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Abstract

Recent research has placed episodic reinforcement learning
(RL) alongside model-free and model-based RL on the list of
processes centrally involved in human reward-based learning.
In the present work, we extend the unified account of model-free
and model-based RL developed by Wang et al. (2018) to further
integrate episodic learning. In this account, a generic model-
free "meta-learner" learns to deploy and coordinate among all
of these learning algorithms. The meta-learner learns through
brief encounters with many novel tasks, so that it learns to learn
about new tasks. We show that when equipped with an episodic
memory system inspired by theories of reinstatement and gating,
the meta-learner learns to use the episodic and model-based
learning algorithms observed in humans in a task designed to
dissociate among the influences of various learning strategies.
We discuss implications and predictions of the model.
Keywords: Reinforcement learning; model-based; deep learn-
ing; meta-learning; episodic memory

Introduction
Nearly every decision an intelligent organism makes is in-
formed by its memory of the results of its past decisions. To
be successful, agents must distill the results of past decisions
into memories, then make use of those memories to make bet-
ter decisions in the future. Accordingly, much effort has been
directed toward understanding (1) what humans and animals
store after a sequence of actions and rewards, and (2) how
they use that stored information to appraise the value of future
actions.

Model-free and model-based reinforcement learning (RL;
Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Sutton
& Barto, 1998) offer distinct solutions to these two prob-
lems. Model-free RL stores statistics about the relationship
between states, actions and rewards, and appraises actions by
calculating how frequently they led to reward. Meanwhile,
model-based RL stores estimated state-state transition proba-
bilities, and appraises actions by using this model to simulate
sequences of states to predict future reward. Signatures of both
model-free and model-based learning appear in behavior and
in the brain (e.g. Daw et al., 2011), and a venerable tradition
holds that they are implemented by dissociable neural systems
(for review see Dolan & Dayan, 2013).
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However, the recent theory of meta-reinforcement learning
(meta-RL) proposed that model-free learning, model-based
learning, and their sometimes complex interaction could all be
explained by a simple unified mechanism (Wang et al., 2018).
In meta-RL, a recurrent neural network (RNN) receives a
reward signal as part of its input and is trained by model-
free learning on a series of interrelated tasks to rapidly learn
from this signal. Through this training, the RNN learns to
distill the history of observations, actions, and rewards into
its hidden state (a form of working memory) and to use this
summary to select rewarding actions. In essence, this end
result constitutes a learned reinforcement learning algorithm
that operates in the RNN’s activation dynamics. Critically,
Wang et al. (2017) showed that this meta-learned RL algorithm
can be model-based, even though it was acquired through
model-free learning.

While meta-RL provides a full account of incremental learn-
ing as it is carried out in working memory, it does not account
for the episodic learning processes to which attention has re-
cently been called (Gershman & Daw, 2017). In addition to
learning by incrementally storing recent sequences of behavior
in working memory, humans appear to learn by storing sum-
maries of individual episodes for long periods of time, then
retrieving them when similar contexts are encountered. For
example, cues triggering episodic memory retrieval impact
reward-based learning, both for good and for ill (Bornstein,
Khaw, Shohamy, & Daw, 2017; Vikbladh, Shohamy, & Daw,
2017; Bornstein & Norman, 2017), and distinctive aspects
of episodic memory function contribute to decision-making
behavior (Wimmer, Braun, Daw, & Shohamy, 2014; Wimmer
& Buechel, 2016; Duncan & Shohamy, 2016). Such obser-
vations, along with some fundamental computational insights
(Lengyel & Dayan, 2007), have recently landed episodic learn-
ing a spot beside incremental model-free and model-based
reinforcement learning on the list of processes centrally in-
volved in decision making (Gershman & Daw, 2017).

In the present work, we develop a natural extension to meta-
RL that enables it to integrate episodic learning. The resulting
theory, based on an algorithm introduced to the machine learn-
ing literature by Ritter et al. (2018), explains how incremental
and episodic learning, as well as the coordination between
them can be meta-learned through purely model-free RL. The
episodic meta-RL theory proposes the following:
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1. Meta-RL’s working memory is supplemented by an episodic
memory which stores working memory states.

2. Each state is paired with a perceptual context embedding
that is later used to retrieve the working memory state when
similar perceptual contexts are encountered.

