ArticlePDF Available

Abstract and Figures

The article provides a description of the Autonomous ship, studies existing relevant projects, and examines the related Operational, Regulatory, and Quality assurance challenges raised due to the development and actual deployment of such vessels in the near future. After reviewing the main operational procedures, existing regulations, and quality assurance standards, a number of possible solutions and approaches to overcome the identified challenges are indicated. Some of the conclusions may be used not only in the Autonomous ships but also in traditionally manned vessels.
Content may be subject to copyright.
335
1 INTRODUCTION
Inrecentyears,aremarkabledevelopmenthas
attractedtheattentionoftheshippingandmaritime
sector,namelythe“Unmanned”and/or
“Autonomous”(AtS)shipprojects.Combinedand
reinforcedbyInformationandCommunications
Technology(ICT)inventions,theseprojectshave
broughtrevolutionarychangestotraditionalshipping
practicesandrevealanewdimension,leading
owners,operators,andmanufacturerstoan
innovativerethinkingofshipping.(LloydsRegister,
2016).
Theseconceptshavegainedgroundamongstthe
shippingindustry’sresearchprojectsand,asanew
trend,havegeneratedseveralongoingprototypeand
explorationendeavours.However,thereareseveral
issuestobeaddressedbeforetheyarefullyfunctional
anduniversallyacceptedassafe,secure,andviable
meansoftransportation.Anincreasinglypositive
attitudeintheshippingindustrytowardstheissuesof
autonomy,automation,unmannedoperations,Big
Data,enterprisegradeconnectivity,andanalyticsis
steadilyexpandingtheshippingandmaritime
agenda.
UsingthelatestICTsystems,shipsarebuiltwith
enhancedcontrolcapabilities,communication,and
interfaces,andtheywillsoonberunbyremoteland
basedoroffshoreservices,wheneverandwherever
theyarerequired.Thesesystemshavethepotentialto
enhancethesafety,reliability,andperformanceof
shippingcompanies,butalsoposechallengesand
risksthatmustbeidentified,understood,and
addressedsothatnewinnovativetechnologies
integratewiththedesignandoperationoftheshipsto
ensuresafety.
BecausetheAutonomousandUnmannedships
consistofseveralinterconnectedsystems,anddueto
therapidevolutionoftechnology,itcannotbe
assumedthatsuchvesselswillbesafe,based
exclusivelyonknowledgegainedfromearlier
systems.Therefore,aholisticsystemapproachis
needed(totalsystems)‐asystemthatconsidersallthe
differentsystems(asystemofsystems)onboardand
ashore,howtheyaredesignedandinstalled,how
The Autonomous Shipping Era. Operational,
Regulatory, and Quality Challenges
A. Komianos
TheNauticalInstitute,London,UnitedKingdom
ABSTRACT:ThearticleprovidesadescriptionoftheAutonomousship,studiesexistingrelevantprojects,and
examinestherelatedOperational,Regulatory,andQualityassurancechallengesraisedduetothedevelopment
andactualdeploymentofsuchvesselsinthenearfuture.Afterreviewingthemainoperationalprocedures,
existingregulations,andqualityassurancestandards,anumberofpossiblesolutionsandapproachesto
overcometheidentifiedchallengesareindicated.Someoftheconclusionsmaybeusednotonlyinthe
Autonomousshipsbutalsointraditionallymannedvessels.
http://www.transnav.eu
the International Journal
on Marine Navigation
and Safety of Sea Transportation
Volume 12
Number 2
June 2018
DOI:10.12716/1001.12.02.15
336
theyrelate,andhowtheywillbemanagedand
regulated.
Comparabletoadrone,theunmannedvesselis
alreadyinuseformilitary,aerospace,orscientific
purposes.Submersibleunmannedvehicles,suchas
theautonomousunderwatervehicles(AUV)orthe
remotelyoperatedvehicles(ROV)whichareusedfor
deepseaexplorationoftheseabedorofwrecks,in
additiontocruisemissiles,surfacetoairmissiles,air
toairmissiles,airtosurfacemissiles,andintelligent
torpedoesareallexamplesofatechnologywhichis
alreadyinuseandcontinuestodevelop.
The“Autonomousvessels”willbeequippedwith
systemsallowingselfsteeringbysensorbased
detectionofobjectssuchasobstaclesandwillbeable
toselfinitiateanactione.g.toavoidcollisionswith
otherobjects.Thismaybeachievedbytechnical
systemsinstalledonboard,whichuseprogrammed
algorithmsandinputdatagatheredbysensors.The
introductionoftheAutonomousshipconcepttothe
shippingindustrymightstartaneweraandbecomea
gamechangerintermsofcostefficiency,accident
prevention,andhumanresources.AccordingtoRolls
Royce(aleadingcompanyinAutonomousship
research)andothersupportersoftheproject,themain
advantageofsuchshipsisthattheymightreduce
maritimeaccidentscausedbyfatigueandalcohol
abuse(RollsRoyce,2015).
Animportantissuefortheshippingindustry,
accidentsaremostoftenrelatedtohumanfactors,
suchasfatigue,duetoanincreasingworkloadanda
decreaseinthecrewsizepership,andalcoholor
drugabuse.Althoughtheshortageofseafarersis
becomingaglobalissue,apotential(andhopefully
controlled)decreaseinthenumberofseafarers
neededonboardcouldeaseandresolvethisproblem.
Paradigmsofappliedunmannedsystemscan
alreadybefoundinothermodesoftransport,suchas
airplanes,trains,andintheautomobileindustry,
whichisalreadytryingtodevelopautonomous
vehicles.However,averydistinctandserious
problemexistsintheshippingandmaritimesectors,
namely,thelackofAutonomousships’coverageand
inclusioninrelevantsafety,security,and
environmentalprotectionconventionsand
regulations.Theinitiationofanewperspectiveis
thereforeneededbeforeAutonomousshipscanbe
introducedtocommercialshipping,inordertoensure
thepreventionofmaritimeaccidentsandthe
protectionoftheenvironment.
2 BACKGROUND
Thenumberofautonomousvehiclesbeingusedinthe
air,ontheground,andintheseaisincreasing.As
Mindel(2015)states,humansrepeatedlyfind
manned,remoteandautonomousvehiclesevolving
together,eachaffectingtheother”.
Therearealreadyseveralsmallsizeunmanned
andautonomouscraftsinthemaritimesectorwhich
havebeenengagedinsurfacenavigation,research
andscientificactivities,underwateroperations,and
specificmilitaryactivities.Provensafe,thesevessels
arethepathtowardstheeliminationofhumanerror
andthusaccidentminimization[32].
TheEuropeanTechnologyPlatformdescribesthe
autonomousshipasanextgenerationmodular
controlandcommunicationstechnologysystemof
systemswhichwill“enablewirelessmonitoringand
controlfunctionsbothonandoffboard.Thesewill
includeadvanceddecisionsupportsystemsto
provideacapabilitytooperateshipsremotelyunder
semiorfullyautonomouscontrol”[31].
Therearetwogenericalternativesthatare
combinedinanautonomousship,namely“the
remoteshipwherethetasksofoperatingtheshipare
performedviaaremotecontrolmechanisme.g.bya
shorebasedhumanoperator”,and“theautomated
shipwhereadvanceddecisionsupportsystemson
boardundertakealltheoperationaldecisions
independentlywithoutinterventionofahuman
operator”.
TheMaritimeUnmannedNavigationthrough
IntelligenceinNetworks(MUNIN)startedin2012
andendedin2015.ItwasfundedbytheEuropean
Commission(EC),withthepurposeofinvestigating
thetechnical,economic,andlegalfeasibilityof
unmannedships[31].Themostimportant
characteristicsofthisprojectincludetheabilityofthe
shiptobeoperatedbyanautonomousshipping
systemonboard(whilehavingtheabilitytobe
supervisedandcontrolledbylandoperators),its
abilitytominimizetheriskofcollisionandcomply
withtheConventionontheInternationalRegulations
forPreventingCollisionsatSea(COLREG),andthe
factthatitssafetyandoperationsensorscanbeused
tosearchforobjects.
ThislastcharacteristicdoesnotsatisfyRule5of
COLREG,whichrequiresproperlookoutbyeyeand
earoneveryshiptoassessthesituationandtherisk
ofcollision.
Figure1.TheMUNINproject.www.unmannedship.org
(AccessedOctober2017)
Anotherexampleofsuchaprojectisthatofthe
AdvancedAutonomousWaterborneApplications
Initiative(AAWA).LaunchedbyRollsRoycein2015,
itspurposeistobringtogetheruniversities,ship
designers,equipmentmanufacturers,and
classificationsocietiestoexploretheeconomic,social,
legal,regulatory,andtechnologicalfactorswhich
needtobeaddressedinordertomakeautonomous
shipsareality.Itwillproducethespecificationand
preliminarydesignsforthenextgenerationof
337
advancedshipsolutions.Autonomousshippingisthe
futureofthemaritimeindustryarguesMikael
Makinen,presidentofRollsRoyceʹsmarinedivision,
inawhitepaperpublishedbythecompany.As
disruptiveasthesmartphone,thesmartshipwill
revolutionisethelandscapeofshipdesignandoperations
[35].
Figure2.TheAdvancedAutonomousWaterborne
ApplicationsInitiative.ImagefromtheRollsRoyce
www.rollsroyce.com(AccessedOctober2017)
AthirdprojectistheReVolt,anunmanned,60
metrelong,zeroemission,shortseavessel,
developedbyDNVGL.Thevesseliscrewless,fully
batterypowered,autonomous,and,accordingtothe
company’swebpage1,itoffers“asolutiontothe
growingneedfortransportcapacity”.Theprojectwas
startedinordertomanagethetrafficcongestionin
urbanareasontheEU’sroadnetwork.Thisbecame
anissuebecausepopulationgrowthhascreateda
demandfortransportationthatexceedsthecapacity
ofexistingroads.
Toeasetheseproblems,administrationsallover
theEUare“tryingtomovesomeofthefreightvolume
fromroadstowaterways.However,profitmarginsinthe
shortseashippingsegmentaresmall”.
Figure3.ReVoltdockarrivalImagefrom
https://www.dnvgl.com(AccessedSeptember2017)
Theresultofamultidisciplinary,teambased
developmentproject,ReVoltisbasedonan
assessmentofcurrentrequirementsalongshortsea
routes.Theshipwilloperateataspeedof6knots
witharangeof100nauticalmilesandacargo
capacityof100twentyfootcontainers.Beingcrew
less,therewillbenoneedforaccommodationwhich
usuallyformsthevessel’ssuperstructure.Compared
toadieselrunship,thevesselcouldsaveuptoUSD

1https://www.dnvgl.com/technology-
innovation/revolt/index.html
34millionduringitsestimated30yearlifetime,
savingmorethanamillionUSDannually,duetothe
resultingincreaseinloadingcapacityandthelow
operatingandmaintenancecosts.ThevisionofDNV
GListheextensionoftheprojecttoinvolveland
basedchargingfacilitiesandcapacitiesaswell.
