ArticlePDF Available

Pink quartz - a new, meteorite impact-related origin? Part 1: Observations and first hypothesis of formation

Authors:

Abstract and Figures

Pink quartz, not to be confused with rose quartz, is an extremely rare color variety, which is completely transparent and is only known from a few occurrences worldwide. It is believed that the pink color is due to small amounts of aluminum and phosphorus that substitute silicon, and exposure of the quartz to natural gamma radiation. Sands with a dominating proportion of pink quartz excavated from the soil and extracted from a breccia layer in the crater strewn field of the Chiemgau meteorite impact suggest that normally colorless quartz sand was irradiated during the impact event and may possibly be found at other impact sites.
Content may be subject to copyright.
!
1!
!
!
Pink!quartz!-!a!new,!meteorite!impact-related!origin?!
Part!1:!Observations!and!first!hypothesis!of!formation!
!
Kord!Ernstson*!(2018)!
!
!
!
!
Abstract.!-!Pink!quartz,!not!to!be!confused!with!rose!quartz,!is!an!extremely!rare!color!
variety,!which!is!completely!transparent!and!is!only!known!from!a!few!occurrences!
worldwide.!It!is!believed!that!the!pink!color!is!due!to!small!amounts!of!aluminum!and!
phosphorus!that!substitute!silicon,!and!exposure!of!the!quartz!to!natural!gamma!
radiation.!Sands!with!a!dominating!proportion!of!pink!quartz!excavated!from!the!soil!
and!extracted!from!a!breccia!layer!in!the!crater!strewn!field!of!the!Chiemgau!meteorite!
impact!suggest!that!normally!colorless!quartz!sand!was!irradiated!during!the!impact!
event!and!may!possibly!be!found!at!other!impact!sites.!
!
Key+words:!Pink!and!rose!quartz,!Chiemgau!meteorite!impact,!neutron-gamma!radiation!!
!
****************************************************************************************!
*Faculty!of!Philosophy!I,!University!of!Würzburg,!Germany,!kernstson@ernstson.de!
!
!
!
!
!
1!Introduction!
!
Colors!from!ionizing!radiation!is!an!effect!that!occurs!in!many!minerals!as!a!result!of!
natural!and!artificial!exposure.!Well!known!colored!quartz!transparent!crystal!varieties!
are!amethyst,!citrine!and!smoky!quartz.!
!
Pink!quartz!crystals!were!first!discovered!in!the!1930's!in!Maine,!USA,!and!later!in!1959!
in!Minas!Gerais!in!Brazil!(Dake,!et!al.!1938,!Akhavan!2005-2013).!In!both!cases!the!pink!
quartz!was!considered!as!common!rose!quartz!that!formed!crystals.!Only!recently!pink!
quartz!crystals!have!been!found!also!in!the!Himalayan!Mountains,!and!pink!quartz!in!
general!!goes!round!in!esoteric!circles!as!so-called!"healing!stones".!
!
!
2!
This!"crystalline!rose!quartz"!raised!the!interest!of!mineralogists!who!found!distinct!
differences!between!pink!quartz!and!common!rose!quartz,!which!is!now!generally!
accepted!(Balitsky!et!al.!1998,!Hori!2001,!Maschmeyer!and!Lehmann!1983,!Rykart!
1995).!In!their!opinion!the!pink!quartz!forms!in!phosphorous-rich!pegmatites!where!
few!silicon!is!replaced!by!phosphorous!and!aluminum,!and!the!color!is!the!result!of!
gamma!ray!radiation!from!uranium,!thorium!and!potassium-40!decay!in!the!rock,!which!
may!affect!existing!trapped-hole!centers.!Exposure!to!sunlight!(UV)!and!heating!above!
200°C!leads!to!discoloration.!
!
Here!I!report!on!the!discovery!of!quartz!sands!composed!of!a!dominating!fraction!of!
pink!quartz!grains!that!are!suggested!to!be!related!with!the!meanwhile!established!
Chiemgau!meteorite!impact!in!Bavaria,!Southeast!Germany.!!
!
!
!
2!!The!Chiemgau!impact!event!
!
The!Chiemgau!impact!strewn'field'(Schüssler'et'al.'2005;'Rappenglück'et'al.'2009;'
Ernstson!et!al.!2010,!2012;!B.!Rappenglück!et!al.!2010;!Liritzis!et!al.!2010;!Hiltl!et!al.!
2011)!discovered!in!the!early!new!millennium!and!dated!to!the!Bronze!Age/Celtic!era!
comprises!about!100!rimmed!craters!scattered!in!a!region!of!about!60!km!length!and!ca.!
30!km!width!in!the!very!South-East!of!Germany!(Fig.!1).!The!crater!diameters!range!
between!a!few!meters!and!a!few!hundred!meters,!among!them!Lake!Tüttensee!with!a!
rim-to-rim!diameter!of!about!600!m!and!an!extensive!ejecta!blanket.!SONAR!echo-
sounder!measurements!show!a!striking!structure!at!the!bottom!of!Lake!Chiemsee,!which!
is!completely!untypical!for!the!bottom!of!an!ice-age!lake.!The!structure!measuring!about!
800!m!x!400!m!is!a!doublet!crater!with!a!ring!wall.!Since!the!crater!strewn!field!extends!
beyond!Lake!Chiemsee,!it!is!plausible!that!fragments!of!the!large!meteorite!have!also!
fallen!into!Lake!Chiemsee!and!created!craters!on!the!ground!(Fig.!1).!The!height!of!the!
resulting!tsunami!could!exceed!several!decameters.!Clear!indications!of!such!a!tsunami!
are!provided!by!diamictites!with!pronounced!block!layers!and!cross!bedding,!as!they!can!
be!found!in!various!gravel!pits!on!the!eastern!side!of!Lake!Chiemsee!(Ernstson!2016).!
