PA) was similar in both groups (P>0.05). The average daily weight gain (GDP), feed conversion (CA) and dressing
proportion (RC) in betaine group was significantly higher (p<0.05) compared to the non-supplemented diet. Backfat
thickness (EGD) was lower in the experimental group (p<0.05). The dietary betaine inclusion of 0.1% in barrows im-
proves daily weight gain, feed conversion and reduces carcass fat content.
Keywords: betaine, pigs, fat, dressing proportion, nutrition.
Forma sugerida de citar: Páez Bustillos, J. E., Grijalva Olmedo, J. E. y Quisirumbay-Gaibor, J. R. 2018. Efecto de la
Inclusión Alimenticia de Betaína en Cerdos en Fase de Finalización. La Granja: Revista
de Ciencias de la Vida. Vol. 28(2):122-129. http://doi.org/10.17163/lgr.n28.2018.10.
LAGRANJA:Revista de Ciencias de la Vida 28(2) 2018:122-129.
c
2018, Universidad Politécnica Salesiana, Ecuador. 123
Artículo científico / Scientific paper
NUTRICIÓN ANIMAL
Romel Joaquín Páez Bustillos, Jorge Eduardo Grijalva Olmedo,
Jimmy Rolando Quisirumbay-Gaibor
1 Introducción
La betaína, conocida también como trimetilglici-
na, es un derivado del aminoácido glicina que se
encuentra normalmente en una gran variedad de
plantas y animales (Saarinen et al., 2001). Su princi-
pal función es actuar como donador de grupos me-
tilo (Craig, 2004), favorece la síntesis de creatina y
carnitina y disminuye los requerimientos de otras
moléculas donadoras de metilo como la metionina
y la colina (Eklund et al., 2005; Ratriyanto et al., 2009;
Simon, 1999).
Se ha demostrado su papel como osmo-
protector (Kidd, Ferket y Garlich, 1997) de manera
especial en ambientes de alta osmolaridad en algu-
nos microorganismos (Boch, Kempf y Bremer, 1994)
y cultivos celulares (Horio et al., 2001). Tieneun bajo
costo y mucha seguridad en su uso alimenticio (Day
y Kempson, 2016).
En los últimos años se ha descubierto que la
betaína participa en la regulación de los genes de
transporte y oxidación de ácidos grasos (Cai et al.,
2016), así como en los genes para la síntesis de lí-
pidos y colesterol (Albuquerque et al., 2017). Exis-
te evidencia de un papel ahorrador de energía de
la betaína en el metabolismo de los cerdos en creci-
miento, en especial bajo condiciones específicas co-
mo por ejemplo la limitación de la ingesta de ali-
mento y de energía en la dieta (Siljander-Rasi et al.,
2003; Wray-Cahen et al., 2004). Demostrando así que
la suplementación con betaína afecta la partición de
energía (Fernández-Fígares et al., 2002) y podría me-
jorar el valor energético de las dietas (Schrama et al.,
2003).
Es importante mencionar que los primeros re-
sultados en cuanto al uso de la betaína en la alimen-
tación de cerdos en finalización ha sido inconsisten-
te, reportándose una ausencia de efecto o un efecto
mínimo sobre el crecimiento, consumo de alimento,
ganancia diaria de peso y depósito de tejido adipo-
so(Matthews et al., 1998; Overland, Rørvik y Skrede,
1999).
Sin embargo, en otros trabajos se ha deter-
minado que la inclusión de betaína en cerdos
en crecimiento-finalización favorece el desempeño
productivo (Yang et al., 2009) disminuye el conteni-
do de grasa en la carcasa (Huang et al., 2006; Nakev
et al., 2009; Sales, 2011) y el espesor de grasa dorsal
beneficiando a la industria porcina (Feng et al., 2006;
Lawrence et al., 2002; Ribeiro et al., 2011).
De igual forma, se ha encontrado que la inclu-
sión de betaína favorece la formación de ácidos gra-
sos saturados al utilizar DDGs (30%) en la alimenta-
ción de cerdos, disminuyendo así la proporción de
ácidos grasos insaturados (Wang et al., 2015) y me-
jora el color de la carne (Su et al., 2013). También
se ha demostrado que la betaína reduce la produc-
ción total de calor corporal (Schrama et al., 2003) y
favorece el desempeño reproductivo en épocas ca-
lurosas (Cabezón et al., 2016; Lugar et al., 2018; van
Wettere, Herde y Hughes, 2012).
Con lo señalado anteriormente, el objetivo de es-
te estudio fue evaluar el efecto de la inclusión die-
taria de 1 mg/kg de betaína sobre parámetros pro-
ductivos, rendimiento a la canal y espesor de grasa
dorsal en cerdos, cuando se les ofreció alimento ad
libitum entre los 66 a 100 kg de peso vivo.
2 Materiales y métodos
Este trabajo se desarrolló en la granja porcina
“La Maresca”, ubicada en Cayambe, Pichincha-
Ecuador. Se utilizó un total de 30 cerdos machos cas-
trados F1 (Landrace X Yorkshire) con un peso medio
inicial de 66 ±4 kg y 110 días de edad distribuidos
de manera aleatoria en dos grupos: control y experi-
mental (0.1% de betaína), 15 cerdos por tratamiento.
Los cerdos fueron alojados en corrales individuales
(3.75 m2) considerándose cada cerdo como una uni-
dad experimental, el alimento y el agua fueron ad-
ministrados ad libitum.
