ArticlePDF Available
Journal of Agriculture and Environmental Sciences
June 2018, Vol. 7, No. 1, pp. 16-31
ISSN: 2334-2404 (Print), 2334-2412 (Online)
Copyright © The Author(s). All Rights Reserved.
Published by American Research Institute for Policy Development
DOI: 10.15640/jaes.v7n1a3
Crossbreeding of Cattle in Africa
R Trevor Wilson1
Africa is endowed with a very wide range of mostly Bos indicus indigenous cattle breeds. A general statement
with regard to their performance for meat or milk is that they are of inferior genetic value. Attempts to
improve their performance have rarely relied on within-breed improvement but have concentrated on
crossing to supposedly superior exotic Bos taurus types. Exotic types have not always indeed have rarely --
been chosen on objective criteria and the imported breeds generally indicate the colonial past of individual
African countries rather than on use of “the right animal in the right place”. Most attempts at increasing
output have been undertaken under research station conditions. Results on station have been very variable
but the limited success achieved has rarely been carried over in to the general African cattle population. This
paper documents a number of attempts to alter the genetic make-up of African cattle in several countries and
discusses the reasons for the failure of most of these.
Keywords: Bos indicus, Bos taurus, livestock experiments, milk production, meat production
1. Introduction
African countries differ greatly in climatic, ecological and agricultural conditions and in socioeconomic
factors. In many countries, nonetheless, cattle are the most important livestock species. The rapid and continuing
increase in demand for livestock products offers immense market opportunities for producers. If the productivity of
small holder farmers were to be improved to commercial levels it would have the potential to improve human
nutrition and alleviate poverty and on the continent. Climate change is predicted (rightly or wrongly) to be highly
dynamic and could have adverse effects on crop and livestock productivity. The type of cattle to be used and the
production strategy to be followed should depend primarily on the environment and the level of management. The
availability of a very wide range of indigenous cattle resources with adaptive and productive differences coupled to
judicious introduction of exotic genetics should allow the animal to be matched to the total environment,
management capabilities and markets.
In short the animal should be fit for purpose and be the right animal in the right place (Wilson, 2009a). In
the harsh and often remote areas where extensive pastoral systems prevail the indigenous pure Zebu or Sanga or
naturalized types are likely to be the best production strategy. In the more favourable areas crossbreeding with small
indigenous cows may succeed in improving the output of cattle farming. Crossbreeding, often unstructured and with
no precise objectives, has been undertaken many times in the past and will certainly continue to be practised in the
future. Genetic “improvement” has been successful in some places but spectacularly unsuccessful in (probably) many
more. This chapter looks at some of the winners and losers in crossbreeding cattle in Africa and attempts to extract
lessons to be used in future development.
2. Principles of crossbreeding and African practices
Genetic diversity controls many useful traits that have an influence on productivity, adaptability to harsh
environments and disease resistance. Indigenous animals are often used (but perhaps more often underused especially
in Africa) in conventional breeding programmes due to inadequate characterization and failures in identifying
genotypes that possess the most useful traits.
1 Bartridge Partners, Bartridge House, Umberleigh, Devon EX37 9AS, UK. Email:
R Trevor Wilson 17
For many policy makers and research scientists the result has been to consider indigenous animals of low
inherent genetic merit and to look to cross breeding with “improved” or “highly productive” types to enhance the
performance of the livestock sector on the continent.
On a global basis the three main crossbreeding strategies can be typified as:
breed replacement;
establishment of stable crossbreeding systems; and
● creation of synthetic populations.
All three of these strategies have been used in Africa in addition to many “endogenous” ones. A major
concern in Africa is that a perceived solution does not answer a problem because the perception (usually that of a
scientist or policy maker) does not conform to the known reality (from the point of view of the small holder farmer
who is in the overwhelming majority of African livestock producers). Most formal crossbreeding there have been
thousands of uncounted and unrecorded informal experiments among the mass of producers has been designed to
produce a single purpose animal, usually dairy but also beef. This approach has failed to take into account the
multipurpose nature of African cattle production which requires not only economic output (milk, meat and traction
combined) but also social output (investment, savings, peer acceptance).
Where crossbreeding has been practised considerations other than “the right animal in the right place
have often been paramount. There have, of course, been several introductions of “international” breeds such
as the Jersey and the Holstein-Friesian (the latter in many situations definitely not being “fit for purpose”). Jerseys,
for example, have been used in situations as diverse as Cameroon (Mbah et al., 1986), Egypt (Khishin and El-Issawi,
1954), Ghana (Sada and Vohradsky,1968), Rwanda where they were crossed with Sahiwal rather than with local cattle
(Figure 1) (Compère, 1963) and Uganda (Kiwuwa and Redfern, 1969). Holsteins and Friesians similarly have been
introduced to many countries including Cameroon (Mbah et al., 1986), Ethiopia (Alberro, 1983; Haile et al., 2009),
Nigeria (Knudsen and Sohael, 1970; Johnson and Oni, 1986), Uganda (Trail et al., 1971) and Zambia (Mubita, 1992).
Brown Swiss have been used in Rwanda (Compère, 1963) and Mozambique (personal observation).
Figure 1. Jersey-Sahiwal crosses at the Songa research station of the Institut des Sciences Agricoles du
Rwanda (Photograph: Trevor Wilson, June 1983)
Away from the international breeds the colonial powers in the pre-independence period often promoted their
own genetics in the countries of their tutelage with little apparent regard for their suitability for the local environment.
In Tanganyika Territory in the 1920s the British imported North Devon, Aberdeen Angus and Ayrshire from the UK
with a leavening of Indian Zebu and South African Sanga blood (Figure 2) (DVSAH, 1926). In Kenya the North
Devon was again imported (Wilson 2009b) among many other British breeds.
18 Journal of Agriculture and Environmental Sciences, Vol. 7, No. 1, June 2018
North Devons were also imported to Southern Rhodesia/Zimbabwe but were eventually surpassed by their
close relative the Sussex (Tawonezvi and Ward, 1989).
In another leap of faith Tarentaise and Pie Noire cattle from the French Alps were taken to the French
colonies of Algeria, Morocco and Tunisia early in the twentieth century (Sraïri, 2011). The first exotic dairy cattle in
Cameroon were Brown Swiss and were imported by the French colonial administration in the 1930s but they were
replaced at the end of the Second World War with Holstein Friesian cattle and Austrian Pinzgauer at one location
whereas the Montbéliard was introduced at two other stations for crossbreeding with local cattle (Tambi, 1991).
French colonial influence was also evident in Senegal and Mali where the Montbéliard was the animal of choice
(Tamboura et al., 1982).
Figure 2. Imported sires (Krishna Valley Indian Zebu, Aberdeen Angus, North Devon, Friesland [sic],
Ayrshire and Afrikander) used at the Tanganyika Territory Government Stock Farm at Puku, Dar es Salaam
in 1926 (Source: DVSAH, 1926)
The rapid onset of independence for African countries in the 1960s did little to deter the former colonial
powers from attempting to maintain their vested interests and the status quo ante. In 1967 Brown Swiss heifers were
again imported to Cameroon for crossbreeding with N'Dama (Njwe, 1984) and Montbéliard semen was imported in
1975 for crossbreeding with Gudali (Bos indicus) females in the northern part of the country (Tawah et al., 1999).
Montbéliard semen was still being used in Senegal in 1999-2000 (Alhassan, 2003) as was that of the Abondance,
another French breed (Madalena et al., 2002). In spite of being a Belgian colony Burundi imported Brune des Alpes
and Montbéliard from France after it gained independence (Berahino, 1993). Botswana has used Simmental bulls to
up-grade its indigenous Tswana cows for milk production (Bopitumelo, 1993).
In the post-independence period, however, new players were substituted for old and participated in the game.
The Soviet bloc thought it saw an opportunity to increase its influence in Africa and many students, amongst them
would-be veterinarians, received tertiary education in Russia and Eastern Europe and on the other side of the world in
Cuba. This resulted in yet other exotic breeds joining the African panoply, notable amongst these in Mali being Red
Steppe (Rouge des Steppes) from Russia, Black Pied (Pie-Noire Allemande) from the German Democratic Republic
and Bulgarian Brown (Brune de Bulgarie) from Bulgaria (Tamboura et al.,1982). Not to be outdone in the Cold War
era the USA flooded much of Africa with Peace Corps who, at least in the case of Mali, travelled with their waggon
train of American Brahman cattle. In Cameroon the American approach was somewhat different and was via Heifer
Project International and its “Heifer in Trust” programme which imported Jersey and Holstein Friesian cattle and
semen (HPI, 1999; Bayemi et al., 2005). Even little Ireland climbed on the waggon and exported Holstein Friesians to
Cameroon from 1994 (Tawah et al., 1999).