!
Geologically,!the!craters!occur!in!Pleistocene!moraine!and!fluvio-glacial!sediments.!The!
craters!and!surrounding!areas!are!featuring!heavy!deformations!of!the!Quaternary!
cobbles!and!boulders,!abundant!fused!rock!material!such!as!impact!melt!rocks!and!
various!glasses,!strong!shock!metamorphism!(planar!deformation!features![PDFs]!in!
quartz!and!feldspar,!diaplectic!glass!from!quartz!and!feldspar),!geophysical!(gravity,!
geomagnetic,!ground!penetrating!radar)!anomalies!(Ernstson!et!al.!2010;!Neumair!and!
Ernstson!2011,!Rappenglück!et!al.!2017)!and!widespread!impact-induced!rock!
liquefaction!features!(Ernstson!et!al.!2011,!Ernstson!and!Neumair!2011,!Ernstson!and!
Poßekel!2017).!Impact!ejecta!deposits!in!a!catastrophic!mixture!contain!polymictic!
breccias,!shocked!rocks,!melt!rocks,!and!artifacts!from!Neolithic!and!Bronze!Age/Iron!
Age!people!The!impact!is!substantiated!by!the!abundant!occurrence!of!metallic,!glass!
!
3!
and!carbonaceous!spherules,!accrecionary!lapilli!and!microtektites!(Ernstson!et!al.!2012,!
2014).!Strange,!probably!meteoritic!matter!in!the!form!of!iron!silicides!like!gupeiite,!
xifengite,!hapkeite,!naquite!and!linzhite,!various!carbides!like,!e.g.,!moissanite!SiC!and!
khamrabaevite!(Ti,V,Fe)C,!and!calcium-aluminum-rich!inclusions!(CAI),!minerals!krotite!
and!dicalcium!dialuminate!(Hiltl!et!al.!2011;!Rappenglück!et!al.!2014)!add!to!the!finds.!
Carbonaceous!spherules!contain!fullerene-like!structures!and!nanodiamonds!that!point!
to!an!impact-related!origin!(Yang!et!al.!2008).$Such$spherules$were$found$embedded$in$
the$fusion$crust$of$cobbles$from$a$crater$as$well$as$a$possible$outfall$in$soils$widespread$
over%Europe%(Rösler%et%al.%2005;%Hoffmann%et%al.%2006;%Yang%et%al.,%2008).%Abundant!finds!
of!glass-like!carbon!fragments!with!pumice!texture,!which!has!been!given!the!name!
chiemite,!contain!the!carbon!allotropes!diamond!and!carbyne!in!a!largely!amorphous!
matrix!of!more!than!90!%!carbon!(Shumilova!et!al.!2018).!A!formation!of!a!direct!
airburst!shock!transformation!of!the!target!vegetation!(wood,!peat)!to!carbon!melt!and!
vapor!in!the!impact!event!is!suggested.!
!
Physical)and)archeological)dating)confines)the)impact)event)to)have)happened)most)
!"#$%$&'($)*+)),(-.-//(%,0(1//(2343(56%!!),7&89:()*(%&3(-/;/<(=>">*?>@()*(%&3(-/;/A3(Bhe!
impactor!is!suggested!to!have!been!a!roughly!1,000!m!sized!low-density!disintegrated,!
loosely!bound!asteroid!or!a!disintegrated!comet!in!order!to!account!for!the!extensive!
strewn!field!(Ernstson!et!al.!2010,!Rappenglück!et!al.!2017).!
!
!
!
!
Fig.!1.!Location!map!for!the!two!pink!quartz!occurrences!within!the!roughly!elliptically!
encircled!Chiemgau!meteorite!impact!strewn!field.!
!
!
!
!
!
!
4!
3!The!pink!quartz!places!of!discovery!
!
The!pink!quartz!sands!were!discovered!when!soil!and!rock!samples!from!interesting!
impact!locations!were!systematically!examined!for!potentially!impact-related!micro-
particles!like!glass,!metallic!and!carbon!spherules.!Experienced!observers!could!not!
overlook!the!concentration!of!so!many!pink!quartz!grains!(Fig.!2),!especially!when!they!
used!a!strong!magnet!to!separate!the!magnetic!fraction!and!found!that!the!pink!quartz!
grains!could!also!be!separated!by!an!obviously!slightly!enhanced!susceptibility!of!the!
basically!diamagnetic!quartz.!
!
The!first!sample!was!excavated!near!the!village!of!Marwang!north!of!the!Lake!Tüttensee!
crater!(Fig.!1)!during!a!campaign!of!recording!magnetic!susceptibility!profiles!of!the!
upper!50!cm!to!!map!a!known!distinct!peak!of!enhanced!magnetic!susceptibility!(Fig.!3),!
which!was!first!measured!in!the!northern!part!of!the!impact!strewn!ellipse!(Hoffmann!et!
al.!2004).!The!Marwang!magnetic!peak!is!connected!to!a!horizon!enriched!with!fractured!
pebbles,!cindery!glass!and!carbonaceous!spherules,!which!is!considered!to!represent!the!
original!directly!impact-affected!Earth!surface.!Here,!an!accumulation!of!pink!quartz!
grains!attracted!attention.!
!
!
!
!
!
Fig.!2.!Typical!magnetic!sand!fraction!with!an!enrichment!of!pink!quartz!grains.!The!dark!
fraction!is!mostly!composed!of!ore!and!amphibolite.!Field!of!view!4!mm.!