TheendeavourdevelopedbyLloyd’sRegister(LR)
isnamedtheCyberenabledshipproject,which
discussestheproceduresandguidancefor
autonomousshipoperations.UnderLRguidancefor
Cyberenabledships“Deployinginformationand
communicationstechnologyinshippingLloyd’s
Register’sapproachtoassurance”,thecyberenabled
shipisperceivedasa“systemofsystems”[28].
Figure5.Lloyd’sRegisteredLevelsofAutonomy
www.lr.org/cyberAccessedOct2017
As such, six main risks have been identified,
namely the System, the Human-system, the
Software, the Network and communications, the
Data assurance, and last but not least the Cyber
security. For each of these risks, the guideline
describes the aspects which should be studied in
addition to a short description of cyber-enabled
systems. Furthermore, “Cyber-enabled ships:
Ship Right procedure – autonomous ships” was
developed, naming seven levels of autonomy
ranging from a Manual-no autonomous function
to a fully autonomous operational mode.
This approach identifies the proper actions
needed, based on the desired level of autonomy.
More specifically, during the Manual – no
autonomous (AL 0) function, all actions and
decisions (such as navigation, surveillance, etc.)
are performed manually by humans on board,
although some systems may have a level of
autonomy, with ‘human in/on the loop’ such as
the Periodical Maintenance System (PMS) and
the engine control.
RegardingOnshipdecisionsupport(AL1), the crew
onboarddecidesandactswiththeoptionalaidof
decision support tools on the shipsuchastheDynamic
Positioning (DP) capability. The Onandoffshipdecision
support(AL2) is similar to (AL 1) with theadditionofa
data provision option,providedbysystemsonboardor
fromashorefacility,e.g.routingplanning(onboard)
andweatherrouting(shorebasedguidance).
Withregardsto‘Active’humanintheloop(AL3), all
decisionsandactionsonboardareperformed
autonomouslyunderhumansupervision.Datamay
338
beprovidedasin(AL 2),butdecisionswhichmay
seriouslyimpactthesafetyandsecurityofthevessel
requirehumanintervention.
Similarly,asregardstheHumanontheloop
operator/supervisory(AL4),humansupervisionmay
intercedeandoverrideautonomouslyperformed
decisionsandactionswhichmayhaveaserious
impact.AFullyautonomous(AL5)system,which
allowssomeaccessduringamission,isan
unsupervisedorrarelysupervisedoperationduring
whichdecisionsandactionsaremadebythesystem.
Finally,aFullyautonomous(AL6)system, which
allowsnoaccessduringmissionfunction,isatotally
unsupervisedoperationduringwhichdecisionsare
madeandactionedbythesystem.
AnotherrelevantprojectistheAutonomousMarine
OperationsandSystems(AMOS)Project3,whichwas
developedbytheDepartmentsofMarineTechnology
andEngineeringCyberneticsattheNorwegian
UniversityofScienceandTechnology(NTNU)in
collaborationwithinternationalandnational
partners. Itisrelatedtotheunmannedshipsand
focusesonthefollowingtopics:Autonomoussystem
andpayloadarchitectures,Coordinatedoperationofa
sensornetworkofunmannedvehiclesandfloating
nodes,Integratedunderwaternavigationand
mapping,Autonomousobjectdetectionandtracking
inmarineenvironmentsusinginfraredsensors,
Sensorbasedguidanceandpathoptimization,
Coordinatedandcooperativecontrolarchitecturesfor
intelligenttaskexecution,andcollisionavoidancein
uncertainmaritimeenvironments[32].
Figure6.NTNUresearchareas.Imagefrom
www.ntnu.edu/amos(AccessedSep2017)
Oneofthelatestprojectsrelatedtothe
AutonomousShipistheʺYARABirkelandʺ (YB).
YARAandKONGSBERGhaveenteredinto
partnershiptobuildtheworld’sfirstfullyelectric
containerfeedervessel.Theprojectstartedin2017as
amannedvessel,isworkingtowardsremote
operationby2019,andisscheduledtogofully
autonomousby2020.Byremovingupto40,000truck
journeysinpopulatedurbanareas,itwillreduceNOx
andCO2emissions,improveroadsafety,alleviate
trafficcongestion,andwillthuscontributetothe
achievementofUNsustainabilitygoals2.

2 https://sustainabledevelopment.un.org/?menu=1300
Figure7.TheʺYARABirkelandʺ/www.km.kongsberg.com
(AccessedOctober2017)
This120TEU(TwentyfootEquivalentUnits)open
topcontainervesselwillbebatterypowered(fully
electrical)andispreparedforremotecontroland
autonomousoperation.Duringthefirststageofthe
project,abridgewithcrewfacilitieswillbeusedina
containerisedform.
Thiscompartmentwillbeliftedoffduringthe
autonomousoperationphase.Electriccranesand
relevantequipmentwillbeusedforautomaticload
andunloadcargooperations.Insteadofballasttanks,
theshipisdesignedtouseherbatterypacksas
permanentballast.Additionally,shewillbeabletobe
berthedautomaticallyorgounderwaywithoutany
humaninterventionbyusinganautomaticmooring
system,whichwillnotrequireanyspecialdock
structureorextraportfacilities.
Thevesselwillbeprogrammedtosailwithin12
nauticalmilesoftheNorwegiancoast,betweenthree
portsofthecountry’ssouthernareawhichissafely
coveredbyTheNorwegianCoastalAdministrationsʹ
VTSsystematBrevik.Threecontrolcentreswith
diverseoperationalprofileswillhandleall
operationalissuesinadditiontoanyemergency
situations,orothersafetyandsecurityaspects.
Inadditiontotheabovementionedprojects,a
numberofresearchpapersareveryinformative.“The
productionofunmannedvesselsanditslegalimplications
inthemaritimeindustry”UniversityofOslo(UiO
FacultyofLaw),arguesthatanylegalproblemsposed
byunmannedvesselsareofanorganizationalrather
thanatechnicalnature[38].
Thiskindofshipdesignissonew,duetotherapid
scientificdevelopmentsinthemaritimeindustry,that
suchvesselsarenotyetcoveredbyanyinternational
ruleorregulation.TheInternationalMaritime
Organization(IMO)hasnotgivenanyapprovalfor
thistypeofvesselnorhasitreceivedanyproposal
fromthecontractinggovernmentstoregulate
unmannedvessels.
Giventhelackofproperregulatoryframeworkfor
unmannedvessels,theresearchfocusedon“howthe
unmannedvesselscomplywiththeframeworksetby
presentinternationalmaritimeConventionssuchas
SOLASandISMCode6”.Thepaperconcludedthat
althoughtheexistingmaritimetechnologymaycover
anysafety,environmental,andcommercialconcerns,
thelackofaproperregulatoryframeworkmaydelay
theactualuseofsuchvessels.
Thisregulatoryvacuumgeneratesvariousissues
suchastheinabilityoftheclassificationsocietiesto
339
certifythevessels.Lackingtheclassification
certificates,thevesselscannotbeinsured,thusthey
cannotsail,andeventuallytheywillnotbechartered.
Althoughsomeregulatoryaspectsofmannedvessels
arealsoapplicabletounmannedvessels,suchas
specificclausesoftheISMCode,thereareseveral
internationalregulationsthatneedtobeamended.
“Apreanalysisonautonomousships”(2016)byM.
Blanke,M.Henriques,J.Bang,theTechnical
UniversityofDenmark(DTU),istheresponseofthe
TechnicalUniversityofDenmark(DTU)toarequest
fromtheDanishMaritimeAuthority.Theconcept
includedresearchintothe“connectionandplanningof
taskstobeincludedincomingeffortstoshedlightonthe
importanceofunmannedshipstoBlueDenmark”.The
paperbrieflydescribesvariouslevelsofoperation,
rangingfromthecompletelymanual(lowest),to
higherlevelsofdecisionsupport,whereautomation
fulfilsmoretasks,uptotheleveloftotalautonomy.
Thestudy,besidesotherscientificinputs,wasbased
onselfpropelledcars,unmannedaircraftexperience,
andknowledgefromongoingsimilarautonomous
shipprojects.
“Existingconventionsandunmannedshipsneed
forchanges?”(2016),byTomotsuguNoma,theWorld
MaritimeUniversity(WMU),researchesthenecessity
forchangesinexistingconventionswhenthe
unmannedshipsareintroducedintothemaritime
transportationsystemand,amongothersubjects,his
researchfocusesonsurveyschemes,especiallywith
respecttoregulationsofSOLASChapterV.Having
studiedexistingsurveyschemesandhaving
identifiedthechallengesrelatedtosurveysand
technical,operational,administrative,andregulatory
problems,thepaperprovidesdefinitionsof
unmannedships,listingthemaincharacteristics[32].
Theimplementationofanautonomousvesselwill
providetheopportunitytoincreasetheefficiencyof
shipoperationaswellasenhancethe‘sustainability’,
whichisthegreatestdriverinanyindustry[37].
AsBenCucksonofLloyd’sRegisterargues,
minimalsafetyrisk,minimalenvironmentalimpact,
andmaximumcommercialbenefitsarethemost
importantdimensionsofasustainabledevelopment
intheshippingworld.Thesefactorsareillustratedin
Figure8.
Figure8.Marineindustry’ssustainabledevelopmentfactors
(Source:Cuckson,2015)
ReportsfromDrewryShippingConsultants
predictthateconomiesofscale(whichgavebirthto
theMegaships’constructionanduse)willsoonbein
decline.AMcKinseyanalysiscalculatedthat“slow
steaminghadaddedaround3daystotransits,costing
shippingcustomers$5.7billioninadditionalannual
inventoryandobsolescencecostsworldwide”
(AutonomousShipWhitepaper,2016).The
constructionofintelligentvesselswouldchangethis
situation,creatingabetter,moreprofitable,and,
hopefully,safershippingmarket.InanearlierUnited
StatesCoastGuard(USCG)report,themarine
causalitiescaused(tosomeextent)byhumanerror
wasbetween7596%[36].
Burmeisteretal.claimedthatthedevelopmentof
autonomousvesselssuchasthoseintheMUNIN
Projectwillofferawiderangingsolutiontomeetthe
mainchallengesofthemaritimetransportindustry,
resultinginadecreaseintheoperationalexpenses,
betterenvironmentalprotectionpractices,andhuman
fatigueminimization[4].However,thereareseveral
challengestobeovercomebeforesuchvesselsare
commerciallyacceptedintheinternational
frameworksobservingtheIMO’s(International
MaritimeOrganisation)rulesandregulationsonthe
seas.
Althoughhighlyadvancedtechnologieswhich
enablethedesignandconstructionofautonomous
vesselsalreadyexistinthemarket,thesesystems
createanumberofchallengesespeciallyinthesocial,
economic,andregulatoryareas.Ontheotherhand,
theupcomingintroductionofautonomousshipsin
themarketreinforcestheexpectationsofapotential
decreaseinaccidentscausedbyhumanerroranda
likelycostreduction,andintensifiestheanticipation
ofbetterservicesinshippingoperations.