Senegal presents a rather anomalous situation in that in addition to its ties to France it has imported Kankrej
cattle, not from Guzerat (which is an alternative name for the breed and the name of its home tract in India) but from
Brazil (Figure 3) (Dénis and Thiongane, 1974). Senegal is also peculiar in that it is at the root of a convoluted train of
events. N‟dama cattle were exported from Senegal to St Croix in the US Virgin Islands at an unknown time in the
nineteenth century. By 1889, however, they were well established with one herd comprising 250 head.
R Trevor Wilson 19
In the second decade of the twentieth century N‟dama cows were put to Red Poll bulls (why were they in St
Croix?) with the result that a new breed the Senepol was formed (Hupp, 1981).
Figure 3. Kankrej (Gujerat) bull imported to Senegal from Brazil at the Dahra Research Station of the
Institut Sénegalais de Recherche Agricole (Photograph: Trevor Wilson, February 1986).
In a somewhat bizarre turn of events the Senepol breed has found its way from the Caribbean back to its
African roots. Senepol are now found in Zimbabwe (Figure 4) and South Africa where there is a breed society.
Senepol have also arrived in Australia where there is also a breed society. In one experiment carried out on St Croix,
Senepol x Senepol calves had heavier (P < 0.01) birth weights and heavier (P <0 .01) 205-d adjusted weaning weights
than Hereford x Herford calves. Birth weights of S x H calves were heavier (P < 0.01) than the mean of the purebred
calves but 205-d adjusted weaning weights did not differ (P >0.10) (Chase et al., 1998).
Figure 4. Senepol bull at Annual Bull Sale in Harare, Zimbabwe (Photograph: Trevor Wilson, July 2000).
20 Journal of Agriculture and Environmental Sciences, Vol. 7, No. 1, June 2018
It is not only Bos taurus that have been used in crossbreeding on native African cattle as Red Sindhi and
Sahiwal were imported to Tanganyika Territory from India in the 1920s (DVSAH, 1928). In present day Africa,
however, Kenya is the only country with major resources of this recognised Bos indicus dairy breed. In Kenya they
have been used both for upgrading of local East African Zebu and for crossbreeding with Bos taurus breeds and they
have also served as an important source of breeding material for the whole continent (Trail and Gregory, 1981).
Sahiwal have been used in several African countries including Burundi (Berahino, 1993), Rwanda (Sibomana, 1992),
Sierra Leone (Carew et al. ,1986), Somalia (Aria and Cristofori, 1980), Tanganyika (Macfarlane and Worral, 1970) as an
already-adapted but more productive breed.
There have been fewer imports of beef cattle but one example is that of a private ranch in Kenya where
Charolais, Ayrshire and Santa Gertrudis bulls were crossed on Boran cows (Gregory et al., 1984). Another long
standing private initiative with little relevance to anything else is the use of Simmental cattle (looked after by Lay
Brothers from their German homeland) at a Benedictine ecclesiastical foundation in southern Tanzania (personal
3. Early attempts at crossbreeding
3.1 Sanga
Africa boasts what is probably the earliest of all cattle crossbreds in Sanga cattle which are a mixture of Bos
taurus and Bos indicus. Although the genetic history of African cattle pastoralism is controversial and poorly
understood recent microsatellite analyses apparently show that the earliest cattle originated within the African
continent but there are also indications of Near East and European genetic influences (Hanotte et al., 2002; Freeman
et al.,2004). The initial expansion of African Bos taurus was probably from a single region of origin and reached the
southern part of the continent by following an eastern route. The indicus genetic influence shows a major entry point
through the Horn and the East Coast of Africa and two modes of introgression into the continent. Some variation in
the African herds is also attributable to European influence although this has taken place in the past few hundred
years, during Europe's colonial influence in Africa.
Spreading out from their likely origin in the Horn of Africa Sanga breeds now predominate over much of
Africa. Many types have long to very long horns. They include the Danakil of the Ethiopian lowlands and the Dinka
of the Republic of South Sudan. Farther south are the Bahima of southern Uganda and western Democratic Republic
of Congo and the Ankole of Burundi, Rwanda (Figure 5) and western Tanzania. South again another subgroup of
Sanga still with long but not so spectacular horns includes the Barotse and Tonga of Zambia and Angola, the
Ovambo and Kaokoveld of Namibia, the Tswana of Botswana, the Mashona and Tuli of Zimbabwe, the Nguni of
Zimbabwe, Mozambique and Swaziland and the Basuto of Lesotho (Felius, 1985; Mason, 1996).
Figure 5. Sanga cattle exemplified by the Watusi breed in Karama Village, Rwanda (Photograph: Trevor
R Trevor Wilson 21
Wilson, July 1983).
3.2 Tanganyika Territory/Tanzania
Tanganyika, then a German colony, was amongst the earliest of African countries to attempt to improve the
production of native cattle although these activities, begun in 1905, were mainly to control epidemic and endemic
diseases including Foot and Mouth Disease, Contagious Bovine Pleuro Pneumonia, East Coast Fever and
Trypanosomosis. Cross breeding in Tanzania became an important strategy in when it became a League of Nations
Trusteeship under British tutelage with imports of Zebu from India, Afrikander from South Africa and Angus, North
Devon, Friesian and Ayrshire from the United Kingdom as early as 1926 (DVSAH, 1926). The intention was to
improve the local Tanganyika Shorthorn Zebu (TSZ) but more particularly the Iringa Red variety (Figure 6)
considered to be the “North Devons of Tanganyika Territory” – in respect of both milk and meat, as the local people
had “paid more attention to the size of the humps of these indifferent milkers than to the shape of their rumps”
(DVSAH, 1926).
Figure 6. Native Iringa Red cow with halfbred Afrikander calf at the Tanganyika Territory Government
Stock Farm at Puku, Dar es Salaam in 1926 (Source: DVSAH,1926).
What should have been a structured programme began in 1935. Bos taurus bulls, mainly UK Ayrshires, were
used on local cows with the aim of producing a new breed adapted to the local environment but of higher output than
the native stock. Some five years into the programme it was realized that upgrading to Bos taurus was failing to
produce such an animal. The breeding plan was thus modified to introduce blood of Red Sindhi and Sahiwal,
imported from South Asia (now India and Pakistan) to replace at least partly the B.taurus genes. This resulted in an
animal exhibiting Indo-African Zebu type morphology with traces of its taurine inheritance. Changes in research
personnel were invariably accompanied by changes in the breeding scheme which is “not well documented” (Kiwuwa
and Kyomo, 1971). In spite of this, however, the resulting animal was accorded breed status as the Mpwapwa in 1958
when it was said to comprise 35 per cent Red Sindhi, 20 per cent Sahiwal, 20 per cent TSZ, 10 per cent Boran, 5 per
cent Ankole and 10 per cent B.taurus “mainly Ayrshire”!!. A breed improvement programme was instituted at the
same time as breed status was declared with the intention of producing a dual purpose animal for the semiarid
environment of central Tanzania capable of producing 2300 kg of milk in 305 days and a steer carcass of 230 kg in
less than four years.
22 Journal of Agriculture and Environmental Sciences, Vol. 7, No. 1, June 2018
In 1963 (when the author of this chapter was very familiar with the work at the Mpwapwa Research Station
although he did not work there) the animal was still very variable in physical type (Figure 7) and in production traits.
Figure 7. Mpwapwa cattle at Mpwapwa Research Station central Tanzania five years after declaration of
breed status in 1958 (Photograph: Trevor Wilson, November 1963)
Over the succeeding half century there have been multiple further changes in the breeding plan. In 1968, 10
years after the declaration of breed status, individual animals varied in genetic background carrying from 3 to 88 per
cent Red Sindhi inheritance, 0-69 per cent Sahiwal, 0-63 per cent TSZ, 0-59 per cent Boran and 0-34 per cent Ayrshire
(Mchau, 1988; Syrstad, 1990). From 1968 to 1971 some Mpwapwa females were mated to Friesian, Ayrshire and
Jersey bulls to produce a crossline and the crossline females were backcrossed to Mpwapwa bulls (Mkonyi, 1982).
The number of animals has never exceeded 1000 and most of these have been kept on the station of origin and
another government station with very few individuals having “escaped” into the real world. The Mpwapwa has never,
in fact, been a “breed” but its credentials are enhanced by its being recorded by FAO as „Endangered‟ (Scherf, 2000).
3.3 South Africa
A composite Sanga-taurine, the Bonsmara, became a recognized breed after many criss-cross matings, fixed at
5/8 Afrikaner (Figure 8), 3/16 Hereford and 3/16 Shorthorn blood (Bonsma, 1980).
Figure 8. Afrikaner cow (constituting 5/8 of the Bonsmara breed) at Bokspits Ranch in Southwest
Botswana (Photograph: Trevor Wilson, July 1986).