!
5!
!
!
!
Fig.!3.!Soil!magnetic!susceptibility!profile!with!the!suggested!impact!peak!and!sampling!of!
the!pink!quartz!grains.!
!
The second sample comes from the diamictic layer found during the Stöttham archeological
excavation a few hundred meters apart from the shoreline of Lake Chiemsee (Fig. 1). The
several decimeters thick diamictite (Fig. 4) is embedded in colluvium layers and contains
brecciated and heavily corroded clasts, abundant organic material like wood, charcoal,
fractured animal bones and teeth, and intermixed archeological artifacts. High-temperature
signature is characterized by partly melted silica limestone, a typical rock from the Alps, and
sandstone clasts with sporadically interspersed glass. Moderate shock is indicated by an
abundant and strong kink banding of micas in gneiss clasts from the diamictite, and most
recently the author has established strong shock metamorphism in quartz in polymictic
breccias from the horizon. Millimeter-sized glass and tiny carbonaceous spherules were
extracted from the diamictite mud, the pink quartz grains being an important side effect. The
outcrop has in detail been described in Ernstson et al. (2012), and there is no doubt about the
connection with the Chiemgau impact event. The early description as a tsunami deposit (D.
Sudhaus, pers. report) has meanwhile received full support (Ernstson 2016).
!
!
6!
!
!
Fig.!4.!The!Stöttham!impact!catastrophic!layer!hosting!pink!quartz!grains.!
!
!
4!Formation!hypothesis!!
!
The!hypothesis!of!the!formation!of!pink!quartz!in!the!Chiemgau!impact!strewn!field!is!
based!on!the!original!explanation!of!pink!coloration!by!gamma!irradiation!in!pegmatites,!
in!which!little!quartz!silicon!was!substituted!by!phosphorous!and!aluminum!(see!1!
Introduction).!The!following!sequence!of!processes!could!have!taken!place!in!the!
Chiemgau!impact!event!(Fig.!5):!A!huge!plasma!cloud!in!the!airburst!of!the!comet!or!
asteroid!approaches!the!Earth.!-!Fast!neutrons!from!the!plasma!bombard!the!Earth's!
surface!and!hit!exposed!water-bearing!quartz!sands.!-!!The!fast!neutrons!are!captured!by!
collision!with!hydrogen!nuclei!and!lose!most!of!their!energy!due!to!the!same!mass,!to!
become!slow!or!thermal!neutrons.!-!The!capture!process!is!accompanied!by!the!emission!
of!a!strong!gamma!radiation.!-!The!gamma!radiation!hits!mineralogically!"well!
prepared"!quartz!grains!to!now!obtain!their!pink!color.!-!Immediate!post-impact!
sedimentation!by!probably!enormous!precipitations!prevents!exposure!to!sunlight!and!
discoloration.!!
!
So!much!for!a!physical!scenario!of!a!possible!formation!of!the!pink!quartz!grains!in!the!
Chiemgau!impact!strewn!field,!the!significance!of!which!is!discussed!below.!
!
7!
!
!
!
Fig.!5.!Model!of!pink!quartz!formation!in!the!Chiemgau!meteorite!impact!event.!See!text.!
!
!
!
5!Discussion!and!Conclusions!
!
The!following!observations!are!fulfilled:!In!the!Chiemgau!impact!crater!strewn!field!
quartz!sands!were!excavated!that!contain!a!certain!amount!of!pink!quartz.!The!grains!
are!as!clear!as!rock!crystal!quartz.!The!pink!grains!are!slightly!enhanced!paramagnetic,!
as!they!can!be!separated!from!normal!grains!with!a!strong!magnet.!This!property!has!
not!yet!been!reported!for!other!pink!quartz.!Originally!surprising!for!the!author,!but!
now!understood!was!the!observation!that!the!pink!color!disappeared!after!the!grains!
were!exposed!to!daylight!for!some!time,!which!has!also!been!reported!for!other!pink!
quartz!(see!1!Introduction).!!
!
8!
!
A!chemical!analysis!of!the!pink!quartz!grains!by!e.g.!SEM!EDS!has!not!been!done!so!far!
and!will!be!performed!when!new!samples!are!available.!The!general!context!with!earlier!
discovered!pink!quartz!(see!above)!is!given,!taking!into!account!the!delivery!area!for!the!
quartz!sands!that!are!the!nearby!Alpine!mountains!where!quartz!pegmatites!and!
phosphorous!mineralization!are!common.!Direct!observations!of!pink!quartz!in!the!Alps!
are!unknown,!and!in!view!of!the!herds!of!mineral!collectors,!the!discovery!of!this!rare!
variety!would!have!been!reported.!On!the!other!hand,!it!cannot!be!ruled!out!that!other!
rare!chemical!elements!that!replace!silicon!may!also!be!susceptible!to!irradiation!pink!
coloring,!which!must!be!checked.!This!also!applies!to!the!slightly!enhanced!magnetic!
susceptibility!of!the!Chiemgau!pink!quartz,!and!a!superparamagnetic!behavior!of!the!in!
principle!diamagnetic!quartz!cannot!be!excluded.!!
!
This!reminds!of!an!unusual!observation!in!the!Chiemgau!impact!strewn!field,!namely!the!
occurrence!of!strongly!magnetized!Quaternary!limestone!cobbles!and!boulders!from!the!
Alps,!which!were!excavated,!for!example,!from!the!smaller!Kaltenbach!and!
Mauerkirchen!impact!craters!showing!much!evidence!of!impact!overprint!(Neumair!and!