StudiesconductedbyBryant[3],Mccallumet
al.[30],andRothblum[36]amongstothers,discovered
thattheproportionofmaritimeaccidentscausedby
humanerrorwasashighas64%to96%.These
errorsweretheresultoffatigue,poormaintenance
andstandards,inadequateknowledgeand
information,andpoorcommunicationskills[36]).
Regardingtheexpectedcostreduction,themain
shipoperationexpensesconsistmostlyoffuelcost
andcrewcompensation.Accordingtothe2011
Drewryreport,crewcostswere“onaveragebetween
31and36%ofthetotalshipoperationcosts”forbulk
carriers.
Apartfromthepreviouslymentionedchallenges
whichmayarisefromtheintroductionofthe
autonomousshipstothemaritimeindustry,Zakirul
arguesthatnewdesignsandtechnologicalfeatures,
whileaffectingthenewbuildingcosts,theavailability
androbustnessofsystems,cybersecurity,and
harmonisedstandardsdevelopments,“arenot
primarilycausedbytechnicalobstaclesandtheyare
arguablytheintegrationoftheautonomousshipinto
theexistingmaritimeoperation”[40].
Regardingthehumanelementintheautomatic
systems,Endsley&Jonesconsiderthe“humanout
oftheloopsyndrome”tobeanimportantissue
becauseanAutonomousshipmayberegardedas
riskiercomparedtoatraditionallymannedvessel,
andthe“socialacceptability”factormustbevery
340
seriouslyconsideredespeciallyinpassengerships.In
addition,amassiveshiftinthefuturefrommannedto
semi‐autonomousorunmannedshipsmayproduce
unwantedresults,suchashighunemploymentinthe
seafaringprofessionandsocialdiscomforttosea
nations[11].
Asforthecomplianceoftheautonomousships
withexistingregulationsatseasuchasSOLAS(Safety
ofLifeatSea)andCOLREGS(CollisionRegulations),
thereisaneedtoupdateoradjustexisting
internationalconventionstoembracethe
developmentofsuchsystems.Updatedtechnicaland
operationalstandardswillbeneededtocoverthe
developmentoftheautonomoussystemsincluding
thecommercialagreementse.g.chartering,
management,andinsurance[34].Moreover,the
memberstatesofIMOmustagreeonthe
implementationoftheautonomousvesselsandthe
liabilityforanyaccidentsinwhichtheseshipsmaybe
involved.
Thecostimpactfortheoperationofthe
autonomousshipsseemstobeconcentratedmostlyin
newbuildingexpensesduetothenoveldesignsand
innovativetechnologicalfeatures,withoutexcluding
newinfrastructurerequirementsfortheshiptoshore
commandi.e.thecontrol,communication,
information,andoperationcentre(e.g.anadvanced
VTScentre).Althoughcostsrelatedtothecrewon
boardtheshipwillbereduced,additionalcostsfor
landbasedservicessuchasthecontrolcentre,
equipment,maintenancecrewsinportexpenses,and
shorepersonnelwageswillbeincreased[4].
Allautonomousvehiclesshouldoperatesafely
andeffectivelyinarealworldenvironmentwhile
doingoperationsofdirectcommercialvalueand
shouldbemanufactured,maintained,deployed,
operated,andretrievedatanacceptablecost[34].
Furthermore,Koopman&Wagnerarguethatthe
challengesofdevelopingsafeautonomousvehicles
aresignificant[27].Indeed,ensuringthatvehiclesare
saferequireseitherfollowingtheISO26262V
process,ordemonstratingthatasetofequally
rigorousprocessandtechnologypracticeshasbeen
applied.InOctober2017,RollsRoycemarine
announcedthatitwilluseGoogle’sCloudMachine
LearningEngine“acrossarangeofapplications,designed
tobothmaketoday’sshipssaferandmoreefficient,andto
launchtheshipsoftomorrow”.Theprojectisenvisaged
toproduceafullyautonomousshipthatwillsetsail
by2020[12].
Justtwoyearsbeforethisannouncement,D.
Mindelinhisbook“Ourrobotsourselves,robotics,and
themythsofautonomy”(2015)hearguesthat,“wehave
themythoffullautonomy,theutopianideathatrobots,
todayorinthefuture,canoperateentirelyontheirown.
Yes,automationcancertainlytakeonpartsoftasks
previouslyaccomplishedbyhumans,andmachinesdoact
ontheirowninresponsetotheirenvironmentsforcertain
periodsoftime.Butthemachinethatoperatesentirely
independentlyofhumandirectionisauselessmachine.
Onlyarockistrulyautonomous,andevenarockwas
formedandplacedbyitsenvironment”.
3 ANALYSIS
ThemainOperationalfeaturesofaseaadventure
maybesummarisedasfollows:Seaworthiness,
desirablePropulsionandElectricPower,preplanned
Endurance,safeNavigation,properMaintenance,
reliableCommunications,CollisionandGrounding
avoidance,continuousRiskAssessment,danger
Mitigation,timelyResponsetoANYsafetyorsecurity
issues,Environmentalprotection,safeandontime
DeliveryoftheCargo,andLiability/Insurance
coverage.
RegardingthemostimportantRegulationsthat
applytotheshippingindustry,nouniformseasafety,
securityorenvironmentalprotectionrulesfor
internationalshippinghadinitiallyexistedsincethe
creationoftheIMO(InternationalMaritime
Organization)in1948undertheauspicesofthe
UnitedNations(ChurchillR.andLoweA.,1992).This
oversightwascorrectedbycreatingaframeworkof
regulationsfortheshippingindustrythatis“fairand
effective,universallyadoptedanduniversally
implemented”3.Abriefoutlineofthemostimportant
signedconventionsfollows:4
TheSafetyofLifeAtSeaconvention(SOLAS).
TheInternationalManagementCodefortheSafe
OperationsofShipsandforPollutionPrevention
(ISMcode).
TheInternationalConventionofStandardsof
Training,CertificationandWatchkeepingfor
Seafarers(STCW).
ConventionontheInternationalRegulationsfor
PreventingCollisionsatSea(COLREG)
TheInternationalConventionforthePreventionof
PollutionfromShips(MARPOL).
TheInternationalConventiononMaritimeSearch
andRescue(SAR).
TheInternationalConventiononLoadLines(CLL
68/88)whichdefinestheminimumfreeboard,
watertightintegrity,andsurvivabilityofships.
Otherimportantregulatoryandtechnology
innovationfactorsthatstrengthenthesafetycultureof
internationalshippinginclude:
TheInternationalConventionoftheMaritime
SatelliteOrganization(INMARSAT).
TheInternationalConventionforSafeContainers.
TheDoubleHull/DoubleBottom(DH/DB)
regulation,whichplaysanimportantroleinoil
spillpreventionandtheInertGasSystem(IGS)
whichoperatesinsuchawaythatitrendersthe
atmosphereofthecargotanksnonflammableand
maintainsincombustibility.
Theminimizationofhumanfactorerrors5(dueto
poorjudgment,stress,inadequatestaffing,poor
livingconditions,fatigue,etc.)byimprovingtraining,
safety,thecultureofenvironmentalawareness,and
communicationbetweenmulticulturaland
multilingualcrewsandPortStateControl(PSC),an
internationallyagreedregimewhichhasbeenan

3www.imo.org (Accessed 20 September 2017)
4With no policing powers the IMO can only argue the
implementation of these conventions and rely on the
efficacy of flag and port state control.
5The U.S Coast Guard defines human error as acts
or omissions or personnel which affect successful
performance.
341
importantsafetyandsecuritycompliancetoolsince
1982,6havealsocontributedtosafetyandsecurityin
themaritimeindustry.
ThemainQualityassuranceissuesidentified
throughtheresearchare,inshort,thevessel’s
construction,design,equipment,information
technology,dataprocessing,software,algorithms,
communications,trainingofshorebasedpersonnel,
safetyandsecurityprocedures.
3.1 SOLAS
TheConventiononSafetyoflifeatsea(SOLAS)
specifiestheminimumacceptablestandardsfor
construction,equipment,operations,andrequired
certificationsofships.Theresponsibilityof
complianceisgiventotheflagstates,inadditionto
theinspectionrightofforeignvesselsvisitingtheir
ports.(Adopted:1974‐Intoforce:1980).Following
theTitanicimmersion,itwasinitiallyenteredinto
forcein1914andproperlyamendedtoitslatest
version.ContractingGovernments(FlagStates),must
ensurethatallshipsundertheirflagsatisfythe
requirementsofSOLAS.Whentherequirementsare
met,acertificateofcomplianceisissued[20].
Intheeventthatashiporitsequipmentbreach(or
thereisasuspicionofviolationof)these
requirements,aPortStateControl(PSC)authorityis
allowedtoinspecttheshipwhenenteringtheareaof
PSC’sresponsibility.Oneofthemostimportantissues
whichmaychallengetheveryessenceofthe
AutonomousshipisChapterVRegulation14of
SOLAS,regardingthemanningofships.Theother
oneisRegulation33(DistressSituations:Obligations
andProcedures)ofthesamechapter,whichwillbe
analysedunderparagraph3.5SearchAndRescue.
TheAutonomousshipisnotexcludedfrom
ChapterI,thusthephrases“shallbesufficientlyand
efficientlymanned”and“shallbeprovidedwithan
appropriateminimumsafemanningdocumentor
equivalent”,meansthatsomehowtheserequirements
mustbefulfilled,otherwisetherulemustbeadapted
toreflectthenewrealityofashipwithoutcrewon
board.Ontheotherhand,asalreadymentioned,most
oftheAutonomousshipprojectsincorporateatleast
oneRemoteControlCentre(YaraBirkelandproject
willusethree).Theseremotestationswill(hopefully)
bemannedwithsufficientpersonnel,whilethe
“efficiency”requirementmaybecoveredbythewide
rangeofhightechsystems(varioussensors,
computers,automations,remotecontrolledmachines
etc.).Thiscombinationwillassisttheremote
commandandcontrolofthevessel,andwillfulfilthe
requirementsofRegulation14.
3.2 STCW
TheSTCW(InternationalConventiononStandardsof
Training,CertificationandWatchkeepingfor
Seafarers)establishedthebasicinternational

6Vessels using port facilities may be subject to
inspections and additional control measures.
standardsinthisfield[21].TheConventionwas
adoptedin1978andwentintoforcein1984.
Todayitisapplicabletopersonnelonboardaship
(a.k.a.seafarers,crewetc.)notpersonswhoare
responsibleforoperatinganAutonomousshipfroma
remotecontrolcentre(RCS)basedonshoreoratany
otherrelevantlocationotherthantheshipherself,nor
theprogrammerswhohavepreprogrammedher
autonomouscoursebeforeshegoesunderway.These
personnelarenotregulatedbySTCW,althoughthey
havebeendelegatedtheauthoritytocontrol
Autonomousships.