R Trevor Wilson 23
Begun in 1947 by Professor Bonsma at the Mara Research station in the then Transvaal (now South Africa‟s
most northerly province of Limpopo) it is claimed that unlike the Mpwapwa just cited which was arrived at largely
by chance the Bonsmara is the only beef breed in the world created through a well documented crossbreeding
programme with the aid of objectively recorded performance data. It now benefits from a database of approximately
one and a half million performance tested animals recorded since 1937 which is used to calculate breeding values
(Bonsma and Skinner, 1969). The breed was developed for the hard dry conditions of southern Africa based on the
use of the adaptability of the Afrikaner, the meat production of the Hereford and the milk production of the
Shorthorn. The Bonsmara has a much less sloping rump than the Africander, a reduced hump in the male and
reaches marketable weight much earlier than its progenitor. The colour is a uniform red-brown, the skin is thick and
pigmented (resistant to the sun and ticks -- although in the case of the latter not so much as pure bred Nguni (Marufu
et al., 2011)) and these docile animals weigh about 800 kg as mature males and 500 kg as pure females. The Bonsmara
is the front runner in the stud and commercial beef industries of southern Africa as well as in other parts of Africa
and is a well-regarded and well-adapted breed in Argentina, Uruguay, Paraguay, Brazil, Mexico, the USA, Canada and
Among the claims made for the Bonsmara are:
very well adapted to most climatic and environmental conditions (bushveld, savannah and sourveld or equivalent
ecologies outside southern Africa);
very fertile with short intercalving periods;
early maturity;
low birth weights and therefore easy calving with high reconception rates;
well developed udders with adequate milk to wean a strong calf;
good growth ability which can be used good effect in a crossbreeding program;
advantageous feed conversion ratio; and
excellent carcass and meat qualities with notable tenderness.
4. Recent crossbreeds
4.1 French and Soviet influences on Malian cattle
Mali, the former Soudan français (French Sudan) carried out crossbreeding trials both during the colonial
period and after it achieved independence. Most of these experiments were for dairy production with beef being
considered a by-product (Wymann, 2005). Halfbred Jersey-N‟dama cattle were slightly heavier at 12 months at 137 kg
against all other genetic types which averaged 126 kg. Average milk yield for 187 lactations of all genotypes was 1178
kg in lactations of 283 days of lactation with both lactation length and total yield being influenced by type. The
apparent best milk results were obtained with Red Steppe x Zebu crossbred cattle which gave 1782 kg of milk in 367
days but only nine lactations for this genotype did not allow any conclusions to be drawn on the superiority of this
cross bred over all others. Age at first calving was 3-4 months earlier in crossbred cattle and the calving interval was
shorter but total lifetime offspring for crossbreds with the exception of Montbéliard x N‟Dama and Red Steppe x
Zebu halfbreds was lower than for local purebreds. For all parameters studied the environment (and particularly the
year) was a determinant factor. The difficulty of programming the import of improved breed males, the absence of
selection in the locally bred herds used and the lack of control over management were among the reasons that
prevented adequate interpretation of the results.
The conclusions of a thorough review of experimental work were rather negative. The disorderly import (l‟
importation anarchique) of various European breeds in to a population hardly capable of maintaining itself served to
accentuate the variable performance. In effect the outcome of 20 years of crossbreeding experiments at the Centre
National de Recherches Zootechniques de Sotuba was that no solutions had been found to the problem of increasing
the production of milk and meat in Mali but provided some pointers to the future policy on improving production.
The lifetime production of 3.1 calves per female, taking into account the sex ratio and the high mortality, did not
allow any selection among the females. Crossbred weights at 12 months were heavier than either N‟dama or Zebu
under the same management conditions but it did not seem advisable to proceed past the F1 generation in order to
avoid problems with genetic dispersion and in order to maintain a level of adaptation to the local environment.
24 Journal of Agriculture and Environmental Sciences, Vol. 7, No. 1, June 2018
Milk yield was not substantially increased in crossbreds but there was some advantage as they let milk down
without the calf being present. Crossbred females also produced their first calf eight months in advance of the native
animals but it was not clear whether this was due to the crossing or to environmental conditions as the data refer to
two different periods. These positive aspects were not, however, a sufficient argument for crossbreeding as the same
results could be achieved through within-breed selection of local animals and by better management. In addition
crossbreeding often requires better management conditions. Problems associated with recording and the multiple
objectives of the experiments at Sotuba (improvement of crossbreds by backcrossing to Rouge des Steppes or
Montbélliard, increased meat production by crossing with Brahman and increased milk production by infusions of
Jersey blood) resulted in the limited usefulness of the work. What was clear was that crossbreeding per se was not a
miracle solution. In the future it would be better to improve the animal environment (health, feeding and
reproductive management) and general management of the stock. If improvement were to be achieved on station it
would still be necessary to ensure better management in the village situation and to provide adequate extension
services (Tamboura et al., 1982).
4.2 Urban and periurban dairy production in Ethiopia
Crossbreeding is likely to be, and in Africa has been, more successful in areas where environmental
conditions most closely approximate those of the exotic breed. Examples are the subtropical areas of southern Arica
and highland areas, among others, in Tanzania, Kenya and Ethiopia. Major systems of dairy production in Ethiopia
are lowland pastoral systems, rural highland small-holder system, large scale commercial production and urban and
periurban systems (Desta, 2002). The last system developed in and around major cities and towns, especially in the
highlands, where there is high demand for milk. Farmers use all or part of their land for home grown feed and
purchase agro-industrial by products (oilseed cakes, bran) and additional fodder. The system comprises small,
medium and large farms and has the primary objective of producing milk for sale;
Studies have shown that milk production per cow per lactation is increased by crossbreeding but some of
these benefits are offset by variable reproductive performance and cow longevity. In Addis Ababa the proportion of
cows with 50 per cent or less exotic blood increased as the farm size decreased while those of 75 per cent or more
exotic blood increased with the increment of farm size. The lowest proportion of exotic cows was found in the small
scale farms and it was comparable in the medium and large scale farms. Lack of livestock feed was the most
important constraint identified by all farm scales: 92.0 per cent of small, 85.7 per cent of medium and 83.3 per cent of
large scale farms considered lack of feed as a constraint. Studies showed that on all farm sizes about 90 per cent of
the required energy was actually fed to cattle. Disease was the second most important constraint and cited by 68 per
cent of small, 57.1 per cent of medium and 83.3 per cent of large scale farms. Some 32 per cent of small scale farms
considered lack of labour as a constraint. Lack of veterinary services was considered a constraint by 12 per cent of
small scale farms whereas lack of livestock development services was cited by 28.6 per cent medium scale and 16.0 per
cent of small scale farms.
Breed improvement programmes for dairy production in Ethiopia date to the 1930s when the Italian
occupation administration imported pure temperate breeds. Crossbreeding of temperate and indigenous breeds has
since been practised by several governmental and non-governmental institutions. These efforts have met with little
success due to technical, organizational and socioeconomic constraints. There has been no formal breeding policy
with regard to choice of exotic breed types, no defined breeding objectives, no indication of the optimum level of
exotic blood and performance recording has been difficult. Activities have not focussed on the smallholder producers
who are increasingly dominating the dairy industry. Estimates of breeding value and selection for improved
productivity have therefore been difficult. Artificial insemination is meant to have an important role in upgrading
local stock but its activities have been unsatisfactory (conception rates are only about 25 per cent) and largely limited
to Addis Ababa and a few other major urban areas. Natural service for dairy breed improvement is promoted by
some governmental and non-governmental institutions (including the Smallholder Dairy Development Project) in
rural areas but the sustainability of this option is in doubt due to the uncertainty of the ability (or unwillingness once
the “project” is completed) of farmers to replace bulls (Desta, 2002). The prospects for dairy production depend not
only on the market (undoubtedly with high and increasing demand) but on the availability of self sustaining improved
animals, feed resources, anima health and extension services and future government support (Azage and Alemu, 1997)
in practice and not just in parliament.
R Trevor Wilson 25
4.3. Other recent crossbreeding activities
On-station research in Zimbabwe with three indigenous Sanga breeds (Tuli, Nkone and Mashona) crossed
with exotic breeds for milk production showed that the use of a small dairy breed such as the Jersey produce F1
females that were prolific and milked better than their pure bred indigenous contemporaries but supplementation
and/or adequate rainfall were the major determinants of reproductive performance and yield. In an on-station trial in
which indigenous and crossbred cows were supplemented with medium quality silage, daily yield and lactation length
were higher in the crossbreeds and resulted in a more than doubling of lactation yield. Calf birth weight, growth and
survival rates of the F1s were comparable to the indigenous calves and, in the females, conception was at a younger
age under station management. Results on small holder farms were less encouraging, however, and it was concluded
that cross-breeding of indigenous cattle with exotics to increase production could not be recommended for resource
poor farmers because of the relationship between breed, level of inputs and the environment, and the consequent loss
of control of the composition of a communally managed herd. It was further concluded that indigenous breeds
should be subjected to selection (Smith et al., 2003).