Ernstson!2011,!Procházka!and!Trojek!2017.!Moreover,!the!limestones,!which!are!
normally!magnetic!sterile,!have!demonstrably!acquired!considerable!ferrimagnetism!
and!associated!superparamagnetism!(Neumair!and!Ernstson!2011,!!Procházka!and!
Kletetschka!2016).!As!the!limestone!cobbles!and!boulders!are!completely!untouched!at!
the!outside,!shock!magnetization!is!considered.!It!can!currently!be!speculated!whether!
superparamagnetism!was!shock-generated!not!only!in!the!otherwise!"nonmagnetic"!
limestones,!but!also!in!the!pink!quartz!grains!with!a!slightly!different!chemistry!than!
"normal"!quartz.!!
!
This!does!not!affect!the!irradiation!hypothesis!for!the!pink!coloring!as!related!to!an!
impact!!neutron!bombardment!of!water-bearing!quartz!sands!and!a!secondary!gamma!
radiation!(Fig.!5)!postulated!for!the!other!pink!quartz!occurrences.!!
!
A!heavy!neutron!bombardment!during!the!Chiemgau!impact!event!has!been!discussed!
by!us!earlier!when!several!radiocarbon!(14C)!ages!for!deep-seated!(2!-!3!m)!organic!
matter!(bones,!wood)!in!impact!catastrophe!layers!(Lake!Tüttensee!ejecta!layer;!
Ernstson!et!al.!2010)!gave!far!too!high!14C!values!corresponding!to!impossible!medieval!
and!even!today's!ages.!Inconclusive!radiocarbon!ages!are!not!unknown!for!dating!of!
young!impacts!(e.g.,!Rasmussen!et!al.!2000).!In!our!case!an!impact!plasma!neutron!
bombardment!could!have!initiated!what!normally!happens!in!the!atmosphere!to!
produce!the!more!or!less!constant!14C!level!as!the!known!basis!for!the!radiocarbon!
dating.!In!the!atmosphere,!spallation!neutrons!collide!with!nitrogen!14N!nuclei,!which!
leads!to!a!nuclear!reaction!and!production!of!the!radioactive!14C.!Neutrons!that!
bombard!the!Earth's!surface!in!an!impact!event!could!collide!with!14N!isotopes!in!
organic!matter,!and!the!same!reaction!as!in!the!atmosphere!could!occur,!which!produces!
excess!14C!and!today's!too!young!ages.!!
!
!
9!
In!conclusion:!There!is!much!evidence!from!earlier!investigations!in!the!Chiemgau!
impact!strewn!field!that!huge!airbursts!could!have!played!a!major!role!(Ernstson!et!al!
2010,!!Rappenglück!et!al.!2017,!Shumilova!et!al.!2018).!Plasma!formation!has!inevitably!
bombarded!the!earth's!surface!with!strong!neutron!showers.!Fast!neutron!collisions!
with!hydrogen!nuclei!from!water-bearing!quartz!sands!produced!the!gamma!radiation!
for!pink!quartz!coloring,!which!is!considered!to!be!the!cause!for!the!previously!known!
sites!of!pink!quartz.!
!
The!next!steps!in!the!investigation!of!the!Chiemgau!pink!quartz!will!be!reported!in!an!
article's!Part!2.!A!systematic!search!for!more!occurrences!is!planned!and,!with!a!positive!
result,!a!documentation!of!their!distribution!in!relation!to!other!impact!features!in!the!
crater!strewn!field!and!possibly!at!places!definitely!outside!the!crater!field.!Pink!quartz!
grain!sizes!will!be!measured,!whereby!a!preferred!sorting!is!checked.!SEM!EDS!analyses!
for!phosphorous,!aluminum!or!other!elements!will!be!performed.!A!test!of!magnetic!
behavior!and!rock-magnetic!properties,!e.g.!for!superparamagnetism,!are!planned.!A!
controlled!observation!of!a!possible!discoloring!in!daylight!may!follow.!
!
If!these!or!other!data!are!available,!it!may!be!possible!to!confirm!or!question!the!impact!
neutron-gamma!radiation!hypothesis,!and!a!search!for!pink!quartz!in!other!impact!
structures!may!be!promising.!!
!
References!
!
! Akhavan,!A.C.!!http://www.quartzpage.de/pink.html!©!2005-2013!(accessed!July!
31,!2018).! !
! Balitsky,!V.S.,!Makhina,!I.B.,!Prygov,!V.I.,!Mar'in,!A.A.,!Emel'henko,!A.G.,!Fritsch,!E.,!
McClure,!S.F.,!Taijing,!L.,!DeGhionno,!D.,!Koivula,!J.I.,!Shigley,!J.E.!(1998).!Russian!
Synthetic!Pink!Quartz.!Gems!and!Gemology:!34:!34-43.! !
!Bauer,'F.,'Hiltl,'M.,'Rappenglück,'M.A.,'Neumair,'A.,'&'Ernstson,'K.'(2013).'Fe2Si'
(Hapkeite)!from!the!subsoil!in!the!alpine!foreland!(Southeast!Germany):!Is!it!associated!
with!an!impact?!Meteoritics!&!Planetary!Science,!48!(S1)!(76th!Annual!Meeting!of!the!
Meteoritical!Society),!Abstract!#5056.!!
!Dake,!H.C.,!Fleener,!F.L.,!Wilson,!B.H.!(1938).!Quartz!Family!Minerals:!A!Handbook!
for!the!Mineral!Collector,!304!p.,!Whittlesey!House,!McGraw-Hill!Book!Company.!