3. The retrieved states are then gated into the working mem-
ory using a parameterized function, whose parameters are
optimized toward the same model-free objective that trains
the working memory dynamics.
This proposal is inspired in part by evidence that episodic

memory retrieval in humans operates through reinstatement,
triggering patterns of neural activity related to those that were
induced by the original encoding of the relevant episode (e.g.,
Xiao et al., 2017), and evidence that reinstatement occurs not
only in perceptual systems, but also recreates patterns of ac-
tivity in neural circuits supporting working memory (Hoskin,
Bornstein, Norman, & Cohen, 2017; Cohen & O’Reilly, 1996).
Our implementation of this proposal draws additional inspira-
tion from recent work on differentiable memory systems (e.g.,
Graves et al., 2016), especially that of Pritzel et al. (2017),
which makes use of context-based retrieval for RL.

To empirically test this model, in this work we compared
its behavior to that of humans observed by Vikbladh et al.
(2017) in a task designed to dissociate the effects of multiple
types of incremental and episodic learning. Vikbladh and
colleagues found evidence of the use of a model-based form
of episodic memory, whereby traces of specific episodes are
retrieved from long-term memory based on visual similarity,
then used along with knowledge of the transition structure of
the environment to select actions. This episodic model-based
learning was present in conjunction with incremental model-
free and incremental model-based learning. In the following
sections, we describe the task in detail and demonstrate that
meta-RL with episodic memory reproduces this model-based
episodic learning and its coordination with incremental model-
based learning. To conclude, we consider directions for future
work, including testable predictions of the theory.

Task
The task we study is a version of the two-step task (Daw
et al., 2011) augmented with episodic cues to previous tri-
als. The task structure, which was inspired by Vikbladh et
al. (2017), is diagrammed in Figure 1. Each trial consisted
of two stages. On the first stage, state s0, the agent was ei-
ther presented with the "no-cue" stimulus (a vector of all
-1’s) on uncued trials, or with a binary vector associated with
a previously seen second-stage context on cued trials (see
Figure 1). In response, the agent chose either a1 or a2 and
transitioned into one of two second-stage states s1 or s2 with
probabilities p(s1|a1) = p(s2|a2) = 0.9 (common transition)
and p(s1|a2) = p(s2|a1) = 0.1 (uncommon transition). These
transition probabilities p were fixed across episodes. On the
second stage, the agent was presented with a stimulus rep-
resenting the context of that second-stage state, followed by
a final step in which it was shown the reward outcome. On

Figure 1: Contextual two-step task modeled after Daw et al. (2011)
and Vikbladh et al. (2017). (Top) Two trial types are shown: uncued
and cued. All trials start in state s0 at the first stage, at which point
agents are presented with either a "no-cue" stimulus or are cued with
a second-stage stimulus seen on a previous trial. Transition probabili-
ties after taking actions a1 or a2 are depicted in the graph. On uncued
trials, s1 and s2 result in Bernoulli rewards with probabilities ra and
rb. On cued trials, transitioning into the same state as in the trial k
during which the cue was first presented results in receiving the same
reward received on trial k, r∗a . (Bottom) Trials within an episode are
split into 4 blocks, with block 3 consisting of cued trials which are
cued with stimuli from block 1, and block 4 cued from block 2.

uncued trials, the states s1 and s2 yielded Bernoulli proba-
bilistic rewards of 0 or 1 according to [ra,rb] = [0.9,0.1] or
[0.1,0.9], with the reward contingencies having a 10% chance
of switching at the beginning of each trial.

On cued trials, if the agent transitioned into the same state
as on the trial k during which the cue was first presented,
the agent was given the exact same reward as on trial k. If
the agent transitioned into the other state, the reward was
determined as on uncued trials. This is the critical feature
of the task for assessing episodic memory use; if the agent
could remember the state entered and reward achieved on the
cue-associated trial, it could act to access or avoid that state,
depending on whether the past trial was rewarded.

The first half of every episode (50 trials) consisted entirely
of uncued trials, and the second half consisted entirely of cued
trials, with trials 51-75 being cued with stimuli from trials
1-25 and trials 76-100 cued with stimuli from trials 26-50,
randomly sampled without replacement. This was done to
reduce autocorrelation in the reward probabilities by enforcing
a minimum of 25 trials between seeing the stimulus on the
second stage and being cued with it on the first stage. The
agent was trained for 10,000 episodes of 100 trials each, and
evaluated with weights fixed on 500 further episodes.