Las dietas se elaboraron a partir de maíz y so-
ya para cubrir los requerimientos nutricionales del
National Research Council (2012). La composición
de los ingredientes y el contenido nutricional de las
dietas usadas en el experimento se muestran en la
Tabla 1. El experimento tuvo una duración de 29
días, 24 horas antes del sacrificio el alimento fue re-
tirado aunque los cerdos tuvieron acceso al agua de
bebida hasta el faenamiento (139 días de edad).
Las variables evaluadas fueron: consumo dia-
rio promedio de alimento (CDPA), ganancia diaria
de peso (GDP), conversión alimenticia (CA), rendi-
miento a la canal (RC) y espesor de grasa dorsal
(EGD). El rendimiento a la canal se calculó como el
peso de la carcasa como porcentaje del peso vivo an-
tes del sacrificio. El espesor de grasa dorsal se midió
con un calibrador manual en la última costilla una
vez que la canal fue dividida por la mitad.
124 LAGRANJA:Revista de Ciencias de la Vida 28(2) 2018:122-129.
c
2018, Universidad Politécnica Salesiana, Ecuador.
Efecto de la Inclusión Alimenticia de Betaína en Cerdos en Fase de Finalización
Tabla 1. Composición y contenido nutricional de las dietas
Ingrediente Control Experimental
Maíz (%) 77,86 77,76
Pasta de soya (%) 19 19
Carbonato de Calcio (%) 1,1 1,1
Aceite de soya (%) 1 1
Sal (%) 0,3 0,3
Fosfato dicálcico (%) 0,23 0,23
L-Lisina HCl (%) 0,01 0,01
Premezcla vitamínica-minerala(%) 0,5 0,5
Betaína (%) - 0,1
Composición de la dieta
Energía Metabolizable (kcal/kg) 3300 3300
Proteína Cruda (%) 14,5 14,5
Calcio total (%) 0,5 0,5
Fósforo total (%) 0,45 0,45
Lisina Total (%) 0,8 0,8
aLa premezcla aporta la siguiente cantidad de micronutrientes
por kilogramo de dieta: vitamina A, 7600 IU; vitamina D, 1500
IU; vitamina E, 10 mg; vitamina K3, 2.0 mg; vitamina B1, 1.0 mg;
vitamina B6, 1.0 mg; vitamina B2, 3.0 mg; vitamina B12, 12 µg;
ácido pantoténico, 7 mg; niacina, 12 mg; Zn, 105 mg; Fe, 100 mg;
Cu, 20 mg; Mn, 45 mg; I, 0.3 mg; Se, 0.3 mg.
3 Análisis estadístico
Para el experimento se utilizó un diseño completa-
mente aleatorizado (DCA), cada cerdo fue conside-
rado como una unidad experimental. Para la dife-
rencia entre medias se utilizó la prueba de t de stu-
dent para muestras independientes, con un nivel de
significancia de 0.05.
4 Resultados y discusión
4.1 Consumo diario promedio de alimento
(CDPA)
No hubo diferencia significativa (P>0.05) (Tabla 2
siendo el consumo de 2,64 ±0,001 kg para el tes-
tigo y 2,63 ±0,004 kg para el grupo experimental.
La información obtenida concuerda con los resulta-
dos encontrados por Feng et al. (2006), estudio en el
cual el grupo que recibió betaína (1.25 mg/kg) pre-
sentó un consumo de 2,39 vs. 2,34 en el grupo con-
trol (P>0.05). Similar a estos resultados fueron los
encontrados por Wang et al. (2015) en el que cerdos
alimentados con DDGs al 30% que recibieron betaí-
na (0.1%) presentaron un consumo de 2,65 vs. 2,71
kg/día del grupo control (sin DDGs ni betaína).
Así también coinciden con los encontrados en el
estudio realizado por Schrama et al. (2003), donde
se evaluó la inclusión de betaína a un nivel de 1,29
g/kg de alimento (0,129%), donde no hubo diferen-
cia significativa (P>0.10) 1 548 kg vs. 1 558 kg para el
grupo control y experimental, respectivamente, du-
rante un periodo de tres semanas de experimenta-
ción; aunque este estudio se realizó en cerdos entre
los 35 a 46 kg de peso vivo. Sin embargo estos re-
sultados no concuerdan con los obtenidos por Yang
et al. (2009) en el que hubo de manera significati-
va (P<0,05) un menor consumo de alimento en cer-
dos que recibieron betaína a un nivel de inclusión
de 0,2% frente al grupo control y a los niveles de 0,4
y 0,6% de betaína.
LAGRANJA:Revista de Ciencias de la Vida 28(2) 2018:122-129.
c
2018, Universidad Politécnica Salesiana, Ecuador. 125
Artículo científico / Scientific paper
NUTRICIÓN ANIMAL
Romel Joaquín Páez Bustillos, Jorge Eduardo Grijalva Olmedo,
Jimmy Rolando Quisirumbay-Gaibor
Tabla 2. Efecto de la inclusión dietaria de betaína (0.1%) en cerdos en finalización
Variable Control Experimental
Peso final (kg) 94,75 ±1,01 a 103,99 ±1,78 b
Ganancia diaria de peso (kg/d) 0,99 ±0,02 a 1,31 ±0,03 b
Consumo diario de alimento (kg/d) 2,64 ±0,001 a 2,63 ±0,004 a
Conversión alimenticia 2,68 ±0,04 a 2,02 ±0,04 b
Rendimiento a la canal (%) 80,9 ±0,38 a 82,07 ±0,27 b
Espesor de grasa dorsal (mm) 17,27 ±0,21 a 13,93 ±0,37 b
Los valores presentados son la media ±error estándar. Las medias den-
tro de una misma fila con letras distintas difieren significativamente
(p < 0.05).