! Ernstson,!K.!(2016).!Evidence!of!a!meteorite!impact-induced!tsunami!in!lake!
Chiemsee!(Southeast!Germany)!strengthened.!47th!Lunar!and!Planetary!Science!
Conference,!Abstract!#1263.!!
!Ernstson,(K.,(Mayer,(W.,(Neumair,(A.,(Rappenglück,(B.,(Rappenglück,)M.A.,)
Sudhaus,!D.,!&!Zeller,!K.!(2010).!The!Chiemgau!crater!strewn!field:!Evidence!of!a!
Holocene!large!impact!event!in!Southeast!Bavaria,!Germany.!Journal!of!Siberian!Federal!
University!Engineering!&!Technologies,!1/3,!72103.!
!Ernstson,!K.,!Mayer,!W.,!Neumair,!A.,!&!Sudhaus,!D.!(2011).!The!sinkhole!enigma!
in!the!Alpine!Foreland,!Southeast!Germany:!Evidence!of!impact-induced!rock!
liquefaction!processes.!Central!European!Journal!of!Geosciences,!3/4,!385397.!
!
10!
!Ernstson,!K.,!Sideris,!C.,!Liritzis,!I.,"&"Neumair,"A."(2012)."The"Chiemgau"meteorite"
impact'signature'of'the'Stöttham'archaeological'site'(Southeast'Germany).'
Mediterranean!Archaeology!and!Archaeometry,!12/2,!249–259.!
!Ernstson,(K.,(Shumilova,(T.(G.,(Isaenko,(S.(I.,(Neumair,(A.,(&(Rappenglück,!M.!A.!
(2013).!From!biomass!to!glassy!carbon!and!carbynes:!Evidence!of!possible!meteorite!
impact!shock!coalification!and!car-!bonization.!Modern!problems!of!theoretical,!
experimental!and!applied!mineralogy!(Yushkin!Memorial!Seminar–2013):!Proceedings!
of!mineralogical!seminar!with!international!participation!(S.!369–371).!Syktyvkar:!IG!
Komi!SC!UB!RAS.!
! Ernstson,!K.,!Hiltl,!M.,!&!Neumair,!A.!(2014).!Microtektite-like!glasses!from!the!
Northern!Calcareous!Alps!(Southeast!Germany):!Evidence!of!a!proximal!impact!ejecta!
origin.!45th!Lunar!and!Planetary!Science!Conference,!Abstract!#1200.!!
! Ernstson,!K.!&!Neumair,!A.!(2011),!Geoelectric!Complex!Resistivity!Measurements!
of!Soil!Liquefaction!Features!in!Quaternary!Sediments!of!the!Alpine!Foreland,!Germany,!
Abstract!NS23A-1555!presented!at!2011!Fall!Meeting,!AGU,!San!Francisco,!Calif.,!5-9!
Dec.!
! Ernstson,!K.,!&!Poßekel,!J.!(2017).!Meteorite!impact!„earthquake“!features!(Rock!
liquefaction,!surface!wave!deformations,!seismites)!from!ground!penetrating!radar!
(GPR)!and!geoelectric!complex!resistivity/induced!polarization!(IP)!measurements,!
Chiemgau!(Alpine!Foreland,!Southeast!Germany).!Abstract!(EP53B-1700)!presented!at!
2017!Fall!Meeting,!AGU,!New!Orleans,!LA.!
! Hiltl,!M.,!Bauer,!F.,!Ernstson,!K.,!Mayer,!W.,!Neumair,!A.,!&!!"##$%&'()*+,-./.,
(2011).!SEM!and!TEM!analyses!of!minerals!xifengite,!gupeiite,!Fe2Si!(hapkeite?),!
titanium!Carbide!(TiC)!and!cubic!moissanite!(SiC)!from!the!subsoil!in!the!Alpine!
Foreland:!Are!they!cosmochemical?!42nd!Lunar!and!Planetary!Science!Conference,!
Abstract!#1391.!
! Hoffmann,!V.,!Rösler,!W.,!and!Schibler,!I.,!(2004).!Anomalous!magnetic!signature!
of!top!soils!in!Burghausen!area,!SE!Germany.!Geophysical!Research!Abstracts,!6:!05041.!
! Hoffmann,!V.,!Tori,!M.,!Funaki,!M.!(2006).!Peculiar!magnetic!signature*of*Fe-
Silicide'phases'and'dia-!mond/fullerene+containing+carbon+spherules.+Travaux+
Géophysiques,XXVII,-!Abstracts!of!the!10th!„Castle!Meeting“!–!New!Trends!in!
Geomagnetism,!Paleo,!Rock!and!Environmental!Magnetism,!52–53.!
!Hori,!H.!(2001).!Nomenclature!of!Quartz!Color!Variation:!Pink!and!Rose.!
Mineralogical!Record:!32(1).!
!Isaenko,)S.)I.,)Shumilova,)T.)G.,)Ernstson,)K.,)Shevchuk,)S.,)Neumair,)A.,)&)
!"##$%&'()*+,-.,/01203.,4"rbynes!and!DLC!in!naturally!occurring!carbon!matter!from!
the!Alpine!Foreland,!South-East!Germany:!Evidence!of!a!probable!new!impactite.!
European!Mineralogical!Conference,!1,!EMC!2012217.!!
!Liritzis,(I.,(Zacharias,(N.,(Polymeris,(G.S.,(Kitis,(G.,(Ernstson,(K.,(Sudhaus,(D.,(
Neumair,)A.,)Mayer,)W.,)Rappenglück,)M.A.,)&)Rappenglück,!B.!(2010).!The!Chiemgau!
meteorite!impact!and!tsunami!event!(Southeast!Germany):!First!osl!dating.!