A programme based on artificial insemination of N'Dama cows using deep-frozen semen of Jersey and
Holstein-Friesians was initiated in the Gambia in 1994 (Diack et al., 2005). Preliminary studies were conducted on the
adaptation, health and productive performances of this new population, kept on-station “under vigilant health
surveillance and improved nutrition conditions” in this area which is an endemic trypanosomosis area. Prophylactic
treatment against gastrointestinal parasites was given twice in the rainy seasons (June to October) to calves and
heifers. Acaricides for tick control were applied to all categories of stock throughout the year and all animals were
vaccinated against anthrax, black quarter and haemorrhagic septicaemia (all also endemic to the area). All clinical
cases were treated. The results suggested “an important potential for increased lactation performance in crossbred
cattle in the West African context, in comparison to the local N'Dama breed”. The main features of the crossbreds
F1 cows produced up to five times more milk than the purebred N'Dama;
the N'Dama always required the presence of the calf to let down milk whereas the F1 continued lactating even
after the death of its calf; and
F1 cattle were strong enough to survive under the prevailing environmental conditions and did well with
reasonable management.
The authors said: “a forthcoming socio-economic evaluation of these performances will enable a more
definitive assessment of the crossbreeding strategy”. And here is the truth the crossbreds had much more than
“reasonable management” in the Gambian village context. Much remains to be done before definitive conclusions
can be drawn on the suitability (and sustainability, especially of frozen semen imports and its use off station of this
type of production for Africa‟s tropical humid coastal areas.
Crossbreeding for beef has been less than that for milk production. In one study in Zimbabwe, however,
beef production was the aim. Cow genotypes comprised Mashona (Figure 9), Nkone, Tuli, Afrikaner, Brahman,
Sussex, Charolais and various crosses amongst them. These were mated annually from 1979 to seven terminal sire
breeds which were Afrikaner, Tuli, Brahman, Aberdeen Angus, Hereford, Simmental and Holstein-Friesian.
Figure 9. Shona (Sanga) cow on communal grazing in Masvingo District in Southern Zimbabwe
(Photograph: Trevor Wilson, February 2000).
26 Journal of Agriculture and Environmental Sciences, Vol. 7, No. 1, June 2018
Maternal productivity was calculated as annual weight of calf weaned per 100 kg metabolic weight of cow
based on calving rate, weaning weight and cow weight at weaning. Annual production was 162 kg for the exotic
Sussex cows, 203 kg for Nkone and 206 kg for Mashona. Among purebreds, calving rate of indigenous Mashona
cows was highest, followed by Tuli, Brahman and Nkone. Sussex and Afrikaner had the poorest calving rates. The
superior fertility of the indigenous Sanga breeds was demonstrated. Among crossbreeds, Charolais x Brahman had
the highest calving percentage and highest weaning weight. Highest efficiency (per 100 kg metabolic body weight of
cow exposed to the bull per year), was in Mashona and Nkone cows whereas Charolais x Brahman performed best
within the crossbreeds. High Mashona and Nkone fertility contributed significantly to their superior efficiency.
Exceptional performance of Charolais x Brahman was consistent with theoretical expectations of greater heterosis in
more genetically diverse types (Bos taurus x Bos indicus) than in the more closely related indigenous Sanga x Sanga
breeds. The contribution of indigenous and adapted genotypes to southern African beef production and their
potential role in industry were clearly demonstrated (Mayo et al., 1996).
Types of Bos taurus cattle including the N‟dama (Figure 10) and the West African Shorthorn group have
been indigenous to Central and West Africa for some 7000 years. Over this period they have co-evolved with tsetse
flies and trypanosomes (Matthiola and Wilson, 1996) and have developed resistance to trypanosomosis. Constituting
less than 6 per cent of the total African bovine population they are nonetheless of supreme importance in that they
occupy areas in which non-tolerant stock cannot survive and they contribute substantially to human welfare in at least
18 African countries (Wilson and Hammond, 1994). Trypanotolerant cattle are able to survive in tsetse infested areas
without drug treatment but they are generally of small size and have relatively low output. The larger zebu breeds
have greater output and with the widespread availability of trypanocidal drugs small holder farmers now often prefer
to cross their trypanotolerant breeds with zebu or even replace them altogether. Many taurine types are thus under
pressure with reducing numbers of purebred animals. Their unique quality of trypanotolerance which is free and
unlike drugs which have to be paid for and may also have a negative effect on the environment needs to be
preserved for future generations.
Figure 10. Mixed group of N’dama cattle at Teko Research Station in central Sierra Leone (Photograph:
Trevor Wilson, November 1986).
5. Discussion
The Sanga group of breeds is living testament to the ancient practice of crossbreeding in Africa. Thus for
thousands of years livestock farmers have improved and adapted their livestock by selectively breeding animals with
the various traits perceived necessary by the owners. Simple improvement since the advent of the Sanga still predates
the arrival of European colonialists by many centuries.
R Trevor Wilson 27
Traditional cattle keepers are well known for improving the quality of their stock through retention for
breeding and exclusive use of “alpha” animals of both sexes. Formal and probably better organized genetic
improvement of domestic livestock arrived, however, in many African countries in the early years of the twentieth
century when colonial settlers with their own traditional knowledge of the performance of their home breeds
attempted to add some special attributes into animals native to their new residences. It is thus no surprise that the
recent history of animal genetic modification in Africa has concentrated on “improvement” of local cattle for milk
and meat production via crossbreeding introduced males (usually) on indigenous females. Crossbreeding was
perceived as a more rapid route to improved output than the slower (and ultimately uncertain) process of direct
increases through within breed selection. The justification for the introduction of exotic cattle during colonial times
was primarily to supply beef and milk products to Europeans in the urban areas so these animals were husbanded
close to these areas for ease of access to the markets
Crossbreeding was rapidly adopted across the whole continent as a panacea to increase the output of animal
products. In most cases, however, the objectives of improvement (if indeed there were any objectives) were usually
restricted to one trait, principally milk but occasionally meat, which failed to take account of the multipurpose nature
of African livestock husbandry. In addition improvement programmes were almost invariably restricted to research
stations where general good management could be rigidly imposed and adequate nutrition and health care could be
assured, factors which again failed to take into account the reality of traditional production systems. Gains realized on
station which in any case were often illusory were therefore not transmitted to smallholder producers‟ herds. It
was only very late in time that the concept of improvement schemes involving farmers or producers was
acknowledged and that these people should participate in defining the breeding goals and selection criteria and
especially in the actual field management.
The overall experience from crossbreeding as a strategy to improve meat and milk production in Africa has
not been strongly positive and, as succinctly stated by Malian scientists, is not a miracle cure nor is it likely to be if
“anarchic” use of exotic breeds continues. In the main crossbreeding involving exotic and indigenous cattle has failed
due to lack not only of biological or technical adaptation but also to lack of socio-economic considerations.
Public administration problems including policy issues, weak managerial capacity and excessive bureaucratic
constraints have compounded the lack of success. There are fewer crossbreds in Africa than might be expected in
part due to the foregoing and also due to the closure of many publicly funded selection and multiplication
programmes being deprived of money and manpower and due to lack of adaptation of the crossbreds to poor feed
and health environments.
These considerations raise serious doubts on the sustainability of widespread and indiscriminate
crossbreeding. It is generally accepted, however, that under certain market and economic considerations
crossbreeding programmes are useful and justifiable. Crossbreeding does have a role when resources and market
demands allow the potential of such stock to be exploited. There are areas where the greater management, nutritional
and welfare demands of exotic breeds and their crosses can be met. In the context of dairy cattle there are practical
limitations to the possibilities that can be considered. It seems that in most cases only two breeds should be involved
and there are advantages to continuing access to artificial insemination to maintain the exotic blood. Grading up
above 50 per cent exotic blood is seldom worthwhile and the advantages of involving a third breed may not be
substantial. Creating a synthetic may be operationally easier than the organization of a rotational breeding structure.
Indeed, the optimum proportion of Bos taurus genes has long been an important issue in discussions on
crossbreeding for milk production in the tropics. Reviews of many reports show improvement in almost all traits up
to 50 per cent (i.e. first cross) but further grading towards taurus cattle has given variable and often disappointing
results (Cunningham and Syrstad, 1987).
Most cattle in Africa remain in the traditional sector in which indigenous breeds and types predominate and
the few exotic cattle are found mostly on commercial farms. In this context some studies have shown that whereas
exotic breeds produce more milk individually, grow faster and attain heavier weights at maturity, annual cow
productivity is lower in many exotics and crossbreds due to lowered reproductive performance and higher mortality
rates. Private investment by smallholders is slowly increasing in some regions and could be accelerated by
demonstrating to them the economic benefits of using truly improved stock. Most smallholders will not, however, be
able to buy crossbred or exotic stock and will not attract external private investment.