4.2 Ganancia Diaria de Peso (GDP)
Se encontró una diferencia significativa (P<0.05) con
mayor ganancia en el grupo experimental 1,31 ±
0,03 kg/d frente al grupo control 0,99 ±0,02 kg/d.
Estas observaciones están en acuerdo con las encon-
tradas en el estudio realizado por Yang et al. (2009)
en el que cerdos entre 65-100 kg alimentados con
betaína al 0,2; 0,4 y 0,6% difieren significativamen-
te (P<0,05) del grupo control, 0,94; 1,16; 1,07 y 0,91
kg/d, respectivamente. De igual manera, en el es-
tudio realizado por Ribeiro et al. (2011) se encontró
que el grupo que recibió betaína al 0,2% presentó
la mayor GDP (1 055 kg/d) frente al grupo testigo
(0,967 kg/d).
Sin embargo estos datos difieren de los obte-
nidos en cerdos entre los 62,5 a 92,5 kg de peso
vivo, que no presentaron diferencias significativas
(P>0,05) 0,715 kg/d y 0.748 kg/d para el grupo con-
trol y betaína (1,25 mg/kg), respectivamente (Feng
et al., 2006). De manera similar en el estudio reali-
zado por Wang et al. (2015) en cerdos entre los 58 a
94 kg no existió diferencia significativa (P>0,05) en-
tre el grupo que recibió betaína (0,1%) y el control
0,85 vs. 0,87, respectivamente. Una tendencia simi-
lar a los estudios de Feng et al. (2006); Wang et al.
(2015) se encontró cuando la betaína fue utilizada a
un nivel de inclusión de 0,129% en cerdos entre 35 a
46 kg siendo la GDP de 0,651 para el grupo experi-
mental y 0,648 para el grupo testigo (Schrama et al.,
2003).
4.3 Conversión Alimenticia (CA)
Se encontró diferencia significativa (P<0,05) entre
los dos tratamientos grupo experimental 2,02 ±0,04,
mientras que el grupo testigo fue de 2,67 ±0,04. Esta
información concuerda con lo encontrado por Yang
et al. (2009) en el que los cerdos que recibieron betaí-
na al 0,2; 0,4 y 0,6% presentaron una menor conver-
sión alimenticia (P<0,05) frente al grupo control 3;
2,8; 3,01 y 3,45, respectivamente. Así también lo de-
mostró Ribeiro et al. (2011) en el que la CA fue me-
nor en el grupo que recibió betaína al 0,2% (3,038)
al compararlo con el grupo control (3,470).
Sin embargo estos resultados no concuerdan con
los encontrados por Feng et al. (2006) en los cuales
no hubo diferencia significativa (P>0,05) 3,27 para
el grupo control y 3,22 para los cerdos que recibie-
ron betaína (1,25 mg/kg). De igual manera no se en-
contró diferencia significativa en el estudio realiza-
do por Wang et al. (2015), en el que se obtuvo una
conversión alimenticia similar de 3,11 para ambos
grupos control y betaína (0,1%). Además en cerdos
entre los 35 a 46 kg no se encontró diferencia signifi-
cativa (P>0,10) presentando ambos grupos una CA
de 2,39 (Schrama et al., 2003).
4.4 Rendimiento a la canal
Los resultados obtenidos para el grupo testigo fue-
ron 80,90 ±0,38% y para el grupo experimental
82,07 ±0,27% encontrándose una diferencia signifi-
cativa (P<0,05) a favor del grupo experimental. Es-
tos resultados no concuerdan con los reportados por
Feng et al. (2006) en los cuales no se encontró dife-
rencia significativa (P>0.05) para cerdos faenados a
los 92,5 kg de peso vivo que consumieron betaína
(1,25 mg/kg) frente al grupo control. Tampoco se
encontró diferencia significativa en el estudio reali-
zado por Wang et al. (2015) en el que el rendimiento
fue de 77,05% para el grupo control y 75,64% para
el grupo de betaína en cerdos faenados a los 94 kg.
126 LAGRANJA:Revista de Ciencias de la Vida 28(2) 2018:122-129.
c
2018, Universidad Politécnica Salesiana, Ecuador.
Efecto de la Inclusión Alimenticia de Betaína en Cerdos en Fase de Finalización
4.5 Espesor de grasa dorsal
Se encontró diferencia significativa (P<0,05), siendo
mayor el depósito de grasa en el grupo testigo 17,27
±0,21 mm vs el grupo experimental 13,93 ±0,37
mm. Los datos coinciden con los encontrados por
Feng et al. (2006) a pesar que la medición se realizó
a nivel de la décima costilla 24,9 mm vs. 22,7 mm
obteniéndose una reducción de un 8,84% (p<0.05) a
favor del grupo que consumió betaína (0.125%).