Mediterranean!Archaeology!and!Archaeometry!10/4,!17–33.!
! Maschmeyer,!G.!Lehmann!(1983).!A!trapped-hole!center!causing!rose!coloration!
of!natural!quartz.!Zeitschrift!für!Kristallographie,!163,!181-196.!
!
11!
! Neumair,!A.!&!Ernstson,!K.!(2011),!Geomagnetic!and!morphological!signature!of!
small!crateriform!structures!in!the!Alpine!Foreland,!Southeast!Germany,!Abstract!
GP11A-1023!presented!at!2011!Fall!Meeting,!AGU,!San!Francisco,!Calif.,!5-9!Dec.!
!Procházka,!V.,!&!Trojek,!T.!(2017).!XRF-!and!EMP-!investigation!of!glass!coatings!
and!melted!domains!of!pebbles!from!craters!in!Chiemgau,!Germany.!48th!Lunar!and!
Planetary!Science!Conference,!Abstract!#2401.!!
!Procházka,!V.!&!Kletetschk,!G.!(2016).!Evidence!for!superaparamagnetic!
nanoparticles!in!limestones!from!Chiemgau!crater!field,!SE!Germany.!47th!Lunar!and!
Planetary!Science!Conference!(2016);!Abstract!#2763.pdf.!
!!"##$%&'()*+,-.+,!"##$%&'()*+,/.+,01%2324%+,5.+,/"6$1+,W.,!Neumair,!A.,!Sudhaus,!
D.,!&!Liritzis,!I.!(2010).!The!fall!of!Phaeton:!a!Greco-Roman!geomyth!preserves!the!
memory!of!a!meteorite!impact!in!Bavaria!(south-east!Germany).!Antiquity,!84,!428–439.!
!!"##$%&'()*+,-.+,/)0(11'$2+,3.+,-"4$2+,5.+,6,72%1819%.,:.!(2005).!Sind!die!
Eisensilizide!aus!dem!Impakt-Kraterstreufeld!im!Chiemgau!kosmisch?!European!Journal!
of!Mineralogy,!17(1),!108.!
!!"##$%&'()*+,-.,/.+,0"1$2+,3.+,45'6'+,-+,7$18"52+,/.+,9,:.,;2%<6<=%+,:.,>?@ABC.,
Calcium-aluminium-rich!inclusions!in!iron!silicide!(xifengite,!gupeiite,!hapkeite)!matter:!
Evidence!of!a!cosmic!origin.!Meteoritics!&!Planetary!Science,!48(S1),!(76th!Annual!
Meeting!of!the!Meteoritical!Society),!Abstract!#5055.!!
!!"##$%&'()*+,-.,/.+,0"1$2+,3.+,42%5657%+,8.+,9,:;'6'+,-.,<=>?@A.,-$6$7rite!impact!on!
a!micrometer!scale:!Iron!silicide,!carbide!and!CAI!minerals!from!the!Chiemgau!impact!
event!(Germany).!Proceedings!of!Problems!and!Perspectives!of!Modern!Mineralogy!
(Yushkin!Memorial!Seminar!–!2014),!Syktyvkar,!106107.!
! Rappenglück,!M.A,.,!Rappenglück,!B.!&!Ernstson.!K.!!(2017).!Kosmische)Kollision)
in#der#Frühgeschichte.!Der!Chiemgau-Impakt:!Die!Erforschung!eines!bayerischen!
Meteoritenkrater-Streufelds.!Zeitschrift!für!Anomalistik,!17,!235-260.!
! Rasmussen,!K.L.,!AAby,!B.,!Gwozdz,!R.!(2000).!The!age!of!the!Kaalijärvi!meteorite!
craters.!Meteoritics!&!Planetary!Science,!35,!1067-1071.!
!!"#$%&'()*'(+,--./00'(1*'(!/%2./%3%&#'(4*'(567&28%&#'(9*'(:(;,<<'(=*(>?@05).!Carbon!
spherules!with!diamonds!in!soils.!Paneth!Kolloquium,!Abstract!PC2005!#026.!!
!Rykart,!R.!(1995).!Quarz-Monographie!-!Die!Eigenheiten!von!Bergkristall,!
Rauchquarz,!Amethyst,!Chalcedon,!Achat,!Opal!und!anderen!Varietäten.!413!p.,!Ott,!
Thun.!
! Schryvers,!D.,!&!Raeymaekers,!B.!(2005).!EM!characterisation!of!a!potential!
meteorite!sample.!Proceedings!of!EMC,!Antwerp,!vol.!II,!859–860.!
!Schüssler,*U.,*Rappenglück,*M.*A.,*Ernstson,*K.,*Mayer,*W.,*Rappenglück,*B.*(2005).!
Das!Impakt-Kraterstreufeld!im!Chiemgau.!European!Journal!of!Mineralogy,!17(1),!124.!
! Shumilova,!T.G.,!Isaenko,!S.I.,!Makeev,'B.A.,'Ernstson,'K.,'Neumair,'A.,'&'
!"##$%&'()*+,-./.,012314.,5%6&7"86),#99:';,<8:=)8=:$>,)":?9%,<=?<8"%)$<,@:97,8A$,
Alpine!Foreland,!Southeast!Germany:!Evidence!of!a!cosmic!relation.!43rd!Lunar!and!
Planetary!Science!Conference,!Abstract!&!Poster!#1430.!!
! Shumilova,!T.G.,!Isaenko,!S.I,!Ulyashev,!V.V.,!Makeev,!B.A.,!Rappenglück,!M.A.,!