Additionally,underUNCLOS,Art.94(4)(b),flag
statesmustensurethateachshipis“inthechargeofa
master...whopossess[es]appropriatequalifications,in
particularinseamanship,navigation,communicationsand
marineengineering”.AsVealandTsimplisargue[39],
theobviousquestionis“whetheritispossibleforan
unmannedship,byitsverydefinition,tohaveamaster”.
Furthermore,theworkloadoftheonshorepersonnel
fortheRemoteControlCentresisexpectedtobequite
heavy.A“shorebasedmaster”assistedbyoneto
threeoperatorsmaycontrolasmallflotillaof
autonomousvesselssimultaneously.Theminimum
numberofsuchvesselswhichareallowedtobe
handledatoncehasnotyetbeendetermined.
Theconditions,whichvarydependingonthe
geographicalarea,thetypesofcargo,theweather
conditions,whetheravesselisarrivingatorsailing
fromaport,thesafety,thesecurity,thefatigueofthe
operators,whattheacceptedminimumprevious
experienceonboardsameorsimilartypesofshipsis,
andtheupdatedcompetencytests,allhavetobe
seriouslyconsidered.Theseprerequisitesmustbe
incorporatedintoexistingSTCW,orasimilar
conventionspecificallytailoredfortheneedsof
Autonomousships.Inaddition,trainingrequirements
andcertificationschemesmustbeadoptedinline
withtheinternationallyacceptedstandardssimilarto
thosewhichapplytotheVesselTrafficServices(VTS)
operators.
Finally,althoughlabourlawwouldapplytothe
operatorsoftheRemoteControlCentresor thepre
programmersofatotallyAutonomousship,specific
rulessimilartothoseapplicabletoseafarers(suchas
thedutytoreportsignalsofdistress,etc.),mayneed
tobeadjustedandappliedaswell.
3.3 COLREG
TheConventionontheInternationalRegulationsfor
PreventingCollisionsatSea(COLREG)(Adopted:
1972‐Intoforce:1977),revisedtheInternational
RegulationsforpreventingCollisionatSeaof19607.
TheyarepublishedbytheInternationalMaritime
Organization(IMO)andamongotherissues,they
definethenavigationrules(a.k.aʺRulesoftheroadʺ)
tobefollowedbyshipsandothervesselsatseato
preventcollisionsbetweentwoormorevessels[5].

7Marsden, Reginald. G, (2003), Collision at sea,
Sweet and Maxwell
342
Theyapplytoallvesselsuponthehighseasandin
allwatersconnectedtherewithnavigablebyseagoing
vessels.UnderRule3“GeneralDefinitions”
paragraph(a),theexplanationofthewordʺvesselʺis
givenas“everydescriptionofwatercraft,includingnon‐
displacementcraftandseaplanes,usedorcapableofbeing
usedasameansoftransportationonwater.”This
definitiondoesnotexcludetheAutonomousship
from beingcharacterisedasa“vessel”.Rules2,5,6,
7,8,17,19and20willbeanalysedinrelationto
Autonomousshipoperations.
Rule2:Thisrulemustbeadjustedtoreflectthe
absenceofmasterandcrewontheAutonomousship.
Apossible“transfer”ofresponsibilityfromtheon
boardmasterandcrewtotheshore(orelsewhere)
basedpersonnel(e.gControlCentreetc.)mustcover
the“ordinarypracticeofseamen”.Thisseemstooblige
anyfutureControlCentremanningschemetoinclude
personnelwithadequateseamanshipexperience.
Rule5:Althoughitmaybepossibletosubstitute
thehuman“sightandhearing”withtechnicalmeans
suchassupersensitivemicrophonesandultrahigh
analysisandvisioncameras,thisRuleisthesubjectof
muchdebateregardingtheeffectivenessofsuch
means.Theexpression“properlookoutbysightand
hearing”followedbythephrase“aswellasbyall
availablemeansappropriateintheprevailing…”indicates
thatALLothertechnicalmeanshavealreadybeen
considered,andtheimportanceofhumansenses(in
particularthefacultyofsight,andhearingbywhich
thebodyperceivesexternalstimuli),judgmentand
experiencedreaction,isdeemednecessaryasalast
resorttoavoidacollision.
Rule6:Thedefinitionof“safespeed”and“proper
andeffectiveaction”isrelatedtothecollision
avoidance.Intheeventthatacollisionfinallyoccurs,
thespeedthatwaschosenwouldbecharacterisedas
“unsafe”becauseoftheresult.Thisrulecombined
withpreviousrule,Rule5,makesitessentialto
adjusttheexpressionordefineotherprotective
measures.Asuitableamendmentmightread,‘an
autonomousshipwithsuchcharacteristics(shape,
cargoload,etc.)sailingundertheseweatherandsea
stateconditions,muststayclearofanyothervessel
byadistanceofxwhenunderwaywithspeedofy.’
Rule7:Thisrule,combinedwithRule5andRule6
dictatestheimportanceofappropriatejudgementand
seamanshipto“determineifriskofcollisionexists”.
Althoughitisplausibleforthiskindofrisk
assessmentandmitigationtobegeneratedfroma
remotecontrolstation,the“scantyradarinformation”
phraseindicatesonceagaintheimportanceofthe
audioandvisualinformationtoahumanpresenceon
board.
Rule8:AsinRule2,goodseamanshipisdeemed
essentialforthepreventionofcollision.The
InternationalConventionofStandardsofTraining,
CertificationandWatchkeepingforSeafarers(STCW)
whichintroducedthebasicinternationalstandardsin
thisfield,mustbetheguide(inpartoratleastasa
goodreference)forthebasictrainingoftheshore
basedoperatorsoftheAutonomousships.
Rule17:Thereisdoubtconcerningtheefficient
andeffective“manoeuvreofthelastsecond”without
theinterventionofahumanpresenceonboard.
However,thereisthephysicaldelayofthehuman
brainasitdecidestheexecutionofthemanoeuvre.
Absolutelyreliable,safe,anddelayfree
communicationscoupledwithsecureandfastdata
transferbetweentheautonomousshipandthecontrol
centremustexist.
Rule19:Thehearingofthefogsignalofanother
vesselasdescribedinRule19,obligesthevesselin
questiontotakeallappropriatemeasuresforaltering
herspeedand/orcourseinordertonavigateinsuch
awaythatwillavoidthecollision.Onceagainand
similartoRule5,theword“hears”impliestheneedof
ahumanpresenceonboard.
Rule20:Navigationallightsandshapesare
paramounttothesafetyoftheshipswhenunderway.
Inahypotheticalscenariowhereallavailable
electromagneticandelectroacousticnavigationaland
surveillancemeansoftheshipsinquestionare
operatingproperly,safenavigationandcollision
avoidancearemostlyassured.Unfortunately,there
areplentyofrecordedaccidentsatseawherethe
aboveweretrue,buttheoperators(Officerofthe
watch,Navigator,Radaroperatoretc.)duetofatigue
orotherreasons,failedtoproperlyevaluateor
processthe“message”fromthemachines.
Fortunately,therearenumerousotherexamplesof
lastsecondcourseand/orspeedalterationand
collisionavoidancesduetotherecognitionofthe
navigationallightsandshapesshown“withthe
keepingofaproperlookout.
3.4 MARPOL
MARPOL(TheInternationalConventionforthe
PreventionofPollutionfromShips,1973),as
amendedin1978,setsthestandardsforthe
preventionofpollutionbyoil,chemicals,harmful
substances,andgarbage.Ithasbeeninforcesince
1983anditsobjectiveistopreservethemarine
environmentfrompollution[17].Beingcrewless,an
Autonomousshipwillhavenogarbageandhuman
wasteofwhichtodispose.
Inaddition,theintentionalpollutionbyoil,
chemicals,andotherharmfulsubstances,whichmay
occurwiththecomplicityofsomeorallthemembers
ofacrew,isnotpossible.Strictregulationsandrecord
keepingofallelectronicorders(eOrders)fromthe
RemoteControlCentretotheAutonomousshipwill
preventanysuchactions.
However,unintentionalpollution,eitherasthe
resultofanaccident(collision,malfunction,
cyberattack,virus,etc.)orduetounforeseenreasons
(heavyweather,capsize,explosion,etc.)would
continuetobeaproblem.Insuchsituations,atimely
andefficientresponseisofparamountimportance,
andisfurtheranalysedinparagraphs3.7and3.8.
3.5 SAR
TheSARconvention(InternationalConventionon
MaritimeSearchandRescue)wasadoptedin1979
andisaimedatdevelopinganinternationalSARplan
[19].Therescueofpersonsindistressatseais
coordinatedbyaSARorganizationorbycooperation
343
betweenneighbouringSARorganizationswhen
necessary.Theobligationofshipstoassistvesselsin
distresspreviouslyexistedbothintraditionandin
internationaltreatiessuchasSOLAS.Withthe
adoptionoftheSARConvention,aninternational
systemwascreated,coveringsearchandrescue
operationsonaworldwidescale.SARandGuidelines
ontheTreatmentofPersonsRescuedatSea
(RESOLUTIONMSC.167(78)adoptedon20May
2004)involvemannedvesselsandnoreferenceis
madetoAutonomousones.
SARRegulation3.1.9specificallyreferstothe
masterofthevessel,whileUNCLOSArticle98(1)
Dutytorenderassistance,demandsthateveryState
“requirethemasterofashipflyingitsflag,insofarashe
candosowithoutseriousdangertotheship,thecrewor
thepassengers:(a)torenderassistancetoanypersonfound
atseaindangerofbeinglost;(b)toproceedwithall
possiblespeedtotherescueofpersonsindistress,...(c)
afteracollision,torenderassistancetotheothership,its
crewanditspassengersand,...”
Anyseafarerwhohaseverbeeninvolvedina
SearchandRescueoperation,knowsverywellthe
mental,psychological,emotional,andphysicalstress,
thechallenges,andthedifficultyinproperlyfulfilling
suchatask.Thiskindofoperationinvolvestherescue
oflifeindangeratseaandassuch,generatesnotonly
operationalandinsuranceobligationsbutalsoethical
ones.TheresponsibilitiesofContracting
GovernmentsandMastersincludetheassistanceand
embarkationofrescuedsurvivorsonboardtheir
vesselswhenpossibleandanumberofother
supportiveactionsinrelationtotheoperation.
IntheeventthatanAutonomousshipiscloseto
suchaninstance,shemostprobablywillnotbeable
toprovidetherequiredassistanceanditmayalsobe
difficulttoavoidamanoverboardoranunconscious
castaway.