Así también se encontró que en cerdos faenados
a los 150 días de edad, aquellos que recibieron be-
taína al nivel de 0,2% presentaron menor espesor
de grasa dorsal 14,7 mm vs. el grupo testigo 15,4
mm (Ribeiro et al., 2011). Además en un experimen-
to realizado por Schrama et al. (2003) en el cual se
incluyó betaína al 0,129% se favoreció un mayor de-
pósito de proteína 3 semanas después de iniciado el
experimento. Sin embargo estos resultados no coin-
ciden con los reportados por Wang et al. (2015) don-
de no se encontró diferencia significativa (P>0.05)
entre los cerdos del grupo control 28 mm vs. cerdos
del grupo que recibió betaína 27 mm.
5 Conclusiones y recomendaciones
La inclusión alimenticia de betaína al 0,1% en la die-
ta de cerdos en fase de finalización mejora los pa-
rámetros productivos de ganancia diaria de peso y
conversión alimenticia. Además, favorece la forma-
ción de masa muscular disminuyendo el depósito
de grasa dorsal. Se recomienda realizar más estu-
dios en los que se evalúe mayores niveles de inclu-
sión de betaína y se desafíe a los cerdos con menores
niveles de energía.
Referencias
Albuquerque, A, José A Neves, M Redondeiro, Mar-
ta Laranjo, MR Felix, Amadeu Freitas, José L Tira-
picos y José M Martins. 2017. “Long term betai-
ne supplementation regulates genes involved in
lipid and cholesterol metabolism of two muscles
from an obese pig breed.” Meat science 124:25–33.
Boch, Jens, Bettina Kempf y Erhard Bremer. 1994.
“Osmoregulation in Bacillus subtilis: synthesis of
the osmoprotectant glycine betaine from exoge-
nously provided choline.” Journal of Bacteriology
176(17):5364–5371.
Cabezón, FA, AP Schinckel, BT Richert, KR Ste-
wart, M Gandarillas, M Pasache y WA Peralta.
2016. “Effect of betaine supplementation during
summer on sow lactation and subsequent farro-
wing performance.” The Professional Animal Scien-
tist 32(5):698–706.
Cai, Demin, Junjian Wang, Yimin Jia, Haoyu Liu,
Mengjie Yuan, Haibo Dong y Ruqian Zhao.
2016. “Gestational dietary betaine supplemen-
tation suppresses hepatic expression of lipogenic
genes in neonatal piglets through epigenetic and
glucocorticoid receptor-dependent mechanisms.”
Biochimica et Biophysica Acta (BBA)-Molecular and
Cell Biology of Lipids 1861(1):41–50.
Craig, Stuart AS. 2004. “Betaine in human nu-
trition.” The American Journal of Clinical Nutri-
tion 80(3):539–549. Online: http://dx.doi.org/10.
1093/ajcn/80.3.539.
Day, Christopher R y Stephen A Kempson. 2016.
“Betaine chemistry, roles, and potential use in li-
ver disease.” Biochimica et Biophysica Acta (BBA)-
General Subjects 1860(6):1098–1106.
Eklund, M, E Bauer, J Wamatu y R Mosenthin. 2005.
“Potential nutritional and physiological functions
of betaine in livestock.” Nutrition research reviews
18(1):31–48.
Feng, J, X Liu, YZ Wang y ZR Xu. 2006. “Effects
of betaine on performance, carcass characteristics
and hepatic betaine-homocysteine methyltransfe-
rase activity in finishing barrows.” Asian Austraa-
sian Journal of animal sciences 19(3):402.
Fernández-Fígares, Ignacio, Diane Wray-Cahen,
NC Steele, RG Campbell, DD Hall, E Virtanen y
TJ Caperna. 2002. “Effect of dietary betaine on
nutrient utilization and partitioning in the young
growing feed-restricted pig.” Journal of Animal
Science 80(2):421–428.
Horio, Masaru, Akiko Ito, Yasuko Matsuoka, Toshi-
ki Moriyama, Yoshimasa Orita, Masaru Takenaka
y Enyu Imai. 2001. “Apoptosis induced by hy-
pertonicity in Madin Darley canine kidney cells:
protective effect of betaine.” Nephrology Dialysis
Transplantation 16(3):483–490.
Huang, Qi-Chun, Zi-Rong Xu, Xin-Yan Han y Wei-
Fen Li. 2006. “Changes in hormones, growth fac-
tor and lipid metabolism in finishing pigs fed be-
taine.” Livestock Science 105(1-3):78–85.
LAGRANJA:Revista de Ciencias de la Vida 28(2) 2018:122-129.
c
2018, Universidad Politécnica Salesiana, Ecuador. 127
Artículo científico / Scientific paper
NUTRICIÓN ANIMAL
Romel Joaquín Páez Bustillos, Jorge Eduardo Grijalva Olmedo,
Jimmy Rolando Quisirumbay-Gaibor
Kidd, MT, PR Ferket y JD Garlich. 1997. “Nutri-
tional and osmoregulatory functions of betaine.”
World’s Poultry Science Journal 53(2):125–139.
Lawrence, BV, AP Schinckel, O Adeola y K Cera.
2002. “Impact of betaine on pig finishing perfor-
mance and carcass composition.” Journal of animal
science 80(2):475–482.
Lugar, DW, T Gellert, J Proctor, P Wilcock, B Richert
y KR Stewart. 2018. “Effects of supplementation
with betaine and superdosed phytase on semen
characteristics of boars during and after mild heat
stress.” The Professional Animal Scientist 34(4):326–
338.