Veligzhanin,!A.A.,!&!Ernstson,!K.!(2018).!Enigmatic!glass-like!carbon!from!the!Alpine!
!
12!
Foreland!(Southeast!Germany):!Formation!by!a!natural!carbonization!process.!Acta!
Geologica!Sinica!-!English!Edition,!in!press.!
!!"#$%&'(&)(%&*+,-++./%&0(%&1.2,34+,5%&6(%&7",.+"%&8(%&9:;;%&0(%&<&=>5?+,%&@.!(2008).!
TEM!and!Raman!characterisation!of!diamond!micro-!and!nanostructures!in!carbon!
spherules!from!upper!soils.!Diamond!&!Related!Materials,!17,!937943.!
!
!
... The existing evidence supports their formation during nuclear detonations and hypervelocity impact events. In addition, Ernstson et al. [26,34,36,37,76,81,82], Moore et al. [83], Demitroff et al. [84], and Mahaney et al. [85] have reported shock-metamorphosed quartz in multiple proposed airbursts during the Cenozoic. ...
Article
Full-text available
Many studies of hypervelocity impact craters have described the characteristics of quartz grains shock-metamorphosed at high pressures of >10 GPa. In contrast, few studies have investigated shock metamorphism at lower shock pressures. In this study, we test the hypothesis that low-pressure shock metamorphism occurs in near-surface nuclear airbursts and that this process shares essential characteristics with crater-forming impact events. To investigate low-grade shock microstructures, we compared quartz grains from Meteor Crater, a 1.2-km-wide impact crater, to those from near-surface nuclear airbursts at the Alamogordo Bombing Range, New Mexico in 1945 and Kazakhstan in 1949/1953. This investigation utilized a comprehensive analytical suite of high-resolution techniques, including transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). Meteor Crater and the nuclear test sites all exhibit quartz grains with closely spaced, sub-micron-wide fractures that appear to have formed at low shock pressures. Significantly, these micro-fractures are closely associated with Dauphiné twins and are filled with amorphous silica (glass), widely considered a classic indicator of shock metamorphism. Thus, this study confirms that glass-filled shock fractures in quartz form during near-surface nuclear airbursts, as well as crater-forming impact events, and by extension, it suggests that they may form in any near-surface cosmic airbursts in which the shockwave is coupled to Earth’s surface, as has been proposed. The robust characterization of such events is crucial because of their potential catastrophic effects on the Earth’s environmental and biotic systems.
... The reported compression applied was as low as 0.2 GPa; the maximum compression applied is unclear but appears to have been < 1 GPa. Ernstson et al. [26,34,36,37,76,80,81] have reported extensive low-pressure, glass-filled fracturing in proposed airbursts during the Cenozoic. ...
Preprint
Full-text available
Many studies of hypervelocity impact craters have described the characteristics of quartz grains shock-metamorphosed at high pressures of > 10 GPa. In contrast, few studies have investigated shock metamorphism at lower shock pressures. In this study, we test the hypothesis that low-pressure shock metamorphism occurs in near-surface nuclear airbursts and that this process shares essential characteristics with crater-forming impact events. To investigate low-grade shock microstructures, we compared quartz grains from Meteor Crater, a 1.2-km-wide impact crater, to those from near-surface nuclear airbursts at the Alamogordo Bombing Range, New Mexico in 1945 and Kazakhstan in 1949/1953. This investigation utilized a comprehensive analytical suite of high-resolution techniques, including transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). Meteor Crater and the nuclear test sites all exhibit quartz grains with closely-spaced, sub-micron-wide fractures that appear to have formed at low shock pressures. Significantly, these micro-fractures are closely associated with Dauphiné twins and are filled with amorphous silica (glass), widely considered a classic indicator of shock metamorphism. Thus, this study confirms that glass-filled shock fractures in quartz form during near-surface nuclear airbursts, as well as crater-forming impact events, and by extension, it suggests that they may form in any near-surface cosmic airbursts in which the shockwave is coupled to Earth’s surface. The robust characterization of such events is crucial because of their potential catastrophic effects on the Earth’s environmental and biotic systems.
Article
Full-text available
Transparent crystals of facet-grade synthetic pink quartz, produced by hydrothermal growth from a fluoride solution and subsequent treatment, have been commercially available since 1994. The characteristic properties that distinguish this material from its natural counterpart are a tabular crystal morphology with two large, well-developed basal faces; color bands parallel to the basal faces and the seed plate; two-phase inclusions adjacent and perpendicular to the seed plate; and an intense broad band around 3420 cm -1 in the infrared spectrum. Color stability and cause of color in synthetic pink quartz are briefly discussed.