28 Journal of Agriculture and Environmental Sciences, Vol. 7, No. 1, June 2018
For progress to be made, therefore, funding will be needed from other sources such as cooperatives,
governments and international organizations but this must be assured and adequate for the long-term nature of cattle
breeding operations. Active involvement of breeders and producers and continuous participation of scientists and
breeders will be prerequisites of success. So far, unfortunately, the combination of large scale investment and the
managerial and commercial organization required for optimal results has not yet materialized in African breed
development (Madalena et al., 2002).
Crossbreeding and breed substitution programmes promote fast genetic changes but because of this they can
be particularly risky if based on empirical trial and error. The genetic resources used should match the climate and the
feed, health, management and other production circumstances. Various strategies (such as breed substitution,
crossbreeding, new breed development and/or improvement within local populations) may be used for particular
cases. Each strategy needs to be assessed according to the particular biological, socioeconomic and logistic
circumstances. This has too often been overlooked in the past and has been responsible in large part for the lack of
success or outright failure of many so-called development programmes. Imports of live animals or genetic material
have been and will continue to be an important option but must be sensibly assessed in each case.
As a penultimate statement, some conclusions made 30 years ago (McDowell, 1985) are still valid. The use of
European breeds for grading up of local cattle in tropical areas has been underway for almost one century but few
countries yet have definitive policies on use of crossbreeding systems. Crosses with European breeds have excelled
local types in age at first calving, milk yield, days in milk and calving interval and in general crosses by Holstein sires
have proven superior to crosses from other breeds. Contrary to findings in temperate areas, addition of a second
improved breed (three-breed cross) has tended to reduce rather than to improve performance. The cross of 5/8 one
breed has performed as well or better than two-breed crosses but few evaluations have been on farms. The cross of
3/4 European usually exceeds the two-breed cross slightly in milk yield but reproduction is poorer. Mortality losses in
3/4 crosses up to 3 mo often have been high in the range 14 to 29 per cent. Experiences with inter se matings of
two-breed crosses have proved similarly disappointing. Milk yield of ½ crosses of two-breed progeny has been 30 to
60 pr cent lower than for first generation two-breed crosses. Numerous attempts have been made to form synthetic
groups from crossbred foundations with most of these gene pools of breed combinations being approximately 5/8
improved and 3/8 local. Evidence has shown that with high dependence on tropical grasses and crop residues best
sustained milk yield is 1800 to 2200 kg per lactation.
This means that more attention should be given to breeding plans to raise animal productivity from low to
intermediate rather than providing genetic potential for productivity that cannot be supported economically in tropical
areas. That penultimate conclusion now leads to a final one and that is that the value of native livestock in Africa is
not always fully appreciated. In many parts of the continent and especially in very difficult production environments
the use of pure indigenous breeds is often the best production strategy. Within-population selection programmes
have lower rates of change but they are appropriate in endowing their offspring with valuable combinations of traits.
One example among very many is the case of trypanotolerance. Bos taurus in Central and West Africa are resistant to
the effects the parasite has on non-tolerant stock. The number of animals with the protective adaptation is dwindling
as local farmers cross and replace their taurine herds for large zebu animals. This highlights the importance of efforts
to prevent further dilution, not only of African taurine breeds but also of other African indigenous breeds with unique
adaptive traits.
Alberro, M. (1983). Comparative performance of F1 Friesian x zebu heifers in Ethiopia. Animal Production, 37,
Alhassan, W. S. (2003). Agrobiotechnology application in West and Central Arica (2002 survey outcome). Ibadan,
Nigeria: International Institute of Tropical Agriculture.
Aria, G., & Cristofori F. (1980). Reproductive traits of zebu cattle in Somalia. Atti della Societa Italiana delle Scienze
Veterinarie, 34, 205.
Azage, T., & Alemu, G. (1997). Prospects for peri-urban dairy development in Ethiopia. In: Proceedings of the Fifth
National Conference of the Ethiopian Society of Animal Production, 15-17 May 1997, Addis Ababa,
Ethiopia. 28-39.
R Trevor Wilson 29
Bayemi, P. H., Bryant, M. J., Perera, B. M. A. O., Mbanya, J. N., Cavestany, D., & Webb EC. (2005). Milk production
in Cameroon: A review. Livestock Research for Rural Development. Vol. 17, Art. #60. Retrieved January 2,
2018, from
Berahino, J. B. (1993). Smallholder dairy on-farm research in Burundi. In: J. A. Kategile, & S. Mubi (Eds.), Future of
livestock industries in East and Southern Africa: Proceedings of the Workshop held at Kadoma Ranch Hotel,
Zimbabwe 20-23 July 1992. Addis Ababa, Ethiopia: International Livestock Centre for Africa.
Bopitumelo, W. S. (1993). Peri-urban small-scale dairy research programme in Botswana. In: J. A. Kategile, & S.
Mubi (Eds.), Future of livestock industries in East and Southern Africa: Proceedings of the Workshop held at
Kadoma Ranch Hotel, Zimbabwe 20-23 July 1992. Addis Ababa, Ethiopia: International Livestock Centre for
Bonsma, J. C. (1980). Livestock production, a global approach. Cape Town: Tafelberg Publishers Ltd.
Bonsma, J. C., & Skinner, J. D. (1969). Factors affecting birth date, birth weight and pre-weaning growth rate of
Afrikaner, Bonsmara and Hereford cattle in the subtropics. Proceedings of the South African Society of
Animal Production, 8, 161-163.
Carew, S.F., Sandford, J., Wissocq, Y. J., Durkin, J., & Trail J. C. M. (1986). N'Dama cattle production at Teko
Livestock Station, Sierra Leone and initial results from crossbreeding with Sahiwal. ILCA Bulletin, 23, 2-10.
Chase, C. C. Jr., Olson, T. A., Hammond, A. C., Menchaca, M. A., West, R. L, Johnson, D. D., & Butts, W. T. Jr.
(1998. Preweaning growth traits for Senepol, Hereford, and reciprocal crossbred calves and feedlot
performance and carcass characteristics of steers. Journal of Animal Science, 76, 2967-2975.
Compère, R. (1963). Etude du premier croisement Jersey-Ankole au Centre zootechnique de Nyamiyaga (Rwanda).
Bulletin d'Information de l'Institut National pour l'Etude Agronomique du Congo, 12, 43-74.
Cunningham, E.P., & Syrstad, O. (1987). Crossbreeding Bos indicus and Bos taurus for milk production in the
tropics (FAO Animal Production and Health Paper No 68). Rome: Food and Agriculture Organization of
the United Nations.
Dénis, J. P., & Thiongane, A. (1974). Analyse de la lactation de vaches pakistanaises au Sénégal. Revue d‟Elevage et
de Médecine Vétérinaire des Pays Tropicaux, 27, 331- 346.
Desta, K. B. (2002). Analyses of dairy cattle breeding practices in selected areas of Ethiopia (Dissertation zur
Erlangung des akademischen Grades doctor rerum agriculturarum (Dr. rer. agr.)). : Berlin: Landwirtschaft-
Gärtenerischen Fakultät, Humboldt-Universität.
Diack, A., Sanyang, F. B., & Münstermann, S. ( 2005). Lactation performance on-station of F1 crossbred cattle in
The Gambia. Livestock Research for Rural Development. Volume 17, Article #140. Retrieved from on 7 January 2018.
DVSAH. (1926). Annual Report 1926. Dar es Salaam: Department of Veterinary Services and Animal Husbandry
(Government Printer.
DVSAH. (1928). Annual Report 1928. Dar es Salaam: Department of Veterinary Services and Animal Husbandry
(Government Printer).
Felius, M. (19850. Genus Bos: cattle breeds of the world. Rahway NJ, USA; MSDAgvet.
Freeman, A. R., Meghen, C. M., MacHugh, D. E., Loftus, R. T., Achukwi, M. D., Bado, A., Sauveroche, B., & Bradley,
D. G. (2004). Admixture and diversity in West African cattle populations. Molecular Ecology, 13, 3477-34.
Gregory, K.E., Trail, J. C. M., Sandford, J., & Durkin J. (1984). Crossbreeding cattle in beef production programmes
in Kenya. I. Comparison of purebred Boran and Boran crossed with Charolais, Ayrshire and Santa Gertrudis
breeds. Tropical Animal Health and Production, 16, 181-186.
Haile, A., Joshi, B. K., Ayalew, W., Tegegne, A., & Singh A. (20090. Genetic evaluation of Ethiopian Boran cattle
and their crosses with Holstein Friesian in central Ethiopia: reproductive traits. Journal of Agricultural
Science, 147, 81-89. doi: 10.1017/S0021859608008095.