Matthews, JO, LL Southern, JE Pontif, AD Higbie y
TD Bidner. 1998. “Interactive effects of betaine,
crude protein, and net energy in finishing pigs.”
Journal of animal science 76(9):2444–2455.
Nakev, J, T Popova, V Vasileva et al. 2009. “Influence
of dietary betaine supplementation on the growth
performance and carcass characteristics in male
and female growing-finishing pigs.” Bulg J Agric
Sci 15(3):263–8.
National Research Council. 2012. Nutrient require-
ments of swine. National Academies Press.
Overland, M, KA Rørvik y A Skrede. 1999. “Ef-
fect of trimethylamine oxide and betaine in swine
diets on growth performance, carcass characteris-
tics, nutrient digestibility, and sensory quality of
pork.” Journal of Animal Science 77(8):2143–2153.
Ratriyanto, A, R Mosenthin, E Bauer, M Eklund et al.
2009. “Metabolic, osmoregulatory and nutritio-
nal functions of betaine in monogastric animals.”
Asian-Austral J Animal Sci 22:1461–1476.
Ribeiro, Paulo Roberto, Rodolfo Nascimento Kron-
ka, Maria Cristina Thomaz, Melissa Izabel Han-
nas, Fernanda Marcussi Tucci, Antônio João Scan-
dolera y Fábio Enrique Lemos Budiño. 2011. “Di-
ferentes níveis de betaína sobre incidência de
diarreia, desempenho, características de carcaça
e parâmetros sanguíneos de suínos.” Brazilian
Journal of Veterinary Research and Animal Science
48(4):299–306.
Saarinen, Markku T, Hannele Kettunen, Katriina
Pulliainen, Seppo Peuranen, Kirsti Tiihonen y Ja-
net Remus. 2001. “A novel method to analyze be-
taine in chicken liver: effect of dietary betaine and
choline supplementation on the hepatic betaine
concentration in broiler chicks.” Journal of agricul-
tural and food chemistry 49(2):559–563.
Sales, J. 2011. “A meta-analysis of the effects of die-
tary betaine supplementation on finishing perfor-
mance and carcass characteristics of pigs.” Animal
feed science and technology 165(1-2):68–78.
Schrama, JW, MJW Heetkamp, PH Simmins y WJJ
Gerrits. 2003. “Dietary betaine supplementation
affects energy metabolism of pigs.” Journal of Ani-
mal Science 81(5):1202–1209.
Siljander-Rasi, Hilkka, Seppo Peuranen, Kirsti
Tiihonen, Erkki Virtanen, Hannele Kettunen, T
Alaviuhkola y PH Simmins. 2003. “Effect of equi-
molar dietary betaine and choline addition on
performance, carcass quality and physiological
parameters of pigs.” Animal Science 76(1):55–62.
Simon, Jean. 1999. “Choline, betaine and methioni-
ne interactions in chickens, pigs and fish (inclu-
ding crustaceans).” World’s Poultry Science Journal
55(4):353–374.
Su, Binchao, Liansheng Wang, Hong Wang, Bao-
ming Shi, Anshan Shan y Yuzhi Li. 2013. “Conju-
gated linoleic acid and betain prevent pork qua-
lity issues from diets containing distillers dried
grains with solubles.” Canadian Journal of Animal
Science 93(4):477–485.
van Wettere, Whej, P Herde y PE Hughes. 2012.
“Supplementing sow gestation diets with betaine
during summer increases litter size of sows with
greater numbers of parities.” Animal reproduction
science 132(1-2):44–49.
Wang, LS, Z Shi, R Gao, BC Su, H Wang, BM Shi
y AS Shan. 2015. “Effects of conjugated linoleic
acid or betaine on the growth performance and
fatty acid composition in backfat and belly fat of
finishing pigs fed dried distillers grains with so-
lubles.” animal 9(4):569–575.
Wray-Cahen, Diane, Ignacio Fernandez-Fıgares,
Erkki Virtanen, Norman C Steele y Thomas J Ca-
perna. 2004. “Betaine improves growth, but does
not induce whole body or hepatic palmitate oxi-
dation in swine (Sus scrofa domestica).” Compara-
tive Biochemistry and Physiology Part A: Molecular
& Integrative Physiology 137(1):131–140.
128 LAGRANJA:Revista de Ciencias de la Vida 28(2) 2018:122-129.
c
2018, Universidad Politécnica Salesiana, Ecuador.
Efecto de la Inclusión Alimenticia de Betaína en Cerdos en Fase de Finalización
Yang, Han Sul, Jeong Ill Lee, Seon Tea Joo, Gu Boo
Park et al. 2009. “Effects of dietary glycine be-
taine on growth and pork quality of finishing
pigs.” Asian-Australasian Journal of Animal Scien-
ces 22(5):706–711.
LAGRANJA:Revista de Ciencias de la Vida 28(2) 2018:122-129.
c
2018, Universidad Politécnica Salesiana, Ecuador. 129
... Betaine, a tri-methyl derivative of glycine, has been described as a promising feed additive that is capable of improving pig performance (Huang et al., 2009;Páez Bustillos, Grijalva Olmedo, & Quisirumbay-Gaibor, 2018). The mechanistic action of betaine is mainly due to its effect on osmoregulation and increased nutrient digestibility (Lipiński, Szramko, Jeroch, & Matusevičius, 2012;Wang, Li, Xu, & Feng, 2020). ...