FortheAutonomousship,suchactionsrangefrom
beingverydifficulttobeingimpossibletoperform.A
properadjustmentoranexemptionofAutonomous
shipsfromtheSearchandRescueoperationsseemsto
bethemostappropriatesolution.However,itshould
benotedthatanexemptionofANYkindofvesselat
seafromtheSARinvolvementandobligations,may
raisetheconcernofseafarerswithrespecttohowthe
shippingindustry,variousregulatorybodies,and
relativeorganizationsregardtherescueoftheirlives
atsea.
3.6 RISKASSESSMENTANDRESPONSETO
EMERGENCIES
ExtensiveresearchonthetopicofRiskAssessment
andResponsetoEmergencieshasalreadybeen
conductedintheMUNINproject,includinganalysis
oftopicssuchastheUnmannedshipandShore
ControlCentre,Unmannedmaintenanceand
technicaloperationprinciples,Heavyweather
implications,Sensorsystems,andCybersecurity.
Chaptertwoof“MUNIND9.2:Qualitative
assessment”describesindetailtherisksrelatedtothe
operationofanunmanneddrybulkcarrier.Potential
hazardswereidentified,theexpectedfrequenciesand
consequencesofincidentsrelatedtothehazardswere
rated,andtheriskwascalculatedasafunctionofthe
frequencyandconsequencesofanincident.A
completelistoftheidentifiedhazardswiththeresults
oftheriskratingprojectcanbefoundinAnnexB:
HazardAnalysisresultsoftheMUNIND9.2paper.
InregardtotheresponseofanAutonomousship
duringanemergencysituation,thereareanumberof
issuesthatmustbeanalysed.Forexample,under
UNCLOSArticle98(1)assistanceindistresssituations
istheobligationofallvesselssailingintheareaofthe
incident,althoughtheriskssuchassistancecould
posetothecrew,itspassengers,andtheshipitself
mustallbetakenintoconsideration.
TheArticledelegatestheauthorityandburdenof
initiatingthetasktothemaster,havinginmind
mannedvesselsandnotacrewlessship.Ifweassume
thatthisobligationistransferredautomaticallytothe
“masteronshore”,anewissuearises,thatofthetime
neededforaresponsefromshoreduringemergency
situations(HapagLloyd,2016).
Totacklethesesituations,properequipmentcould
beinstalledonboardtheAutonomousship.Afterits
efficacyhadbeenverified,thisparticularsolution
wouldhavetobeacceptedanditmayincreasethe
overallstructuralcost,minimizingtheeconomic
benefitsofthecrewlessvessel.
3.7 MAINTENANCE
Oneofthemostimportantfactorsofthesafetyand
seaworthinessofashipistheproper,daily,
periodical,andtimelymaintenanceofallhersystems,
structures,andhull.
Alonglistofperiodicalmaintenanceprocedures,
butalsoofemergency(orunforeseenfailure)fixes
existsonboardallships.Welltrainedexperienced
personnelarethekeyfactorresponsibleformeeting
theserequirementssuccessfully.Thefollowingrule
setsthebasicprerequisitesforsuchactions.
Ashipunderwayisaremotesystemusually
sailingfarfrommaintenancecentres,shipyards,ports
orotherrepairfacilities.Althoughcertainincidentsor
malfunctionsmayberepairedremotelyeitherby
softwareupdates,orbythefuturisticuseof“robots
insidearobot”(i.e.aremotecontrolled
maintenancerobotonboardanAutonomousship),
therewillbecertaincircumstanceswherethe
presenceofanexperiencedhumanteamwouldbe
indispensable.Insuchcases(iftimeconstraintsand
thesituationpermit),theremustbetherequired
proceduresinplace,sufficientinfrastructurefacilities,
andappropriatearrangementstoreceivesuchateam.
3.8 FIREFIGHTINGANDDAMAGECONTROL
Itisexpectedthatavarietyofsensorsandsystems,to
dealwithfiredetectionandextinguishmentbutalso
damagecontrolandrepairs,willbepresentonboard
theAutonomousship.Thelevelofsophistication,the
minimumrequirements,andtheaccepted
effectivenessshallberegulatedandproperly
enforced.
344
ThecosttoprotecttheAutonomousvesselwith
suchsystemsfrompotentialfire,waterinflowor
otherdamagewillmostprobablybeconsiderable
comparedtothecostofmethodsalreadyusedon
boardmannedships.Intermsofareacoverage,time
efficiency,diversityofincidentmanagement,
sequenceofunpredictablefactors,andeffectiveness,it
isdifficulttoduplicatethemobilityandfocused
interventionofthefirefightinggroupsanddamage
controlparties(varyingfromonetoeightdepending
onthetypeoftheship)whodealwiththesesituations
onmannedvessels.
3.9 ISPSCODE
InresponsetotheterroristactsofSeptember11th
(2001)intheUnitedStates,theneedtoprotectthe
internationalmaritimetransportsectoragainstthe
threatofterrorismwasrecognised.Thus,onJuly1st
2004,anewmaritimesecurityregulatoryregimewas
introducedintotheInternationalConventionforthe
SafetyofLifeatSea(SOLAS),namelychapterXI2on
Specialmeasurestoenhancemaritimesecurity,which
includestheInternationalShipandPortFacility
Security(ISPS)Code.TheISPSCodeenteredinto
forceinDecember2002andistheresultof
cooperationbetweenGovernments,Government
agencies,localadministrations,andshippingandport
industries[16].
Inparticular,SOLASRegulationsXI2andXI3of
ChapterXI2“Specialmeasurestoenhancemaritime
security”preservestheInternationalShipandPort
FacilitiesSecurityCode(ISPSCode).PartAofthe
Codeismandatory,whilepartBcontainsguidanceon
howtobestcomplywiththemandatory
requirements.
UnderRegulationXI2/8,“Themastershallnotbe
constrainedbytheCompany,thechartereroranyother
personfromtakingorexecutinganydecisionwhich,inthe
professionaljudgementofthemaster,isnecessaryto
maintainthesafetyandsecurityoftheship.Thisincludes
denialofaccesstopersons(exceptthoseidentifiedasduly
authorizedbyaContractingGovernment)ortheireffects
andrefusaltoloadcargo,includingcontainersorother
closedcargotransportunits”.Additionally,“If,inthe
professionaljudgementofthemaster,aconflictbetween
anysafetyandsecurityrequirementsapplicabletotheship
arisesduringitsoperations,themastershallgiveeffectto
thoserequirementsnecessarytomaintainthesafetyofthe
ship.Insuchcases,themastermayimplementtemporary
securitymeasuresandshallforthwithinformthe
Administrationand,ifappropriate,theContracting
Governmentinwhoseporttheshipisoperatingorintends
toenter.Anysuchtemporarysecuritymeasuresunderthis
regulationshall,tothehighestpossibledegree,be
commensuratewiththeprevailingsecuritylevel.When
suchcasesareidentified,theAdministrationshallensure
thatsuchconflictsareresolvedandthatthepossibilityof
recurrenceisminimised.”
Otherregulationsinthischapterrequireallships
tobeequippedwithashipsecurityalertsystem,to
provideinformationtotheIMO,andtobeinfull
controlinport(whichincludesdealingwith
circumstancessuchasadelay,detention,anda
restrictionofoperations,includingmovementwithin
theportorexpulsionofashipfromport).
Inordertoaccomplishtheseobjectives,SOLAS
ContractingGovernments,portauthorities,and
shippingcompanies“arerequired,undertheISPSCode,
todesignateappropriatesecurityofficersandpersonnel,on
eachship,portfacilityandshippingcompany”.These
securityofficers,designatedPortFacilitySecurity
Officers(PFSOs),ShipSecurityOfficers(SSOs),and
CompanySecurityOfficers(CSOs)mustassess,
prepare,andimplementeffectivesecurityplansthat
areabletomanageanypotentialsecuritythreat.
AsfarastheAutonomousshipisconcerned,the
absenceof“securityofficersandpersonnel”,presentsa
serioussecuritygapwhichmustberemediatedeither
byapplyingappropriateriskmitigationsystemsand
methods,orbyexcludingthisparticulartypeofvessel
fromthisobligationduringdeepseanavigation.The
lattermaybeachievedbyassigninggeographicareas
closetothePortLimitswhereateamofproperly
trained,qualifiedpersonnelwillattestthatthevessel
issafeandsecuretoleaveorentertheport.
3.10 CYBERSECURITY
AccordingtotheMerriamWebsterdictionary,the
definitionofcybersecurityis“measurestakentoprotect
acomputerorcomputersystem(asontheInternet)against
unauthorizedaccessorattack”,whiletheonlineOxford
dictionarydefines‘cybersecurity’as“Thestateofbeing
protectedagainstthecriminalorunauthorizeduseof
electronicdata,orthemeasurestakentoachievethis”.
ISO/IEC27032defines“Cybersecurity”or
“Cyberspacesecurity”,asthe“preservationof
confidentiality,integrityandavailabilityofinformationin
theCyberspace”.TheCyberspaceisdefinedas“the
complexenvironmentresultingfromtheinteractionof
people,softwareandservicesontheInternetbymeansof
technologydevicesandnetworksconnectedtoit,which
doesnotexistinanyphysicalform”8
TheInternationalTelecommunicationsUnion
(ITU),whichisa specialized United Nations agency for
information and communication technologies, initsITU
TX.1205(4/2008)document,definescybersecurityas
thecollectionoftools,policies,securityconcepts,security
safeguards,guidelines,riskmanagementapproaches,
actions,training,bestpractices,assuranceandtechnologies
thatcanbeusedtoprotectthecyberenvironmentand
organizationanduserʹsassets.Organizationanduserʹs
assetsincludeconnectedcomputingdevices,personnel,
infrastructure,applications,services,telecommunications
systems,andthetotalityoftransmittedand/orstored
informationinthecyberenvironment.Cybersecurity
strivestoensuretheattainmentandmaintenanceofthe
securitypropertiesoftheorganizationanduserʹsassets
againstrelevantsecurityrisksinthecyberenvironment.
Thegeneralsecurityobjectivescomprisethefollowing:
Availability,Integrity(whichmayincludeauthenticityand
nonrepudiation)and,Confidentiality.”
SincetheAutonomousshipconceptwilldepend
heavilyoninformationtechnologysystemsonboard
andashore,thereisafargreaterlikelihoodofacyber

8http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?c
snumber=44375
345
attackwhencomparedtoaconventionalvessel,
althoughthismightnotbethecaseundercertain
circumstances.Theadvanceoftechnologyhasalready
“digitised”awidespectrumofprocessesand
proceduresonboardshipsfromsteering,propulsion,
andcargocontroltoECDIS,GPS,AIS,and
communicationsystems.Alltheabovecomputerised
processesarepotentialcyberattacktargets.Onthe
otherhand,marineinsuranceforcyberattackperilsis
notnew,andthustheautonomousshipconceptmay
wellbeincludedinsuchprovisions.Althoughthe
threatofacyberattackisgenerallyexcludedfromthe
InstituteCyberAttackExclusionClause(CL380)
10/11/2003(forloss,damage,orliabilitycausedeither
directlyorindirectlybytheuseofacomputerandits
associatedsystemsandsoftware),intheProtection
andIndemnityInsurancesector,alimitofUS$30
millionpershipexiststomitigatesuchthreats(unless
theattackisanactofterrorismorwar).Althougha
plethoraofdefinitionsandaholisticapproachtothe
issueexists,ashasalreadybeenshowninthe
previousparagraph,on23rdofNovember2017,IHS
FairplayDailymaritimeshippingnewsrevealedthat
duringFebruaryofthesameyear,hackerstook
controlofacontainership’snavigationalsystemsfor
almost10hours.ThevesselwasnotanAutonomous
orremotecontrolledvessel,buta“conventional”
containership.