Hanotte, O., Bradley, D. G., Ochieng, J. W., Verjee, Y., Hill, E. W., & Rege, J. E. O. (20020. African pastoralism:
genetic imprints of origins and migrations. Science, 296 (5566), 336-339. doi: 10.1126/science.1069878.
HPI. (1999). Evaluation of the dairy program of Heifer Project International (HPI) in Cameroon (Internal Report).
Bamenda, Cameroon: Heifer Project International.
Hupp, H. D. (1981). History and development of Senepol cattle (Agricultural Experiment Station Report No 11). St
Croix, US Virgin Islands: College of the Virgin Islands.
Johnson, A.O., & Oni, O. O. (1986). Oestrus detection by mounts received in Friesian x Bunaji and Bunaji heifers.
Journal of Agricultural Science, 107, 67-69.
30 Journal of Agriculture and Environmental Sciences, Vol. 7, No. 1, June 2018
Khishin, S. S., & El-Issawi. (1954). The Jersey in Egypt. Empire Journal of Experimental Agriculture, 86, 121.
Kiwuwa, G. H., & Kyomo, M. L. (1971). Milk composition and yield characteristics of Mpwapwa cattle. East African
Agricultural and Forestry Journal, 36, 290-295.
Kiwuwa, G. H., & Redfern, D. M. (1969). The influence of management and season of calving on milk production in
a herd of crossbred cattle in central Uganda. East African Agricultural and Forestry Journal, 34, 342-349.
Knudsen, P. N., & Sohael, A. S. (1970). The Vom herd: A study of the performance of a mixed Friesian/zebu herd
in a tropical environment. Tropical Agriculture (Trinidad), 47, 189-203.
McDowell, R. E. (1985). Crossbreeding in tropical areas with emphasis on milk, health, and fitness. Journal of Dairy
Science, 68, 2418-2435. doi: 10.3168/jds.S0022-0302(85)81118-8.
Macfarlane, J. S., & Worrall, K. (1970). Observations on the occurrence of puberty in Bos indicus heifers. East
African Agricultural and Forestry Journal, 35, 409-410.
Madalena, F. E., Agyemang, K., Cardellino, R. C., & Jain. G. L. (2002). Genetic improvement in medium- to low-
input systems of animal production. Experiences to date (Communication No 25-08). 7th World Congress
on Genetics Applied to Livestock Production, August 19-23, 2002, Montpellier, France.
Marufu, M. C., Qokweni, L., Chimonyo, M., & Dzama, K. (2011). Relationships between tick counts and coat
characteristics in Nguni and Bonsmara cattle reared on semiarid rangelands in South Africa. Ticks and Tick
Borne Diseases, 2, 172-177. doi: 10.1016/j.ttbdis.2011.07.001.
Mason, I. L. (1996). A world dictionary of livestock breeds, types and varieties (4th Edition). Wallingford, UK: CAB
Matthiola, R. C., & Wilson, R. T. (1996). Trypanosomes, tsetse and trypanotolerance: coevolution in tropical Africa.
Parassitologia, 38, 531-535.
Mbah, D. A., Mbanya, J., & Messine, O. (1987). Performance of Holsteins, Jerseys and their zebu crosses in
Cameroon: preliminary results. Science and Technology Review (Agronomic and Animal Sciences), Series 3,
Mchau, K. W. (1988). Production characteristics of Mpwapwa cattle. 1. Lactation yield and length. World Animal
Review, 65, 11-17.
Mkonyi, J. I. (1982). A comparative study of milk production characteristics of Mpwapwa cattle and their crosses
(Unpublished M.Sc. thesis). Dar es Salaam, Tanzania: University of Dar es Salaam.
Mayo, S., Swanepoel, F. J. C., & Rege, J. E. O. (1996). Evaluation of indigenous, exotic and crossbred cattle for beef
production in a semi-arid environment: reproductive performance and cow productivity. Proceedings of the
Australian Society for Animal Production, 21, 204-206.
Mubita, D. M. (1992). Batoka dairy crossbreeding ranch and its impact on the National dairy development. In: W. N.
M. Mwenya (Ed.) Proceedings of the dairy industry in Zambia. Lusaka, Zambia: Ministry of Agriculture,
Food and Fisheries. 36-41.
Njwe, R. M. (1984). Provision of adequate animal protein to the Cameroon population by the year 2000 AD:
problems and prospects. Dschang. Cameroon: University Centre:(mimeo).
Sada, J., & Vohradsky. F. (1968). Milk yield and butterfat contents of F1, generation Jersey x indigenous breed of
Ghana. Beiträge zür tropischen und subtropischen Landwirtschaft und Tropenveterinärmedizin, 6, 63- 69.
Scherf, B. (2000). World Watch List for Domestic Animal Diversity (3rd Edition). Rome: Food and Agriculture
Sibomana, G. (1992). Productivity of the cattle Ankole and its cross with Jersey and Sahiwal in station in Rwanda
(Technical Note). Kigali, Rwanda: Institut des Sciences Agricoles du Rwanda.
Smith, T., Mayo, S., Richards, J. I., & Morton, J. F. (2002). The role of indigenous and cross-bred cattle for
smallholder dairy production in Zimbabwe. In: Programme and Summaries, Responding to the Increasing
Global Demand for Animal Products; an International Conference held at the University Cultural Centre,
UADY, Mérida, Yucatan, Mexico, 12-15 November 2002 (Paper No 105). 223-224.
Sraïri, M. T. (2011). Dairy development in Morocco. Rome: Food and Agriculture Organization of the United
Syrstad, O. (1990). Mpwapwa cattle: an Indo-Euro-African synthesis. Tropical Animal Health and Production, 22, 17-22.
Tambi, E. N. (1991). Dairy production in Cameroon: growth, development, problems and solutions. World Animal
Review, 67, 38-48.
Tamboura, T., Bibe, B., Babile, R., & Petit, J.-P. (1982). Résultats experimentaux sur le croisement entre races locales
et race laitières améliorées au Mali. Revue d‟Elevage et de Médecine Vétérinaire des Pays Tropicaux, 35, 401-412.
R Trevor Wilson 31
Tawah, C. L, Mbah, D. A., Messine, O., Enoh, M. B., & Tanya, V. N. (1999). Crossbreeding cattle for dairy
production in the tropics: effects of genetic and environmental factors on the performance of improved
genotypes on the Cameroon highlands. Animal Science, 69, 59-68.
Tawonezvi, H. P. R., & Ward, H. K. (1989). Weaner production by crossbred cows on veld. Proceedings of the
Zimbabwe Society of Animal Production, 2, 83-88.
Trail, J. C. M., & Gregory, K. E. (1981). Sahiwal cattle: An evaluation of their potential contribution to milk and beef
production in Africa (Monograph No 3). Addis Ababa, Ethiopia: International Livestock Centre for Africa.
Trail, J. C. M., Sacker, G. O., & Fisher, I. L. (1971). Crossbreeding of beef cattle in Western Uganda. I. Performance
of Ankole, Boran and zebu cows. Animal Production, 13, 127-141.
Wilson, R. T. (2009a). Fit for purpose the right animal in the right place. Tropical Animal Health and Production,
41, 1081-1090.
Wilson, R. T. ( 2009b). Devon Red Ruby cattle in Kenya. African Journal of Agricultural Research, 4, 553-555.
Wilson, R. T., & Hammond, K. (1994). Programme for conservation of domestic animal diversity: a Food and
Agriculture Organization contribution to conserving animal genetic resources. In: G. J. Rowlands, & A. J.
Teale (Eds.) Towards increased use of trypanotolerance: current research and future directions. Nairobi:
International Laboratory for Research on Animal Diseases. 165-173.
Wymann, M. N. (2005). Calf mortality and parasitism in periurban livestock production in Mali (Inaugural
Dissertation). Basel, Switzerland: Philosophisch-Naturwissenschaftlichen Fakultät, Universität Basel.
... Considerable breeding interventions have been implemented for over a century in sub-Saharan Africa [11]. To a greater part the past cattle breeding initiatives in the region, which were initiated during the beginning of the 20 th century capitalized on crossbreeding [11]. ...
... Considerable breeding interventions have been implemented for over a century in sub-Saharan Africa [11]. To a greater part the past cattle breeding initiatives in the region, which were initiated during the beginning of the 20 th century capitalized on crossbreeding [11]. Possibly this was because of the general conception that the pathway is relatively faster in making genetic improvement. ...