... This study has assessed the effect of ractopamine, betaine, and the combination of both feed additives in diets of finishing pigs on performance, carcass and meat quality traits, as well as on mRNA expression of lipid metabolism markers in two skeletal muscles and adipose tissue. Although it was hypothesized that betaine would improve animal performance, the results revealed supplementation of betaine (on an independent basis) was not able to promote major changes in live performance of pigs contrary to previous studies (Huang et al., 2009;Páez Bustillos et al., 2018).It has been shown that ractopamine can provide a more intense activation of the mTOR pathway by increasing the expression of protein such as p-AKT and p-p70S6K in muscle tissue of finishing pigs , which results in greater muscle deposition (Adeola et al., 1992). Thus, in the present study, the higher ADG and FBW observed in pigs fed RAC and RAC + BET diets was likely a consequence of greater muscle deposition and, accordingly, resulted in a greater contribution to weight gain (Li, Li, Zhang, Gao, & Zhou, 2017). ...
... Both ractopamine and betaine are feed additives reported to reduce backfat thickness in finishing pigs (Huang et al., 2009;Páez Bustillos et al., 2018;Park et al., 2018;Rickard et al., 2012). However, in the present study the RAC and BET diets resulted in intermediate responses for reducing BF, with only the RAC + BET diet being effective in reducing BF compared to the CTRL diet, which demonstrates the additive effect between RAC and BET in reducing BF was more intense than the use of the feed additives alone. ...
Article
The objective of this study was to evaluate the effects of ractopamine and betaine, supplemented alone or in combination, on live performance, carcass and meat quality traits, and gene expression (in both skeletal muscle and subcutaneous adipose tissue) of finishing pigs. Seventy-two pigs averaging 89.0 ± 3.44 kg were assigned to a control diet (CTRL-without ractopamine and betaine); CTRL+20 mg/kg ractopamine (RAC); CTRL+2.5 g/kg betaine (BET); or RAC + 2.5 g/kg betaine (RAC + BET). Pigs fed RAC and RAC + BET had greater average daily gain and carcass yield compared to CTRL. Pigs fed RAC, BET, and RAC + BET had greater loin muscle area, while backfat thickness was lower in pigs fed RAC + BET compared to CTRL. Pork from BET had lower shear-force and greater intramuscular fat content compared to CTRL. Regarding adipose tissue, RAC and BET increased expression of genes related to lipolysis and β-oxidation. These data indicate that performance and carcass traits of pigs can be improved with ractopamine, whereas betaine (when fed independently from ractopamine) increased the loin muscle area and pork quality.
Article
Full-text available
Betaine is distributed widely in animals, plants, and microorganisms, and rich dietary sources include seafood, especially marine invertebrates (≈1%); wheat germ or bran (≈1%); and spinach (≈0.7%). The principal physiologic role of betaine is as an osmolyte and methyl donor (transmethylation). As an osmolyte, betaine protects cells, proteins, and enzymes from environmental stress (eg, low water, high salinity, or extreme temperature). As a methyl donor, betaine participates in the methionine cycle—primarily in the human liver and kidneys. Inadequate dietary intake of methyl groups leads to hypomethylation in many important pathways, including 1) disturbed hepatic protein (methionine) metabolism as determined by elevated plasma homocysteine concentrations and decreased S-adenosylmethionine concentrations, and 2) inadequate hepatic fat metabolism, which leads to steatosis (fatty accumulation) and subsequent plasma dyslipidemia. This alteration in liver metabolism may contribute to various diseases, including coronary, cerebral, hepatic, and vascular diseases. Betaine has been shown to protect internal organs, improve vascular risk factors, and enhance performance. Databases of betaine content in food are being developed for correlation with population health studies. The growing body of evidence shows that betaine is an important nutrient for the prevention of chronic disease.
Article
Full-text available
Foram utilizados 36 leitões desmamados aos 19 dias de idade, distribuídos em um delineamento experimental em blocos ao acaso, aonde foram avaliados os efeitos da adição de níveis crescentes de betaína (0,0%, 0,1%, 0,2% e 0,3%) na dieta sobre o desempenho na fase inicial, crescimento e terminação. Foram monitorados os índices de incidência de diarreia nos primeiros 14 dias da fase inicial e os parâmetros sanguíneos aos 20, 75 e 150 dias de idade, como também características de carcaça ao final do experimento. Não foi observado (P > 0,05) efeito da betaína sobre a incidência de diarreia. Foram verificadas diferenças significativas (P < 0,05) entre os tratamentos na fase de terminação, para ganho diário de peso e conversão alimentar. Foram observadas diferenças (P < 0,0001) entre os dias para os parâmetros sanguíneos analisados. Para espessura de toucinho (ET), foi verificada diferença significativa (P < 0,05) entre os tratamentos.
