Conference Paper

A negotiation model for cooperation among robots

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Any point in the Voronoi diagram belongs to an intersection of, at least, two circumferences of identical radius. and 2 might just triggered a slowing down mode in robot 1, trying to avoid the more drastic collision avoidance mode (see [Sequeira and Ribeiro, 2001] for a detailed example of a team executing a mission using free behavior and two influence regions per robot). ...
Technical Report
Full-text available
The ability of mobile robots to work as a team in hard and hazardous environments and consequently their widespread use in various industries is a strong incentive for researchers to develop practical algorithm and methods for increasing the performance of mobile robots. The ability of autonomous decision-making for navigation and path planning is the important problem, which has been investigated by researchers to improve the performance of a team of mobile robots in a certain mission. The contribution of this study is classified as follows; In the first stage, we propose a decentralised motion control algorithm for the mobile robots to intercept an intruder entering (k-intercepting) or escaping (e-intercepting) a protected region. In continue, we propose a decentralized navigation strategy (dynamic-intercepting) for a multi-robot team known as predators to intercept the intruders or in the other words, preys, from escaping a siege ring which is created by the predators. A necessary and sufficient condition for the existence of a solution of this problem is obtained. At the second stage, we propose an intelligent game-based decision-making algorithm (IGD) for a fleet of mobile robots to maximize the probability of detection in a bounded region. We prove that the proposed decentralised cooperative and non-cooperative game-based decision-making algorithm enables each robot to make the best decision to choose the shortest path with minimum local information. Third, we propose a leader-follower based collision-free navigation control method for a fleet of mobile robots to traverse an unknown cluttered environment. Fourth, we propose a decentralised navigation algorithm for a team of multi-robot to traverse an area where occupied by multiple obstacles to trap a target. We prove that each individual team 3 member is able to traverse safely in the region, which is cluttered by many obstacles with any shapes to trap the target while using the sensors in some indefinite switching points and not continuously, which leads to saving energy consumption and increasing the battery life of the robots consequently. And finally, we propose a novel navigation strategy for a unicycle mobile robot in a cluttered area with moving obstacles based on virtual field force algorithm. The mathematical proof of the navigation laws and the computer simulations are provided to confirm the validity, robustness, and reliability of the proposed methods. 4
Preprint
Full-text available
In this report, we propose a decentralised motion control algorithm for the mobile robots to intercept an intruder entering (k-intercepting) or escaping (e-intercepting) a protected region. In continuation, we propose a decentralized navigation strategy (dynamic-intercepting) for a multi-robot team known as predators to intercept the intruders or in the other words, preys, from escaping a siege ring which is created by the predators. A necessary and sufficient condition for the existence of a solution of this problem is obtained. Furthermore, we propose an intelligent game-based decision-making algorithm (IGD) for a fleet of mobile robots to maximize the probability of detection in a bounded region. We prove that the proposed decentralised cooperative and non-cooperative game-based decision-making algorithm enables each robot to make the best decision to choose the shortest path with minimum local information. Then we propose a leader-follower based collision-free navigation control method for a fleet of mobile robots to traverse an unknown cluttered environment where is occupied by multiple obstacles to trap a target. We prove that each individual team member is able to traverse safely in the region, which is cluttered by many obstacles with any shapes to trap the target while using the sensors in some indefinite switching points and not continuously, which leads to saving energy consumption and increasing the battery life of the robots consequently. And finally, we propose a novel navigation strategy for a unicycle mobile robot in a cluttered area with moving obstacles based on virtual field force algorithm. The mathematical proof of the navigation laws and the computer simulations are provided to confirm the validity, robustness, and reliability of the proposed methods.
Conference Paper
This paper presents an intelligent game based decision-making algorithm (IGD) for a fleet of mobile robots to maximize the probability of detection in a limited area. The agents have the minimum communication or even no communication result from a jamming attack by a given hostile. Thus, we proved that the proposed diagonal initial formation results in optimal barrier coverage. Based on our decentralized cooperative non-cooperative game based algorithm, each robot can individually make the best decision to choose the shortest path with minimum local information. Therefore, each agent consumes minimum energy result from using less memory in addition to maximizing the probability of detection, which leads to achieving maximum payoff individually, and in the interest of the group.
Conference Paper
This paper presents the problem of the coordination of actions in a multi-agent system. The main difficulty in resolving this problem is the limited information. Each agent is provided only with partial information about the state of the team of agents. This paper presents a hybrid technique that combines the game theory tool and the voting schema, which is applied to create the method of coordination that deals with this problem. Appropriate simulation results of the proposed techniques are presented.
Article
Motion planning is an already old and classical problem in Robotics. A few years ago a new instance of this problem has appeared in the literature : motion planning for nonholonomic systems. While useful tools in motion planning come from Computer Science and Mathematics (Computational Geometry, Real Algebraic Geometry), nonholonomic motion planning needs some Control Theory and more Mathematics (Differential Geometry). First of all, this paper tries to give a computational reading of the tools from Differential Geometric Control Theory required by planning. Then it shows that the presence of obstacles in the real world of a real robot challenges Mathematics with some difficult questions which are topological in nature. Some of them have been solved only recently, within the framework of Sub-Riemannian Geometry. Many other ones constitute open problems at this time.
Article
A new architecture for controlling mobile robots is described. Layers of control system are built to let the robot operate at increasing levels of competence. Layers are made up of asynchronous modules that communicate over low-bandwidth channels. Each module is an instance of a fairly simple computational machine. Higher-level layers can subsume the roles of lower levels by suppressing their outputs. However, lower levels continue to function as higher levels are added. The result is a robust and flexible robot control system. The system has been used to control a mobile robot wandering around unconstrained laboratory areas and computer machine rooms. Eventually it is intended to control a robot that wanders the office areas of our laboratory, building maps of its surroundings using an onboard arm to perform simple tasks.
On the Theory of Intelligent Machines: A Comprehensive Analysis
  • G N Saridis