3.11 INFORMATIONTECHNOLOGY
TheAutonomousshipwillbedependentoncomputer
systemsnotonlyforthevariousrequiredfunctionsto
sailwithsafety,butalsoforaseriesofupdatesrelated
totheconditionofthevesselwhenatsea,duetothe
factthatphysicalinspectionswillmainlybepossible
inport.AsRødseth,H.,BrageMo,B.(2014)observed,
theuseofKeyPerformanceIndicators(KPIs)willbe
veryusefulinmonitoringdifferentpartsoftheship.
Variousdatawillberecorded,measured,and
analysedinordertomonitortheintegrityoftheship’s
structureandthefunctionalityoftheequipmentand
themachinery.TheRemoteControlCentrewillplay
animportantroleduringthisprocessbycoordinating
andschedulingmaintenanceusingthedatareceived
fromtheship.
3.12 LIABILITY
Liability,asapartoftheinsurancesystem,protects
theinsuredfromtherisksposedbylawsuitsand
claimsalike.
Someofthemostimportantareascoveredarethe
seaworthiness(ashipʹsabilitytoperformthe
contractedvoyagesafely,eitherundercommonlaw,
orwheneverthecontractedpartiesvoluntarilyaccept
the‘HagueVisby’Rules),thecharterparty(acontract
usuallybetweenashipownerandacharterer),the
billoflading(adocumentsignedonbehalfofaship
ownerregardingtheloadedcargoʹsquantity,
condition,potentialharmfulness,andother
parameters),thecollision,andtheliabilityofthemaster.
Althoughmaritimeregulatorymattersareusually
enforcedundertheauspicesoftheIMO,liability
issuesaresubjecttovariousnationaljurisdictions.
Thelawsapplicabletoamarinedisputeandthecourt
towhichthisdisputemaybebrought,dependon
factorssuchaswheretheepisodehappened,its
nature,theflagofthevessels,andthenationalityof
thecrews.
Additionalcontractualprovisionsandlegal
requirementssuchasTheHagueVisbyRules,require
theimplementationofcertainresponsibilitiesbythe
masterandthecrew,thuscreatingadilemmafor
Autonomousships.
Forexample,underTheHagueVisbyRules,
Art.IIIr.2thecareofcargorequiresaphysical
inspectionandhumaninterventionwhenrequiredfor
somegoodssuchasthedangerousones.Wheneveran
unsafeorhazardouscargoneedstobejettisonedor
neutralisedwhileanAutonomousshipisunderway,
onlytheexistenceofacrewonboardislikelyto
preventaccidentsandkeepthevesselseaworthy.
3.13 INSURANCE
Marineinsurancecoversawidespectrumofissues
varyingfromtheHull,Machinery,andCargotoother
ThirdPartyliabilitycoverageandisregulated
throughtheMarineInsuranceActof1906(MIA),
underEnglishlaw.NotonlydoestheActaffect
marineinsuranceforships,cargos,andtheProtection
andIndemnitycover,butithasalsoinfluencedthe
subjectmatterworldwideandhasbeenadoptedby
otherjurisdictionsaswell.Twomodernstatutes,the
ConsumerInsurance(Disclosureand
Representations)Actof2012(“CIDRA”)andthe
InsuranceActof2015,havemadeamendmentsto
insurancelaw.TheInsuranceActof2015inparticular
(2015c.4,aUnitedKingdomActofParliament)makes
significantreformstoinsurancelaw.
Awidelistofprerequisitesischeckedandagreed
beforeashiporitscargo(orboth)areinsured.Oneof
themostimportanttermsinmarineinsuranceisthe
“seaworthiness”ofaship,whichdependsonvarious
factors.AndrewBardot(theexecutiveofficerofthe
InternationalGroupofP&IClubswhosemembers
insure90percentoftheglobalfleet}arguesthat
“Unmannedshipsareillegalunderinternational
conventions,whichsetminimumcrewsizes.Ifdrones
don’tcomplywithsuchrules,they’dbeconsidered
unseaworthyandineligibleforinsurance”9.
3.14 QUALITYASSURANCE
UNCLOSArt.94(4)(a)requiresthateachship,before
registrationandthereafteratappropriateintervals,is
surveyedbyaqualifiedsurveyorofships”.Althougha
numberofclassificationsocietiesarealready
preparingsuitablechecksandcompetentsurveyors
forAutonomousShips,nostandardisationhasbeen
agreedonorintroduced.Anothercodeoftheutmost
importance,notonlyforthesafetybutalsoforthe
QualityAssuranceofthemaritimeindustryistheISM
Code.Thecodeanditscompulsorynaturewillbe
analysedinmoredetailinChapter5,whichfollows.

9http://www.synergy.ie/index.php/articles/healthsafety/item/375rollsroyce
aredevelopingdroneships
346
Inadditiontotheseregulatoryobligations,there
areanumberofQualityStandards,selfimposedby
theindustry,whicharemostlybasedonthe
InternationalOrganizationforStandardization(ISO),
aSwissbasedprivateinternationalstandards
developmentandpublishingbodycomposedof
representativesfromvariousnationalstandards
organizationswithmultiplecommittees.Such
standardsincludeamongstotherstheISO9000:2015
(Internationalstandardsforqualitymanagement)
series,theISO280071:2015Internationalstandards
forShipsandmarinetechnologyGuidelinesfor
PrivateMaritimeSecurityCompanies(PMSC)
providingprivatelycontractedarmedsecurity
personnel(PCASP)onboardships(andproforma
contract),andtheISO/TS29001:2010International
standardsforPetroleum,petrochemical,andnatural
gasindustriesandSectorspecificquality
managementsystems,layingdowntheRequirements
forproductandservicesupplyorganizations.As
previouslymentioned,someclassificationsocieties
havealreadystartedtolaythebasisforquality
standardsfortheautonomousship.However,thereis
notasyetasystematicapproachtothesubject.
4 ISMCODEANDTHEAUTONOMOUSSHIP
TheInternationalManagementCodefortheSafe
OperationsofShipsandforPollutionPrevention
(ISM),whichformschapterIXofSOLAS,was
introducedafteranumberofseriouspollution
accidents.(Adopted:1993‐Intoforce:1998).This
ChaptermakestheInternationalSafetyManagement
(ISM)Code,whichrequiresasafetymanagement
systemtobeestablishedbytheshipowneroranyperson
whohasassumedresponsibilityfortheship(the
ʺCompanyʺ)”,compulsory[15].
TheobjectivesoftheCodearethepreventionof
humaninjuryorlossoflife,theavoidanceofdamage
totheenvironment,andtoensuresafetyatsea.Its
aimistoapplyasafetymanagementsysteminorder
totrainthepersonnelinvolvedintheoperationofa
shiptoreactappropriatelyduringpossibleemergency
situations.Everyorganisation(shippingcompany)is
allowedtodevelopitsownSafetyManagement
System(SMS)usingpolicies,procedures,instructions,
andinternalauditsinordertodiscover,report,and
correctanydeficiencies.
Paragraph5“Masters’Responsibilityand
Authority”,andparagraph6“Resourcesand
Personnel”oftheCodemustbeeitheralteredby
includingadefinitionofa“Shorebased”masterand
“crew/remotecontroloperators”withthesame
responsibilitiesoftheonboardMasterandcrew,or
beadjustedtothenewautonomousship’screwless
naturebyexcludingsuchvesselsfromthe
responsibilitiesofparagraphs5.1.1to5.1.4,6.2,6.6ʺ,
6.7,andparagraph’s7phrasethesafetyofthe
personnel”.Paragraphs5.1.5,5.2and6.1,6.3,6.4,6.5
and7(withoutthephrasethesafetyofthepersonnel”)
shouldcontinuetoapply,regardlessofwhetherthe
crewisonboardorinremotecontrolcentres.
5 CONCLUSIONS
Atpresent,internationalconventions,rules,and
codessuchastheUNCLOS,SOLAS,COLREG,
MARPOL,STCW,ISM,andSAR(tonamebuta
few)donotincludetheAutonomousshipconcept
asadefinition,orasapotentialmodusoperandi.
Furthermore,theexistingregulationsandthe
traditionallyusedphrasingchallengeratherthan
facilitatetheoperationaldeploymentofsuch
vesselsinthefuture.
Acautiousreviewofallrelevantregulatory,
operational,andqualityassuranceframeworks,
followedbytheproperamendmentsisneededin
ordertolegallyshieldandtechnicallyassurethe
Autonomousshipconceptthusmakingitaccepted
byandfavourabletothemaritimecommunityand
theshippingindustryalike.
Throughouttheresearch,itwasobservedthat
therewereanumberofaccidentscausedby
humanerror,affirmingtheusefulnessofthe
Autonomousshipconcept.Nonearaccidentsor
potentialcatastrophespreventedbyhuman
interventionwerementioned(althoughtheyvery
oftenoccur),whichmakesanycomparisontothe
disasterscausedbyhumanmistakesimpossible.It
issuggestedthatfurtherexaminationofsuchnear
incidentswillhelpinunderstandingthe
Autonomousship’srealcontributiontomaritime
safety.
Finally,furtherresearchonissuessuchasthe
ethicalconcernsregardingtheuseofautonomous
systemsreplacinghumans,thepsychological
impactonseafarersofsuchause,thedegradation
ofseamanship,andthepotentiallossoftimeatsea
thatwouldbeexperiencedbyasignificantnumber
ofcompetencemariners,shouldbeconsidered.
REFERENCES
[1]Autonomousships‐WhitePaper(2016),Future
MaritimeNautics,(AccessedMay2017)
http://www.futurenautics.com/2016/11/whitepaper
autonomousships
[2]BlankeM,HenriquesM,BangJ,(2016)“Apreanalysis
onautonomousships”theTechnicalUniversityof
Denmark(DTU).
[3]BryantD.T.(1991)TheHumanElementinShipping
Casualties.ReportpreparedfortheDept.ofTransport,
MarineDirectorate,UnitedKingdom.
[4]BurmeisteraHC,,BruhnaW.etal.(2014),“Can
unmannedshipsimprovenavigational
safety?”,(AccessedMay2017)
http://publications.lib.chalmers.se/records/fulltext/19820
7/local_198207.pdfTransportResearchArena2014,
Paris.
