Effect of ascorbic acid rich, micro-nutrient fortified supplement on the iron bioavailability of ferric pyrophosphate from a milk based beverage in Indian school children

To read the full-text of this research, you can request a copy directly from the author.


Background and Objectives: Nutritional anemia is a significant public health issue with 50-80% prevalence in Indian children. Fortification of food, specifically milk, with iron is a potential approach to increase dietary iron intake. Ferric pyrophosphate [Fe4(P2O7)3] is organoleptically neutral and is less soluble in acid medium and, further, has low ioavailability in milk. However, since ascorbic acid is a potent enhancer of iron absorption, the coadministration of ascorbic acid with Fe4(P2O7)3 might enhance the absorption of iron. We evaluated the effect of ascorbic acid on iron absorption from a Fe4(P2O7)3 and an ascorbic acid fortified milk beverage with respect to milk fortified with Fe4(P2O7)3 alone. Methods and Study Design: A double-blind, two-way crossover, randomized study was conducted in 25 mildly anemic children. The test group received milk fortified with beverage powder containing 7 mg isotopically labeled iron (57Fe/58Fe) as Fe4(P2O7)3, equimolar proportions of ascorbic acid and 200 mg of calcium whereas control group received milk fortified with energy, calcium and iron equivalent beverage powder. Fractional iron absorption was measured by erythrocyte incorporation of stable isotopes of iron (57Fe/58Fe) in both the groups. Results: The fractional iron absorption from the control drink was 0.80% (95% CI: 0.57, 1.12). Fortifying the milk with an equimolar amount of ascorbic acid increased the fractional iron absorption almost 2-fold to 1.58% (95% CI: 1.13, 2.22). Conclusions: The presence of ascorbic acid in an equimolar ratio with that of iron from Fe4(P2O7)3 salt in milk as a fortificant enhanced iron absorption when compared to milk fortified with only Fe4(P2O7)3

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

... Calcium could affect iron absorption by affecting interactions with ligands in the gut lumen and by impairing the uptake of ferrous ion by the divalent metal transporter 1 (DMT1) [12,13]. The first effect would be overcome by AA addition, as shown by studies in milk performed with and without AA [14][15][16]. The second effect would be observed only in single-meal studies [17,18] and would be compensated for over time by physiological adaptation of iron absorption to increased calcium intake, as suggested by reviews [17,19] of long-term studies with dietary [20][21][22][23][24] or supplemental doses of calcium in humans. ...
... An increased iron absorption by a factor of from 2 to 4 from FeSO 4 in milk was reported with the addition of AA (molar ratio 2:1 or 4:1) by Walczyk et al. [16]. Pauline et al. [14] showed that fortified milk with an equimolar amount of AA increased the fractional iron absorption from FePP by almost 2-fold. Therefore, the 1.8-fold increase in iron uptake from FePP in the model would reach a significant difference in humans, but the absorption may remain low when compared with other iron compounds, especially in iron-deficient subjects [56]. ...
Full-text available
A new iron-casein complex (ICC) has been developed for iron (Fe) fortification of dairy matrices. The objective was to assess the impact of ascorbic acid (AA) on its in vitro bioavailability in comparison with ferrous sulfate (FeSO4) and ferric pyrophosphate (FePP). A simulated digestion coupled with the Caco-2 cell culture model was used in parallel with solubility and dissociation tests. Under diluted acidic conditions, the ICC was as soluble as FeSO4, but only part of the iron was found to dissociate from the caseins, indicating that the ICC was an iron chelate. The Caco-2 cell results in milk showed that the addition of AA (2:1 molar ratio) enhanced iron uptake from the ICCs and FeSO4 to a similar level (p = 0.582; p = 0.852) and to a significantly higher level than that from FePP (p < 0.01). This translated into a relative in vitro bioavailability to FeSO4 of 36% for FePP and 114 and 104% for the two ICCs. Similar results were obtained from water. Increasing the AA to iron molar ratio (4:1 molar ratio) had no additional effect on the ICCs and FePP. However, ICC absorption remained similar to that from FeSO4 (p = 0.666; p = 0.113), and was still significantly higher than that from FePP (p < 0.003). Therefore, even though iron from ICC does not fully dissociate under gastric digestion, iron uptake suggested that ICCs are absorbed to a similar amount as FeSO4 in the presence of AA and thus provide an excellent source of iron.
... Ascorbic acid enhances iron absorption in a dose-dependent manner and is thought to exert its enhancing effect by reducing ferric to ferrous iron and by binding iron in a soluble form available for absorption [44]. Depending on the molar ratio of ascorbic acid to iron it can raise iron absorption from iron fortified milk-based food by two-to fourfold [29,44,45]. ...
Full-text available
Purpose A technological gap exists for the iron (Fe) fortification of difficult-to-fortify products, such as wet and acid food products containing polyphenols, with stable and bioavailable Fe. Fe picolinate, a novel food ingredient, was found to be stable over time in this type of matrix. The objective of this study was to measure the Fe bioavailability of Fe picolinate in a complementary fruit yogurt. Methods The bioavailability of Fe picolinate was determined using stable iron isotopes in a double blind, randomized cross-over design in non-anemic Swiss women (n = 19; 25.1 ± 4.6 years). Fractional Fe absorption was measured from Fe picolinate (2.5 mg ⁵⁷Fe per serving in two servings given morning and afternoon) and from Fe sulfate (2.5 mg ⁵⁴Fe per serving in two servings given morning and afternoon) in a fortified dairy complementary food (i.e. yogurt containing fruits). Fe absorption was determined based on erythrocyte incorporation of isotopic labels 14 days after consumption of the last test meal. Results Geometric mean (95% CI) fractional iron absorption from Fe picolinate and Fe sulfate were not significantly different: 5.2% (3.8–7.2%) and 5.3% (3.8–7.3%) (N.S.), respectively. Relative bioavailability of Fe picolinate versus Fe sulfate was 0.99 (0.85–1.15). Conclusion Therefore, Fe picolinate is a promising compound for the fortification of difficult-to-fortify foods, to help meet Fe requirements of infants, young children and women of childbearing age.
ResearchGate has not been able to resolve any references for this publication.