Article
Full-text available
The objectives of this study were to determine the effects of conjugated linoleic acid (CLA) or betaine on the growth performance, carcass characteristics and fatty acid composition in backfat and belly fat of pigs fed distillers dried grains with solubles (DDGS). Thirty-two (60±2 kg) crossbred barrows (Duroc×Landrace×Yorkshine) were assigned to one of four diets randomly: (1) the control diet containing no corn DDGS (control group); (2) the diet containing 30% corn DDGS (DDGS-fed group); (3) the diet containing 30% corn DDGS and 10 g/kg CLA (CLA-fed group); (4) the diet containing 30% corn DDGS and 1 g/kg BET (BET-fed group). The pigs fed DDGS showed that the percentages of C18:2, polyunsaturated fatty acid (PUFA) and iodine value (IV) increased, while C18:1, saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) decreased. Pigs fed the DDGS+CLA or DDGS+betaine diets showed the increased percentage of SFA, and the decreased percentage of C18:2, PUFA and IV. In conclusion, results confirmed that the diets containing 30% DDGS had no detrimental effects on growth performance, but increased the percentage of PUFA and IV and decreased the percentage of SFA and MUFA in the backfat and belly fat. However, supplementation with CLA or BET can part reverse these effects on carcass fat in finishing pigs.
Article
The purpose of this experiment was to evaluate the effects of betaine and superdosed phytase on boar reproduction during mild heat stress. Twenty-seven mature (36 wk old), crossbred boars [Duroc × (Landrace × Yorkshire)] were randomly allocated to treatment and were fed 2.6 kg/d of 1 of 3 corn, soybean meal diets: control (CNT; 250 phytase units/kg Escherichia coli phytase; n = 9), betaine (BET; 250 phytase units/kg E. coli phytase and 0.6% betaine; n = 9), and betaine and superdosed phytase (BP; 2,500 phytase units/kg E. coli phytase and 0.6% betaine; n = 9). The experiment was split into 4 environmental phases (4 wk/phase) consisting of pre-heat stress (26°C), heat stress (30.2°C), post-heat stress 1 (16.7°C), and post-heat stress 2 (17.5°C). Semen was collected weekly from each boar and was evaluated for semen quantity and quality parameters. Total motility, progressive motility and percentage of morphologically normal sperm were reduced in the heat stress period (P < 0.01) with no effects from the dietary treatments (P ≥ 0.27). Total sperm did not differ among treatments (P = 0.99). Percent distal droplets increased from the pre-heat stress to heat stress period for CNT (P < 0.01), but the increase was not statistically different for BET (P = 0.97) or BP (P = 1.00). This suggests that supplementation with betaine alone or with phytase may potentially reduce the effects of heat stress on specific morphological abnormalities, though total normal morphology did not differ.
Article
This study evaluates the effects of betaine supplementation (1 g kg− 1 for 20 weeks) on the regulation of genes involved in lipid and cholesterol metabolism of Longissimus lumborum and Biceps femoris from obese Alentejano pigs. Betaine supplementation led to an increase in total cholesterol in both muscles, complementing results previously published indicating a significant increase on the intramuscular lipid content. The expression of twelve genes involved in lipogenesis, lipolysis/FA oxidation, FA transport, and cholesterol metabolism, as well as two transcription factors were also evaluated. Genes related to lipid and cholesterol synthesis plus FA transport were consistently up-regulated in both muscles of betaine fed pigs. On the other hand, genes related to lipolysis/FA oxidation were not affected or down-regulated by betaine supplementation.
Article
The objective of this experiment was to evaluate the effects of betaine supplementation during lactation in hot summer months on piglet growth and sow subsequent reproductive performance. The betaine feeding portion of the experiment was conducted between December 2014 and March 2015 with subsequent litter data completed by July 2015 in Rancagua, Chile. Dietary treatments were allotted randomly to concurrent farrowing rooms of sows. Sows were fed diets supplemented with either 0% (n = 193) or 0.3% (n = 175 sows) of betaine-HCl (70.7% betaine) from 2 d before their farrowing due date until weaning (average lactation length = 21.0 d). Betaine supplemented sows had 3.90% greater ADFI during lactation than control sows (P = 0.005). Treatments by parity interactions were significant for ADFI and sow BW loss (P = 0.008 and P = 0.005, respectively). Parity 2 sows that received betaine supplementation had greater ADFI (6.89 versus 6.17 kg/d) and 6.70 kg less BW loss than parity 2 control sows (P < 0.001 and P = 0.022, respectively). Wean-to-estrus intervals were 0.31 d shorter for betaine supplemented sows than control sows (P = 0.004). There were shifts in the distribution of wean-to-estrus intervals between sows fed control and betaine supplemented diets (P = 0.029). No treatment differences were found for subsequent total born, born alive, conception, and farrowing rate (P = 0.64, P = 0.29, P = 0.83, and P = 0.68, respectively). Betaine supplementation increased daily feed intake and reduced wean-to-estrus intervals during summer months in sows.
Article
Background: Betaine is the trimethyl derivative of glycine and is normally present in human plasma due to dietary intake and endogenous synthesis in liver and kidney. Betaine is utilized in the kidney primarily as an osmoprotectant whereas in the liver its primary role is in metabolism as a methyl group donor. In both organs a specific betaine transporter mediates cellular uptake of betaine from plasma. The abundance of both betaine and the betaine transporter in liver greatly exceeds that of other organs. Scope of review: The remarkable contributions of betaine to normal human and animal health are summarized together with a discussion of the mechanisms and potential beneficial effects of dietary betaine supplements on liver disease. Major conclusions: A significant amount of data from animal models of liver disease indicates that administration of betaine can halt and even reverse progression of the disruption of liver function. Betaine is well-tolerated, inexpensive, effective over a wide range of doses, and is already used in livestock feeding practices. General significance: The accumulated data indicate that carefully controlled additional investigations in humans are merited. The focus should be on the long-term use of betaine in large patient populations with liver diseases characterized by development of fatty liver, especially non-alcoholic fatty liver disease and alcoholic liver disease.