Full-text available
Livestock keeping is an important livelihood option in the tropics and cattle play the major role. For sub-Saharan Africa, most of the cattle kept are of indigenous type exhibiting low to medium production coefficients. After realizing low impact with crossbreeding in improving their productivity during the first three quarters of the 20th century, many sub-Saharan Africa countries turned to adoption of selection schemes during the last quarter of the century. However, many countries still haven’t realized active operation of selection schemes for indigenous breeds improvement. Major constraints are unsustainable financing, weak coordination, inadequate policy support and weak technical foundation for animal breeding. Existing infrastructure networks are not supporting extensive operation of selective breeding. Systematized pedigree and performance data recording is lacking in many countries. Important guidelines for streamlining implementation of breeding operations among actors are not in place. Strategies for adapting selection schemes in sub-Saharan Africa should target exploitation of unique potentials of indigenous breeds and focus to the improvement of their productivity while also maintaining their adaptability. From the prevailing conditions, considering immediate transformation to farmer-operated central nuclei is not recommended in structuring the scheme. What is recommended is to start with dispersed village-based group pre-nuclei which are backed by institutional central nuclei. Important strategies in enabling effective operation with such structured schemes include evolving guidelines for implementing selection in terms of defining breeding objectives, increasing involvement of farmers, strengthening coordination of animal breeding, promoting inter-institutional collaboration, and considering some more government financial support.
... The existence of numerous highly productive crossbreeds, such as Holstein-Friesian and Girolando, is well known (Tadesse et al., 2010;Canaza-Cayo et al., 2016;Daltro et al., 2021). In Africa, several livestock production improvement programs have focused on crossing local breeds with exotic ones (Leroy et al., 2016;Nyamushamba et al., 2017;Wilson, 2018). Unfortunately, most of these programs have scarcely achieved their main goal of increasing the productivity of local breeds (Leroy et al., 2016;K€ onig et al., 2016;Wilson, 2018). ...
... In Africa, several livestock production improvement programs have focused on crossing local breeds with exotic ones (Leroy et al., 2016;Nyamushamba et al., 2017;Wilson, 2018). Unfortunately, most of these programs have scarcely achieved their main goal of increasing the productivity of local breeds (Leroy et al., 2016;K€ onig et al., 2016;Wilson, 2018). An illustrative example is the importation of Gir, Girolando and Holstein by the government of Benin since 2010 for upgrading local breeds. ...
Full-text available
Data for concretely analyzing current trends regarding breed composition of cattle herds at the national scale and the logic behind it are lacking in Benin. This study aimed to investigate the factors affecting the dynamics of breed composition in traditional Beninese cattle herds. In this regard, the main reasons for acquiring new breeds by herders and management strategies for animal genetic diversity in herds were targeted. Using a semi-structured questionnaire, a total of 753 cattle herds were surveyed in six pastoral communities along a north-south transect in Benin. Data collection included original breed composition of the herds (at their installation), cattle breeds introduced in the last five years, reasons for introducing new breeds, herders’ breed preferences, and perceptions concerning productive and adaptive traits of the existing breeds in the study area. Descriptive analyses of herd composition revealed breed redistribution across the country with the increasing introduction of zebu in the southern region of the country. A high percentage of nondescript crossbreeds was associated with herders’ willingness to improve both milk and meat production. In this regard, the analysis of herders’ perceptions using the Friedman test ranked most zebu cattle breeds as the most productive. In contrast, the taurine breeds were highly ranked by herders for their adaptive features. This study confirms that herders’ breed choices fit their production objectives. In addition, strategies for effectively and efficiently managing genetic diversity within herds are expected to increase animal productivity while conserving adaptive and special traits in local breeds. The effectiveness of herders’ knowledge of local cattle breeds as well as their experience may increase the success of such strategies and facilitate their adoption.
... Several trials for dairy intensification, based mainly on the importation of exotic breeds and the anarchic crossbreeding with the indigenous populations, led to a deterioration of the genetic structure of the dairy herd in Algeria, which resulted in a drastic fall in the numbers of local cattle. Thus, the percentage of indigenous cattle breeds' population is reduced from 82% of the total in 1986 to about 48% of the total in 2016 [14,15]. ...
... Replacement selection criteria are mainly animal phenotype in Tunisia (81%), animal growth performances in Algeria (66%), and parents' performances in Greece (81%), which confirm that the indigenous cattle breeding management and objectives are more or less the same in these three countries (Chi-square = 345.791; df (14); p < 0.01; Cramer's V = 0.671). ...
Full-text available
The indigenous cattle populations are threatened by extinction in many countries of the Mediterranean area. The objective of this study is the analysis of local cattle breeds’ production systems in Algeria, Greece, and Tunisia and the identification of their future challenges and opportunities. A total of 385 surveys were conducted in these study areas: central and northern Greece (43); northern and northwestern Tunisia (167), and northeastern Algeria (175). Data collected concerned socio-economic parameters as well as the production system’s functionality, constraints, and opportunities. Results revealed an average farmers’ age of 52.6 years old. The illiteracy rate is high, especially in Algeria (39%) and Tunisia (44%), where the farm size is relatively small with an average of 14 and four animals per farm, respectively. In Greece, much higher numbers were recorded (89 animals/farm). The average cultivated feedstuffs’ area is larger in Greece (12.07 ha) and smaller in Algeria and Tunisia (6.11 and 2.88 ha, respectively). Feeding resources are based on rangelands. Farming systems are traditional extensive and complemented when needed. Milk and meat marketing vary throughout countries and are not well valorized. The main constraints are high feeding costs, low milk and meat prices, and absence of labeling. Local and local-crossbred bovine populations could be valorized based on their good adaptation criteria when applying convenient genetic and development strategies.
... This has resulted in a drastic decrease in the local cattle population. Consequently, the proportion of local breeds has decreased from about 82% in 1986 to 48% in 2016 [58]. ...
Full-text available
The agricultural sector contributes approximately 10–20% of the total anthropogenic greenhouse gas (GHGs) emissions. Consequently, climate change can negatively affect crop yields and livestock production thus threatening food security, especially in a vulnerable continent like Africa. This review provides an overview of climate-smart agriculture (CSA) practices and their impacts on smallholder farmers in five African countries (Algeria, Senegal, Benin, Nigeria and Zambia). A total of 164 published articles on CSA practices were reviewed. Analysis of extracted data showed that CSA practices are classified as follows: agricultural practices, restoration practices of degraded lands, forest and cropland regeneration practices, practices in the livestock sub-sector, water resources and use of weather and climate information services. Moreover, climate change effects differed alongside strategies adapted from one country to another. Adoption of these strategies was often influenced by financial means put in place by governments, the role of policy legislation, access to climate information and farmers’ intellectual level. To address this deficiency, scientific-outcome-based research should be used to increase the effectiveness of climate adaptation management programs. In conclusion, to enhance the uptake of climate-smart agricultural practices in Africa, this review recommends the use of scientific-research-driven adaptation measures and prioritization of climate change in governments’ agendas.
... The main challenges faced by the farmers of cluster 3 are the high production costs and the difficulty of maintaining the needs of exotic breeds less adapted to local climatic conditions. Exotic cows are also at risk from high vulnerability to local weather conditions, by lacking resistance to heat, humidity, tropical diseases, and parasites (Wilson 2018;Seck et al. 2016;Niemi et al. 2016;Magnani et al. 2015). Environmental modifications, water, and feed management strategies have all proved to be helpful in alleviating and encountering the stress for exotic animals across the tropics (Renaudeau et al. 2012). ...
Full-text available
Senegal is a country where millions of livelihoods directly depend on smallholder livestock production activities. Unfortunately, these farmers now face the effects of a changing climate and associated societal responses. In addition, the lack of understanding of the specific farmers’ problems in their respective production systems by assuming homogeneity has led to inappropriate planning of interventions and inefficient utilization of resources. The variations in individual farming systems and local contexts require to understand each system separately to inform decision-makers and relevant stakeholders about specific entries of intervention for farmers based on customized needs. Using a Fatick region case study, different statistical clustering techniques were adopted to develop a livestock typology that reflects the above realities. This typology confirmed the co-existence of three livestock production cluster systems with differences and similarities in their production targets and quantities, market access, animal breeds, and the livestock management system of the animals. The studied region represented a new format of smallholder livestock development, where the implementation of a dairy processor and its milk collection centre created a new dynamic in production activities. Farmers confirmed that the extension services and a consistent market opportunity provided by the dairy processor increased local productivity and offered an alternative source of income but they have also reiterated concerns like the dairy processor’s low milk buying prices which need to be addressed. To harness the growth and the regional opportunities, there is a need to establish robust and continuous collaboration structures between the Government, agro-industries, and producers. These public-private partnerships will help producers lower the cost of inputs and services and increase productivity while boosting local dairy production.
... These populations are characterized by good rusticity, constitute a very important socio-economic element, and contribute to a large part to the feeding of the rural people. Importation of exotic breeds, led to a profound mutation in the genetic structure of the dairy herd in Algeria, resulting in a drastic fall in the numbers of local cattle (Wilson, 2018). ...
... These populations are characterized by good rusticity, constitute a very important socio-economic element, and contribute to a large part to the feeding of the rural people. Importation of exotic breeds, led to a profound mutation in the genetic structure of the dairy herd in Algeria, resulting in a drastic fall in the numbers of local cattle (Wilson, 2018). ...