[5]COLREG(1972),ConventionontheInternational
RegulationsforPreventingCollisionsatSea,IMO.
[6]ChrisHolder,VikramKhurana,FayeHarrison,Louisa
Jacobs(2016),Roboticsandlaw:Keylegaland
regulatoryimplicationsoftheroboticsage(PartIofII)
ComputerLaw&SecurityReview32pp383–402.
[7]ChrisHolder,VikramKhurana,JoannaHook,Gregory
Bacon,RachelDay(2016),Roboticsandlaw:Keylegal
andregulatoryimplicationsoftheroboticsage(partIIof
II)ComputerLaw&SecurityReview32pp557–576.
[8]DavidAMindell(2015)Ourrobotsourselves,robotics
andthemythsofautonomy,NewYork:Penguin
RandomHouse.
347
[9]DezeenLimited.(2016).RollsRoyceremotecontrolled
cargoshipas“futureofthemaritimeindustry.”
RetrievedMay2,2017,from
https://www.dezeen.com/2016/06/29/rollsroyceremote
controlledautonomousselfdrivingcargoshipfuture
maritimeindustry/
[10]DNVGL,Maritime,(AccessedMay2017)
https://www.dnvgl.com/maritime/index.html
[11]Endsley,M.R.andJonesD.G.(2012)Designingfor
SituationAwareness:AnApproachtoUserCentered
Design(2ndEdition),TaylorandFrancis,London.
[12]Forbes,(23Oct2017),“RollsRoyceAndGoogle
PartnerToCreateSmarter,AutonomousShipsBasedOn
AIAndMachineLearning”,ArticlebyBernardMarr
https://www.forbes.com/sites/bernardmarr/2017/10/23/r
ollsroyceandgooglepartnertocreatesmarter
autonomousshipsbasedonaiandmachine
learning/#3ddceba16dfe(AccessedOct2017)
[13]HapagLloyd.(2016).“Containershipssoontosail
unmanned?”RetrievedOctober2017from
https://www.hapaglloyd.com/en/newsinsights/
insights/2015/08/containershipssoontosail
unmanned_42532.html
[14]InternationalUnderwritingAssociationofLondon
Limited,(2016),CyberRisksandInsurance.An
IntroductiontoCrossClassCyberLiabilities,London
(AccessedNOVEMBER2017)http://www.
maritimelondon.com/wp
content/uploads/2016/01/005_Cyber_Risks_Combined_1
10116.pdf
[15]INTERNATIONALMARITIMEORGANIZATION.
(1997).Internationalsafetymanagementcode(ISM
code)andguidelinesontheimplementationoftheISM
code.London,InternationalMaritimeOrganization.
(AccessedOctober2017)http://www.imo.org/en/
OurWork/HumanElement/SafetyManagement/Pages/IS
MCode.aspx
[16]IMO(2003).ISPSCode:InternationalShipandPort
FacilitySecurityCodeandSOLASamendmentsadopted
12December2002.London,
Ihttp://www.imo.org/blast/mainframe.asp?topic_id=897
(AccessedNov2017).
[17]IMO(2011).MARPOLConsolidatededition2011:
articles,protocols,annexesandunifiedinterpretationsof
theInternationalConventionforthePreventionof
PollutionfromShips,1973,asmodifiedbythe1978and
1997protocols.http://www.imo.org/en/about/
conventions/listofconventions/pages/international
conventionforthepreventionofpollutionfromships
(marpol).aspx(AccessedNov2017).
[18]IMOeNavigation,InternationalMaritime
Organization,http://www.imo.org/ourwork/safety/
navigation/pages/enavigation.aspx(AccessedMay2017)
[19]IMO,InternationalConventiononMaritimeSearchand
Rescue,(1979),1403UNTS,availableat:
http://www.refworld.org/docid/469224c82.html
(AccessedDecember2017)
[20]IMO(1974),InternationalConventionfortheSafetyof
LifeatSea(SOLAS),http://www.imo.org/
en/About/Conventions/ListOfConventions/Pages/Intern
ationalConventionfortheSafetyofLifeatSea
(SOLAS),1974.aspx(AccessedOctober2017)
[21]IMO,&INTERNATIONALCONFERENCEON
TRAININGANDCERTIFICATIONOFSEAFARERS.
(1993).STCW1978:InternationalConventionon
StandardsofTraining,Certification,andWatchkeeping
forSeafarers,1978:withresolutionsadoptedbythe
InternationalConferenceonTrainingandCertification
ofSeafarers,1978.London,(AccessedNovember2017)
http://www.imo.org/en/OurWork/humanelement/trainin
gcertification/pages/stcwconvention.aspx
[22]ISO9000:2015internationalstandardsforquality
management.Genève,Switzerland,International
OrganizationforStandardization.
https://www.iso.org/standard/45481.html(Accessed
Nov2017)
[23]ISO9001:2015internationalstandardsforquality
managementsystemsrequirements.Genève,
Switzerland,InternationalOrganizationfor
Standardization.https://www.iso.org/iso9001quality
management.html(AccessedNovember2017)
[24]ISO280071:2015(en)InternationalstandardsforShips
andmarinetechnologyGuidelinesforPrivate
MaritimeSecurityCompanies(PMSC)providing
privatelycontractedarmedsecuritypersonnel(PCASP)
onboardships(andproformacontract).Genève,
Switzerland,
https://www.iso.org/obp/ui/#iso:std:iso:28007:1:ed
1:v1:en(AccessedNovember2017)
[25]ISO/TS29001:2010Internationalstandardsfor
Petroleum,petrochemicalandnaturalgasindustries ‐‐
Sectorspecificqualitymanagementsystems‐
Requirementsforproductandservicesupply
organizations.Genève,Switzerland,
https://www.iso.org/standard/55499.html(Accessed
November2017)
[26]Jokioinen,E.(2016).Remoteandautonomousships
thenextsteps.(AccessedMay2017)http://www.rolls
royce.com/~/media/Files/R/Rolls
Royce/documents/customers/marine/shipintel/aawa
whitepaper210616.pdf
[27]KoopmanP.&WagnerM.(2016),Challengesin
AutonomousVehicleTestingandValidation.
[28]Lloyd’sRegister(2016),“Cyberenabledships.
Deployinginformationandcommunicationstechnology
inshipping”Lloyd’sRegister’sapproachtoassurance
Firstedition,February2016.
[29]MarineInsurance(1906)Act
https://www.legislation.gov.uk/ukpga/Edw7/6/41/conte
nts(AccessedNovember2017).
[30]McCallumM.C.,RabyM.,andRothblumA.M.(1996),
“ProceduresforInvestigatingandReportingHuman
FactorsandFatigueContributionstoMarineCasualties.
Washington,D.C.:U.S.Dept.ofTransportation,U.S.
CoastGuardReportNo.CGD0997.ADA323392.
[31]MUNIND9.3:Quantitativeassessment(2015)FP7
GANo314286.
[32]NomaTomotsugu,(2016)ʺExistingconventionsand
unmannedships‐needforchanges?ʺ.WorldMaritime
UniversityDissertation527.http://commons.wmu.se/
all_dissertations/527(AccessedOctober2017).
[33]RødsethH.,BrageMoB.(2014),“MUNINDeliverable
D6.7:Maintenanceindicatorsandmaintenance
managementprinciplesforautonomousengineroom”.
[34]RodsethH.(2015),“RiskAssessmentforanUnmanned
MerchantShip”,TransNav,TheInternationalJournalon
MarineNavigationandSafetyofSeaTransportation
Volume9Number3September2015.
[35]ROLLSROYCEWHITEPAPER:Shipintelligence‐
Transformingfuturemarineoperations,
http://www.rollsroyce.com/productsand
services/marine/shipintelligence.aspx#section
discover/research(AccessedOctober2017).
[36]RothblumA,(2000),“HumanErrorandMarineSafety”,
U.S.CoastGuardResearch&DevelopmentCenter.
(AccessedSeptember2017)http://bowles
langley.com/wp
content/files_mf/humanerrorandmarinesafety26.pdf
[37]UnitedNations,(2008),“AchievingSustainable
DevelopmentandPromotingDevelopment
Cooperation”,NY,NewYork.Retrievedfrom
http://www.un.org/en/ecosoc/docs/pdfs/fina_08
45773.pdf(AccessedMay2017)
[38]UniversityofOslo(UiOFacultyofLaw),(2014)“The
productionofunmannedvesselsanditslegal
implicationsinthemaritimeindustry”
[39]VealR.,TsimplisM.(2017),“TheIntegrationOf
UnmannedShipsIntoTheLexMaritima”,Lloydʹs
MaritimeandCommercialLawQuarterly.
348
https://www.ilaw.com/ilaw/doc/view.htm?id=376831
(AccessedNovember2017).
[40]ZakirulBhuiyan(2016),ArticleonBDMarinersfoundat
http://bdmariners.org/bmcsmagazine2016
autonomousshipsandthefuturezakirulbhuiyan
23/#sthash.U5CVsEIB.dpbs(AccessedMay2017).
... CBM seeks to identify failures early and conduct PM before the failure occurs (Prajapati et al. 2012;Teixeira, Lopes, and Braga, 2020). However, regardless of the cost analysis technique used, CBA studies do not consider several challenges facing unmanned systems, such as lack of personnel during operation periods to conduct maintenance (Komianos, 2018;Chang, Kontovas, Yu, and Yang, 2021;Dreyer & Oltedal, 2019). These periods where maintenance is unavailable raise the system's dependency on non-critical components and the probability of system failure (Chang et al. 2021;Dreyer & Oltedal, 2019). ...
... These comparisons allow for decision makers to identify the better CBM strategies among potential options. There are varying levels of autonomy in the literature, but this study will focus on fully autonomous or unmanned systems (Komianos, 2018). The proposed approach has been demonstrated with an application to a USV case study (Gao, Guo, Zhong, Liang, Wang, and Yi, 2021). ...
... • The proposed approach considers unique maintenance challenges facing unmanned systems which may affect cost. The challenges considered in this study are lack of maintenance personnel while operating, high costs of system failure, and no production value (Komianos, 2018;Chang et al. 2021;Dreyer & Oltedal, 2019;Yang, Vatn, and Utne, 2023). These challenges must be considered when determining the impact of a maintenance strategy on maintenance costs which are not considered in the current studies on CBA of CBM. ...
Article
Recent developments in condition-based maintenance (CBM) have helped make it a promising approach to maintenance cost avoidance in engineering systems. By performing maintenance based on conditions of the component with regards to failure or time, there is potential to avoid the large costs of system shutdown and maintenance delays. However, CBM requires a large investment cost compared to other available maintenance strategies. The investment cost is required for research, development, and implementation. Despite the potential to avoid significant maintenance costs, the large investment cost of CBM makes decision makers hesitant to implement. This study is the first in the literature that attempts to address the problem of conducting a cost-benefit analysis (CBA) for implementing CBM concepts for unmanned systems. This paper proposes a method for conducting a CBA to determine the return on investment (ROI) of potential CBM strategies. The CBA seeks to compare different CBM strategies based on the differences in the various maintenance requirements associated with maintaining a multi-component, unmanned system. The proposed method uses modular dynamic fault tree analysis (MDFTA) with Monte Carlo simulations (MCS) to assess the various maintenance requirements. The proposed method is demonstrated on an unmanned surface vessel (USV) example taken from the literature that consists of 5 subsystems and 71 components. Following this USV example, it is found that selecting different combinations of components for a CBM strategy can have a significant impact on maintenance requirements and ROI by impacting cost avoidances and investment costs.