Article
An experiment was conducted to evaluate the effects of conjugated linoleic acid (CLA) or betaine (BET) in diets containing distillers' dried grains with solubles (DDGS) on the fatty acid profile and the shelf-life attributes of pork. Thirty-two (609±kg) crossedbred barrows (Duroc × Landrace × Yorkshine) were randomly assigned to one of four diets: (1) the control diet containing no corn DDGS (control group); (2) the diet containing 30% corn DDGS (DDGS-fed group); (3) the diet containing 30% corn DDGS and 10 g kg-1 CLA (CLA-fed group); (4) the diet containing 30% corn DDGS and 1 g kg-1 BET (BET-fed group). Dietary DDGS decreased the proportion of saturated fatty acids (SFA) (PB0.05), and increased the proportion of unsaturated fatty acids (UFA) and polyunsaturated fatty acids (PUFA) (P<0.05) in pork with respect to the control group, whereas dietary CLA and BET decreased the proportion of PUFA and increased the proportion of SFA in pork compared with DDGS-fed group. Pork treated with DDGS alone had higher total volatile basic nitrogen (TVB-N) value (P<0.05) and thiobarbituric acid reactive substances (TBARS) value (P<0.05) with respect to the control diet during display, whereas CLA-fed group and BET-fed group had lower TVB-N concentration and TBARS value (P<0.05) in pork than DDGS-fed group. There was no significant difference of instrumental color (L*, a*, b*) between DDGS-fed group and the control group (P>0.05). However, CLA-fed and BET-fed groups maintained lower L* values and higher a* values (P<0.05), but did not affect b* values with respect to the DDGS-fed group and the control group. Results confirmed that diets containing 30% DDGS have some adverse effects on pork freshness and lipid peroxidation; However, supplementation with CLA or BET can partially reverse these effects and improve color image of pork during display.
Article
Methyl donors play critical roles in nutritional programming through epigenetic regulation of gene expression. Here we fed gestational sows with control or betaine-supplemented diets (3g/kg) throughout the pregnancy to explore the effects of maternal methyl-donor nutrient on neonatal expression of hepatic lipogenic genes. Betaine-exposed piglets demonstrated significantly lower liver triglyceride content associated with down-regulated hepatic expression of lipogenic genes acetyl-CoA Carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD) and sterol regulatory element-binding protein-1c. Moreover, s-adenosyl methionine to s-adenosyl homocysteine ratio was elevated in the liver of betaine-exposed piglets, which was accompanied by DNA hypermethylation on FAS and SCD gene promoters and more enriched repression histone mark H3K27me3 on SCD gene promoter. Furthermore, glucocorticoid receptor (GR) binding to SCD gene promoter was diminished along with reduced serum cortisol and liver GR protein content in betaine-exposed piglets. GR-mediated SCD gene regulation was confirmed in HepG2 cells in vitro. Dexamethasone (Dex) drastically increased the luciferase activity of porcine SCD promoter, while the deletion of GR response element on SCD promoter significantly attenuated Dex-mediated SCD transactivation. In addition, miR-let-7e, miR-1285 and miR-124a, which respectively target porcine SCD, ACC and GR, were significantly up-regulated in the liver of betaine-exposed piglets, being in accordance with decreased protein content of these three genes. Taken together, our results suggest that maternal dietary betaine supplementation during gestation attenuates hepatic lipogenesis in neonatal piglets via epigenetic and GR-mediated mechanisms.
Article
Betaine and its precursor choline were compared in their efficiency in affecting the performance, carcass traits, and liver betaine concentration of growing-finishing pigs. Individually penned Finnish Landrace and Yorkshire pigs and their crosses (30 kg; no. = 70) were offered the basal diet with no added betaine or choline, or the basal diet supplemented with low to moderate doses (250, 500 or 1000 mg/kg) of betaine (Betafin® S1), or with a similar molar amount of choline (578, 1155 or 2310 mg/kg of choline chloride). The maize-soya-bean-meal basal diet was formulated to contain 12.3 MJ/kg digestible energy, 155 g/kg crude protein and 7.4, 4.4 and 4.3 g/kg digestible lysine, threonine and methionine + cystine, respectively. Oat hull meal (100 g/kg) was added to reduce the dietary energy concentration. The pigs were on a restricted feeding level, 1.5 to 3.0 kg food per day (proportionately 0.8 of ad libitum intake) for 75 days. Daily weight gain and food-to-gain ratio improved linearly (P < 0.01) with increasing dietary betaine. Carcass weight increased linearly (P < 0.01) but slaughter loss proportion, backfat and sidefat thicknesses and lean proportions in ham and carcass were unaffected by dietary betaine level. Liver betaine level increased linearly (by up to a proportion of 0.62 in comparison with the control) with dietary betaine addition (P < 0.05) and betaine tended to improve linearly the tensile strength of the proximal ileum (P = 0.07). The presence of choline had no effect on any of these parameters. These results indicate that low to moderate doses of dietary betaine improved the growth and the efficiency of food utilization of growing-finishing pigs. Pigs on betaine diets had heavier carcasses without a relative increase in carcass fat. Choline had no such effects in pigs offered the restricted amount of diet. Liver betaine concentration increased with level of betaine in the diet whereas the betaine precursor choline did not affect hepatic betaine.