Full-text available
The present work analyzes the diversity of livestock assets and management, in relation tohuman and land assets and its contribution to the household resilience. The analysis conducted on 452family farms surveys in three agro ecological zones of Egypt: the rain fedagro-pastoral zone in the Coastal Zone of Western Desert (CZWD), the hot arid desert oasis in the New valley(NV), and the irrigated hot area of Nile Valley in Upper Egypt (UE). The traditional family farming in Egypt usually includemulti-animal species-herd composed of large ruminants (cattle and/or buffalo) and small ruminants (sheep and/or goats), and eventually camels in desert areas, with backyardpoultry. The diversity of household faming systems was analyzed according to four dimensions, i.e., human and land asset, livestock diversity and household resilience. The cross analysis based on Multiple Factorial Analysis (MFA) shows very close links between land and crop assets, livestock diversity assets and management under different agro-ecological conditions. There is no exclusive link with either groups, but resilience is positioned as a synthesis of different capacities of households to adapt hazards. The perception of adaptive capacity of local breedshighlights the major external constraints in each location. Overall, increase of monetary and food resilience are linked with livestock activity diversification, even with livestock management embedded in the agro-ecological environment and land asset constraints.
... These populations are characterized by good rusticity, constitute a very important socio-economic element, and contribute to a large part to the feeding of the rural people. Importation of exotic breeds, led to a profound mutation in the genetic structure of the dairy herd in Algeria, resulting in a drastic fall in the numbers of local cattle (Wilson, 2018). ...
Full-text available
Indigenous cattle in the Mediterranean are an integral part of rural societies and ecosystems, as well as, a major source of animal products and income. The present article presents the results from 318 questionnaires developed in the BOVISOL project, in indigenous cattle farms in Greece, Algeria and Tunisia. Demographic information on the farmers, details on the farms, as well as a general description of the production systems are presented and discussed. Farmers, in all three countries have high average age, low to average education level and most of them have a successor in the farm. The farm infrastructures as well as the production characteristics are close to the traditional profile and interconnected to the local climatic and social conditions. Additionally, through the answers gathered, it is apparent that the farms have low cooperation and involvement in production recording schemes or conservation programs. The common problems and goals identified in the present work gives the possibilities to find mutual solutions for present of future issues and emphasizes the need to encourage cooperation between farmers in national and international level.
... These populations are characterized by good rusticity, constitute a very important socio-economic element, and contribute to a large part to the feeding of the rural people. Importation of exotic breeds, led to a profound mutation in the genetic structure of the dairy herd in Algeria, resulting in a drastic fall in the numbers of local cattle (Wilson, 2018). ...
Scholars have remarked the opportunities that animal-based tourism provides as the channel to boost local communities’ economy and progress while promoting nature conservation efforts. Consumer characteristics and value creation in camel riding tours’ target audience are however underdealt topics in literature. Given the survival of certain local camel breeds is contingent on leisure tourism, we examined the sociological and psychographic attributes which may allow differentiating customers. Nonlinear canonical correlation analysis was used to determine profiles of those tourists engaging in these activities to characterize the most profitable segments of camel rides as a business niche. Our results suggest that if not familiarized with camels and their functionalities, travelers may not intentionally engage in camel-based tourism unless offered the opportunity at holiday destinations. On the contrary, amateur users are familiar with camels and valorize the issuing tour operator performance and general comfort during the encounter as pivotal factors conditioning their overall satisfaction. Hence, it is quite recommendable for tour agencies to include this entertaining recreation in packages to individuals, groups and companies, as well as staff to customize the service to make the user feel satisfied and willing to return again. The sustainable use of canary camels as business motors may provide tangible benefits to locals’ well-being and natural resources management while these animal genetic resources are protected.
... Upgrading local goats by cross-breeding is still the prevailing strategy in East Africa, in spite of the limited results obtained in terms of productivity and the genetic erosion caused to the native gene pool (Ahuya, 1997;Gichohi, 1998;Ayalew et al., 2003;Onzima, 2014;FAO, 2015;Mruttu et al., 2016;Wilson, 2018). These considerations provide an understanding of the levels of admixture observed, which are corroborated by additional admixture analyses (see Supplementary Text 1). ...
Full-text available
Breed additive and non-additive effects, and genetic parameters of milk fat, protein, solids not fat (SNF) and total solids (TS) percents, were estimated in Ethiopian Boran cattle and their crosses with Friesian in central Ethiopia. Ethiopian Boran cattle were consistently superior (P<0.01) to the Ethiopian Boran-Holstein Friesian crosses for the milk composition traits studied. When the crosses were compared, the fat, protein, SNF and TS percents of 50 and 62.5% Holstein Friesian crosses were higher (P<0.01) than those of 75 and 87.5% genetic groups. The 50 and 62.5% genetic groups did not differ (P>0.05) in milk constituents. It was apparent, therefore, that as the exotic gene level increased the percentages of the milk constituents declined significantly. The individual additive genetic breed difference for milk composition traits were all significant (P<0.01). The estimates were -1.45 for fat, -0.97 for protein, -1.13 for SNF and -2.47 for TS percents. Crossbreeding of the Holstein Friesian with the Ethiopian Boran resulted in desirable and significant (at least P<0.05) individual heretosis for all milk composition traits. The estimates were 0.54 ± 0.09, 0.25 ± 0.10, 0.33 ± 0.15 and 0.72 ± 0.18 for fat, protein, SNF and TS percents, respectively. The maternal heterotic effects were non-significant (P>0.05) for all traits except for fat percent. Heritabilities of fat, protein, SNF and TS percents for Ethiopian Boran were 0.49 ± 0.03, 0.26 ± 0.05, 0.46 ± 0.04 and 0.45 ± 0.04, respectively. The corresponding estimates for crosses were 0.32 ± 0.04, 0.49 ± 0.03, 0.39 ± 0.04 and 0.41 ± 0.04, respectively. Within Ethiopian Boran breed selection accompanied by crossing should enormously improve these traits in crossbreds under such production system.
Three hundred and thirty (330) records from 363 lactations and 104 cows born between 1979 and 1991 from crossbreeding Holstein-Friesian (H) bulls with H, Ngaoundere Gudali (G) and Holstein × Gudali F1 (H1G1) cows, Montbeliard (M) bulls with G and Montbeliard × Gudali F1 (M1G1) cows and M1G1 bulls with M1G1 cows and raised in the Dairy Herd Unit of the Wakwa Animal and Veterinary Research Station in the sub-humid highlands of Cameroon were analysed to investigate the effects of genotype and environment on lactation and reproductive traits. Fixed effects of genotype season and year of calving parity and age of cow at calving were studied. Lactation milk yield (LMY), lactation length (LL), annualized milk production (AMP), calving interval (CI), dry period (DP) and age at first calving (AFC) were amongst the traits analysed. F1 crosses (H1G1, M1G1), backcrosses (3\4 Holstein - 1\4 Gudali; 3\4 Montbeliard - 1\4 Gudali) (H3G1, M3G1) and F2 crosses (MGF2) were compared. Results showed that H1G1 cows were proportionately 0·49 and 0·23 better than their corresponding backcross in LMY and AMP, respectively, while M1G1 cows were proportionately 0·12 and 0·24 inferior to M3G1 in these traits. M1G1 were proportionately superior to MGF2 in LMY (0·05), AMP (-0·04) and AFC (-0·14). M3G1 were superior (0·18 to 0·19) to MGF2 in LMY and AMP. H1G1 were consistently superior to M1G1 for most traits, suggesting that H1G1 may be better than M1G1 for dairy production.
For centuries, milk production in Cameroon has been characterized by the traditional system using local zebu cows (Gudali, White Fulani, Red Fulani). However, this production has been insufficient reaching only an average of 3 litres per cow per day. Per capita annual consumption was 10 kg in 1984. Since then improvement in production has been possible thanks to importations of high yielding breeds such as Holstein Friesian, Jersey and others. This gave room to other semi intensive and intensive production systems in such a way that in 1998 per capita production was 12.8kg. This is still far below 34 kg per person for Africa and 294 kg per person for Europe. In this study, research done in the area on milk production was reviewed. Constraints to increase production were summarized and proposals are made for the sustainable development of the dairy sector.
The lactation performance of 47 Friesian and Jersey crosses over one to five calvings on station was evaluated. Their overall total lactation and daily milk yields were 1,188 ± 458 kg and 3.78 ± 1.1 kg. Their mean daily milk peak yield, time to peak and persistency were 4.16 ± 2.51 kg, 3.8 ± 4.7 weeks and 84.0 ± 32.3%, respectively. In addition, restricted suckling or the death of the calf did not cause the lactation to cease, which is a major positive change in the Gambian traditional husbandry system. These figures equated four to five times that of the N'Dama but were probably below their potential due to management limitatons.