Article
Full-text available
Carbynes and DLC in naturally occurring carbon matter from the Alpine Foreland, South-East Germany: Evidence of a probable new impactite S. Isaenko (1), T. Shumilova (1), K. Ernstson (2), S. Shevchuk (1), A. Neumair (3), and M. Rappenglück (3) (1) Institute of Geology Komi SC UB RAS, Syktyvkar, Russian Federation (shumilova@geo.komisc.ru), (2) Faculty of Philosophy, University of Würzburg, Würzburg, Germany (kernstson@ernstson.de), (3) Institute for Interdisciplinary Studies, Gilching, Germany (mr@infis.org) Unusual carbonaceous matter (UCM) in the form of mostly centimeter-sized lumps and cobbles has been sampled in the southeast Bavarian Alpine Foreland. It is a highly porous blackish material with a glassy luster on freshly crushed surfaces. In some cases aerodynamically shaped cobbles like volcanic bombs were sampled. The material is unknown from any industrial or other anthropogenic processes and thus appears to have a natural origin, which is underlined by findings on a small island in the large Lake Chiemsee and at some altitude in the pre-Alps mountains. Here we report a detailed analysis of this strange matter by a complex of high resolu-tion Raman spectroscopy, X-Ray diffraction, electron scanning and atomic force microscopy, transmission electron microscopy and differential thermal analysis. We have found that the carbon matter is presented by the association of different carbon phases. The matrix is consisting of fully amorphous black glass-like carbon with a porous struc-ture and almost pure carbon content with traces of O, S, Si, Al. Inside of the matter monocrystal-line carbyne and amorphous diamond-like carbon (DLC) inclusions are found. The first is pre-sented by flattened particles of a-carbyne (predominantly) and in a single case by cooriented in-tergrowths of a- and b-carbyne modifications (Shumilova et al., 2012). The DLC is characterized by optically transparent particles of generally flattened irregular shape and rare bulk particles sometimes of trigonal form and octahedrons. The typical DLC Raman spectrum is decomposed into three general wide bands – around 1400-1500, 1325-1370 and 1580-1600 cm-1 and two bands at down-shoulder side – around 1070-1090 and 1200-1250 cm-1. Among known carbon substances there are no exactly equal spectra. However, the listed Raman features could be interpreted as sp2-3 glass-like carbon containing some quantity of DLC, while the wide bands 1325-1370 and 1580-1600 cm-1 are rather expected to correspond to D and G Raman bands of carbon materials. The other features should be attributed to the presence of amorphous carbon with high content of tetrahedral carbon bonds (Ferrari & Robertson, 2004; Wei & Sankar, 2000; Robertson, 2002; Osswald et al., 2009). Following Xu-Li et al. (2009), the analyzed optically transparent amorphous inclusions are pre-sented by DLC formed under high temperature. The observed carbon phases association and carbon state diagram are pointing to a process of very high pressures and temperatures to produce the UCM. We suggest the material to be a new impactite that was probably formed in the shock event of the proposed Chiemgau impact (Ernstson et al., 2010) with the formation of a large crater strewn field only a few thousand years ago.
Article
Full-text available
A more exact dating of the Chiemgau meteorite impact in Bavaria, southeast Germany, that produced a large strewn field of more than 80 craters sized between a few meters and several hundred meters, may provide the indispensable fundament for evaluating its cultural implications and thus enable an extraordinary case study. A straightforward answer has not yet been provided due to e.g. scarce existence of diagnostic material, lack of specialised micromorphologists, absence of absolute dating data etc. Here we report on a first OSL dating applied to a catastrophic impact layer that features both impact ejecta and tsunami characteristics attributed to proposed falls of projectiles into Lake Chiemsee in the impact event. The OSL dating was conducted on a quartzite cobble and four sediment samples collected from an excavated archaeological stratigraphy at Lake Chiemsee that comprised also the impact layer. In a first approach the analyses were based on the assumption of zero luminescence resetting clock from the induced impact shock for the quartzite cobble, and a solar bleaching of tsunamigenerated sediments. Optically Stimulated Luminescence (OSL) was applied using the Single Aliquot Regeneration (SAR) protocol and relevant reliability criteria. For sediments the beta-TL method was also applied. Reported ages fall around the beginning of 2nd millennium BC. Special attention is given to the peculiar situation of OSL dating of material that may have been exposed to impact shock of strongly varying intensity, to excavation, ejection and ejecta emplacement, the latter overprinted by and mixed with tsunami transport processes resulting in possibly very complex bleaching scenarios largely differing from the original assumptions.
Article
Abstract— Precise radiometric age determination of the Kaalijärv meteorite craters on the island of Saaremaa in Estonia have so far proved inconclusive. Here we present trace element analyses of peat cores taken several kilometers away from the Kaalijärv craters that reveal a distinct Ir-enriched layer produced by the meteorite impact. By radiocarbon dating the peat cores, we have determined for the first time the precise age of the impact that generated the Kaalijärv craters. The calibrated date of the impact is 400–370 B.C. at ± 1σ.
  • K Ernstson
  • C Sideris
  • I Liritzis
  • A Neumair
Ernstson, K., Sideris, C., Liritzis, I., & Neumair, A. (2012). The Chiemgau2017 Fall Meeting, AGU, New Orleans, LA.
Nomenclature of Quartz Color Variation: Pink and Rose
  • H Hori
Hori, H. (2001). Nomenclature of Quartz Color Variation: Pink and Rose.
Meteorite impact on a micrometer scale: Iron silicide, carbide and CAI minerals from the Chiemgau impact event (Germany)
  • M A Bauer
  • F Ernstson
  • K Hiltl
Calcium-aluminium-rich inclusions in iron silicide (xifengite, gupeiite, hapkeite) matter: Evidence of a cosmic origin. Meteoritics & Planetary Science, 48(S1), (76th Annual Meeting of the Meteoritical Society), Abstract #5055. Rappenglück, M. A., Bauer, F., Ernstson, K., & Hiltl, M. (2014). Meteorite impact on a micrometer scale: Iron silicide, carbide and CAI minerals from the Chiemgau impact event (Germany). Proceedings of Problems and Perspectives of Modern Mineralogy (Yushkin Memorial Seminar-2014), Syktyvkar, 106-107. Rappenglück, M.A,., Rappenglück, B. & Ernstson. K. (2017). Kosmische Kollision in der Frühgeschichte. Der Chiemgau-Impakt: Die Erforschung eines bayerischen Meteoritenkrater-Streufelds. Zeitschrift für Anomalistik, 17, 235-260.