... To navigate the challenges and complexities of autonomous shipping in international relations, proactive diplomatic efforts, and international collaborations are essential. Establishing clear regulations, standards, and protocols, and fostering international cooperation will be paramount in ensuring the seamless integration and operation of autonomous shipping on a global scale (Fonseca et al.,14,15,32.;Sencila et al.,3,5). ...
... (Kavallieratos et al. 11,13,14) These additions, amongst others, make autonomous ships vulnerable to various cyber threats and attacks. Integrated ships need comprehensive cyber-risk assessments and robust cybersecurity measures, which are essential to safeguard autonomous ships against potential cyber vulnerabilities and ensure the security and integrity of autonomous shipping operations (Yağdereli, 369-381; Tam and Jones, 2,7; Kavallieratos et al. 13,15,16). ...
Preprint
Full-text available
The swift emergence of autonomous shipping stands on the brink of transforming the global landscape of trade and transportation. While it carries the potential for significant advancement, it unearths critical challenges, chiefly in cybersecurity. This chapter embarks on a thorough analysis of the risks autonomous ships face from cyber-attacks, highlighting the imperative for solid cybersecurity strategies in this evolving landscape. It delves into a myriad of advanced cybersecurity approaches, scrutinizing their potential to fortify the maritime cybersecurity arena. Despite these advancements, the chapter underscores the enduring challenges and advocates for comprehensive and global solutions. It emphasizes the crucial role of ongoing evaluation, global collaboration, and standardization in enhancing maritime cybersecurity. An in-depth exploration of contemporary and emerging technologies like advanced encryption and blockchain is undertaken, evaluating their role in bolstering the security of autonomous ships against emerging cyber threats. The chapter culminates by underscoring the paramount importance of worldwide cooperation, continual assessment, and the adoption of avant-garde cybersecurity technologies to shield the future of autonomous shipping from the escalating peril of cyber-attacks.
... This may prevent shipowners from investing in this new technology (Karlis, 2018). While MASS may generate other kind of risks, insurance becomes more complicated since the current insurance, liability and contractual arrangements are established on the assumption that ships are manned (AAWA, 2016;Bergström et al., 2018;Komianos, 2018;Vojković & Milenković, 2020). Hence, questions are raised about whether insurance agencies should compensate losers from accidents when ships are being navigated without a "real" person onboard in hazardous situations (Nawrot & Pepłowska-Dąbrowska, 2019, Tam et al., 2009). ...
... Overall, it is apparent that the configuration of current regulations constrain the deployment of autonomous ships, starting from SOLAS (Safety of Life at Sea) which lays down the minimum standards of safe operations, including construction and equipment, along with other codes and regulations such as COLREG, ISM and STCW (AAWA, 2016;Hogg & Ghosh, 2016;Karlis, 2018;Kim & Mallam, 2020;Komianos, 2018). In this sense, and due to the acceleration in advances in remote controlled and autonomous ships, the IMO began discussions on MASS in 2018. ...
... On the international stage, Comité Maritime International [23] and Fastvold [24] examined the complications of the international legal framework, and the International Maritime Organisation (IMO) organised a Regulatory Scoping Exercise (RSE) aimed at assessing existing regulatory instruments [25], although critics pointed out its limitations in addressing the most intricate regulatory challenges, as pointed out by Ringbom [26]. An overview of crucial international regulations and their associated challenges and gaps was provided by Komianos [27], while Ringbom et al. [28] conducted a comprehensive analysis of the existing regulatory framework for the application and testing of autonomous ships in the Baltic Sea MASS trial areas. Furthermore, the implications of the United Nations Convention on the Law of the Sea (UNCLOS) within the context of MASS was explored by Van Hooydonk [29] and Chang et al. [30]. ...
... While Fig. 5 [72], regulatory scoping exercise [25], and interim guidelines for MASS trials [73] have been made publicly accessible. Apart from that, considerable research efforts have been pursued to identify the gaps in instruments within the existing regulatory, legal and liabilities frameworks [22][23][24], [26][27][28]. ...
... In other industries 'safety' may be seen as a kind of cost-benefit factor but in the maritime industry safety is a separate factor. What the interviewees cannot agree on is whether MASS will increase safety onboard or not [21][22][23][24]. The idea that MASS has the potential to reduce accidents onboard is widespread, still; few see this potential currently realized. ...
Article
Full-text available
This article explores Maritime Autonomous Surface Ships (MASS) through the Technological Innovation Systems (TIS) framework to identify strategies for creating a market for this emerging technology. It examines the current state of TIS components for MASS and the factors shaping their development. Through a literature review and expert interviews, the article highlights key barriers, particularly the cost-benefit ratio, and suggests niche strategies to address barriers. Proposed strategies include the top niche strategy, lead user strategy, and hybridization niche strategy, aimed at overcoming challenges and facilitating broader market adoption of MASS in the future.
... The extent of these definitions is contingent upon the specific objective of the international convention. As a result, the range of situations where the convention can be applied will vary depending on the specific convention (Komianos, 2018). ...
Article
Full-text available
A comprehensive analysis of the Maritime Autonomous Surface Ships (MASS) concept is presented, along with a detailed evaluation of the challenges related to the framework of international maritime conventions. The essential operational procedures that govern the functioning of these ships are thoroughly examined, and a review of the most significant current regulations is conducted, thereby contributing to a clearer understanding of the existing regulatory framework. A descriptive and analytical research methodology has been employed to analyze and interpret legal texts. Following a thorough review of the primary operational procedures and current regulations, the collected data were analyzed and synthesized, identifying several potential solutions and approaches to overcome the challenges within the framework of international maritime conventions. Through this review, various innovative solutions and strategies that can be adopted to address the identified challenges are highlighted. The importance of developing a multidimensional approach 81 that integrates technical, legal, and regulatory aspects to ensure the safety and efficiency of these ships is emphasized.
Article
Full-text available
The MUNIN project is doing a feasibility study on an unmanned bulk carrier on an intercontinental voyage. To develop the technical and operational concepts, MUNIN has used a risk-based design method, based on the Formal Safety Analysis method which is also recommended by the International Mari-time Organization. Scenario analysis has been used to identify risks and to simplify operational scope. Systematic hazard identification has been used to find critical safety and security risks and how to address these. Technology and operational concept testing is using a hypothesis-based test method, where the hypotheses have been created as a result of the risk assessment. Finally, the cost-benefit assessment will also use results from the risk assessment. This paper describes the risk assessment method, some of the most important results and also describes how the results have been or will be used in the different parts of the project.
Article
Full-text available
This project was aimed at identifying strategies for improving current U. S. Coast Guard (USCG) procedures for investigating, reporting, and analyzing fatigue contributions to marine casualties. The focus was on evaluating the contribution of fatigue in vessel and personnel injury casualties. A total of 397 casualties were investigated. Fatigue contributed to 16 percent of the critical vessel casualties and 33 percent of the personnel injury casualties. These estimates were substantially greater than the ones currently available from the USCG Marine Investigations Module (MINMOD) database. Analyses identified three potential indicators of fatigue: (1) the number of fatigue symptoms reported by mariners, (2) the number of hours worked in the 24 hours prior to a casualty; and (3) the number of hours slept in those 24 hours. This study demonstrated the feasibility of using simple procedures to obtain meaningful data on the contribution of fatigue in transportation accidents.
Article
The state of technology is such that unmanned ships are now a realistic prospect. This includes remote-controlled ships and fully autonomous ships. The operation of each presents unique challenges to regulators and other users of the sea. This article considers the ways in which unmanned ships may be integrated within the existing maritime regulatory framework and assesses the ability of such ships and their operators to comply with its requirements. The article argues that, because the onboard presence of seafarers is not an express prerequisite to “ship” status, under the various available defi nitions of the term, unmanned “ships” could be accommodated within the existing legal framework with small modifi cations. It argues that the level of autonomy of an unmanned ship has a profound bearing on its ability to comply with the requirements of this framework and that regulatory guidance on safe unmanned operations and the development of international consensus is essential in order to facilitate the use of the technology in world trade. To the extent that the new technology is commercially beneficial, its use will prevail and either a regulatory regime will need to be developed or the existing one will need to be adjusted. Within this context it is suggested that the main existing legal framework can be interpreted in a way that permits the inclusion of ships into the existing framework and that this is the easier way forward.
Article
In the previous edition of this special series on robotics and law, we explored some of the legal, regulatory and ethical implications of robotic systems and applications. We continue on that theme in this edition, focusing on specific types of robotic systems (medical device robots and nanorobotics) and core legal and regulatory issues, including intellectual property, employment and cyber security. In exploring these areas, our objective remains to start a dialogue about how our existing legal frameworks might need to adapt and change to meet the demands of the robotics age. We then conclude this special series with our views on the future of robotics law and the development of legal practice in this area.
Article
In this edition, we explore some of the legal, regulatory and ethical implications of robots and robotic systems and applications. We begin by giving our view of why this emerging technology will become increasingly prevalent and why it is important that lawyers and regulators play an important role in its development. We go on to address the key legal, regulatory and ethical issues in respect of specific types of robotics, including automated vehicles and healthcare robots. We also focus on the impact that robotics will have on core legal practice areas, including data protection, intellectual property, consumer protection and commercial contracting. Our objective is to identify the key legal and regulatory implications of robotics, and to start a dialogue about how our existing legal framework might need to adapt and change to meet the demands of the robotics age. In the next edition, we will continue our focus on key legal issues in respect of different types of robotics and core legal practice areas relevant to the discussion.
A pre-analysis on autonomous ships" the Technical
  • M Blanke
  • M Henriques
  • J Bang
Blanke M, Henriques M, Bang J, (2016) "A pre-analysis on autonomous ships" the Technical University of Denmark (DTU).
The Human Element in Shipping Casualties
  • D T Bryant
Bryant D.T. (1991) The Human Element in Shipping Casualties. Report prepared for the Dept. of Transport, Marine Directorate, United Kingdom.
Can unmanned ships improve navigational safety?
  • H-C Burmeistera
  • W Bruhna
Burmeistera H-C,, Bruhna W. et al. (2014), "Can unmanned ships improve navigational safety?",(Accessed May 2017)
Our robots ourselves, robotics and the myths of autonomy
  • A David
  • Mindell
David A Mindell (2015) Our robots ourselves, robotics and the myths of autonomy, New York: Penguin Random House.