Learning Algorithms
The two-step task with episodic cueing is designed to dissoci-
ate among the influences of four different learning strategies
on choice. First, the incremental model-free strategy pre-
scribes taking the same action that was taken on the last trial
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Figure 2: (Left) A high-level schematic of the recurrent network (LSTM) that comprises the episodic meta-RL (EMRL; Ritter et al., 2018)
agent’s working memory. On each time step the LSTM receives an environment state, the action taken on the previous trial, and the reward
received on the previous trial. The LSTM encodes this information incrementally into its cell state c, and then outputs a policy and value
estimate (not shown). (Middle) The storage operation to long-term memory at a single LSTM time step. Storage is triggered when reward is
received at the end of each two-step trial, at which point the agent appends a perceptual representation of the current context (a "cue") along
with its cell state to a non-parametric store of such items. (Right) The long-term memory retrieval operation which occurs on every time step.
A search is carried out over the cues stored in long-term memory for the closest match to the current cue. The working memory activations
associated with the closest match are retrieved and reinstated to the working memory state.

if it was rewarded, and taking the opposite action if it was not
rewarded, regardless of whether the transition on the previous
trial was common or uncommon. In contrast, the incremental
model-based strategy prescribes taking the same action only
if the previous trial was rewarded and the previous transition
was common. If the previous transition was uncommon and
the trial was rewarded, the agent will take the opposite action.
Episodic model-free and model-based strategies operate like
their incremental counterparts, but with respect to the trial
associated with the cue rather than the immediately previous
trial.

Model
In episodic meta-RL (EMRL; Figure 2; Ritter et al., 2018),
vectors represent working memory states, and a recurrent neu-
ral network, specifically a long short-term memory network
(LSTM; Hochreiter & Schmidhuber, 1997), updates the work-
ing memory state at each time step and uses it to select actions.
To implement context-based reinstatement of the LSTM’s
activations, EMRL augments this working memory with an
episodic memory containing working memory states. Based
on Pritzel et al.’s (2017) differentiable neural dictionary (see
also Blundell et al., 2016), this episodic memory stores a vi-
sual representation of the context along with each item, which
is used at retrieval time to find working memory states stored
in contexts similar to the retrieval context. In our experiments,
the EMRL agent writes to the memory at the end of the each
trial. The agent reads from the memory on every time step by
searching for the perceptual representation in the array with
the smallest cosine distances from the representation of the
current state, then retrieving the associated working memory
state.

The retrieved activations are reinstated through a learned
gating function that arbitrates among the influences on the
current working memory state of (1) current perceptual inputs,
(2) the previous working memory state, and (3) the working
memory state retrieved from long-term memory. This gating

mechanism is a natural extension to the standard LSTM work-
ing memory, which uses gates to arbitrate between new inputs
and the previous working memory state:

ct = i◦ cin + f ◦ cprev,

where ct is the current working memory state, cin is the
agent’s representation of its current input, cprev is the working
memory activation from the previous timestep, and ◦ signifies
elementwise multiplication.

The gates i and f are values between zero and one that allow
(or disallow) inputs and and past working memory activations
into the current state. These gates are computed accordingly:

i = σ(Wxix+Whih+bi)

f = σ(Wx f x+Wh f h+b f ),

where x is the perceptual input, h is a function of the previous
working memory state, and the weight matrices W and bias
vectors b contain learned parameters.

To reinstate working memory activations retrieved from
episodic memory without losing the current contents of work-
ing memory, our architecture adds the retrieved activations to
the current working memory state, after passing them through
a gate that is computed in a manner exactly analogous to the
standard LSTM gates:

ct = i◦ cin + f ◦ cprev + r ◦ cltm

r = σ(Wxrx+Whrh+br)

cltm contains the retrieved activations from long-term mem-
ory. This reinstatement gate r is intended to learn to allow
activations from episodic memory into working memory when
they are useful, but not when they will interfere with the main-
tenance of important information in working memory.

To illustrate how this architecture works in practice, con-
sider the episodic two-step task, wherein the working memory
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keeps track of the reward probabilities at each outcome state.
In order to infer these quantities, it must maintain informa-
tion about recent actions and states. When the agent receives
reward in the final step of a two-step trial, it will save the
activations of its current working memory - which encode the
agent’s outcome state and reward - to its long-term memory.
These are saved along with a representation of the context
stimulus, which models the participant’s visual representation
of the object images or fractals in the human experiments
(Daw et al., 2011; Vikbladh et al., 2017).

At the beginning of a future two-step trial, the agent will
encounter this same stimulus. It will then search its long-term
memory for matches for that stimulus, and will retrieve the
hidden state from the past trial. Crucially, this hidden state will
encode the state the agent encountered at the end of the last
exposure to that stimulus as well as the reward received and the
action taken. Possessing this critical episodic information, the
agent is able to exploit the structure of the episodic two-step
task. Specifically, it can learn to implement model-based or
model-free valuation with respect to trial information retrieved
from long-term memory.

Methods and Results
After training, we assessed EMRL’s performance on a set of
evaluation episodes which followed the same structure as the
training episodes. To isolate the behavior of the learned learn-
ing algorithm operating in the activations, all data shown and
described in this section were obtained with the weights frozen.
To verify that the observed effects are consistent across trained
agents, we performed the following analyses on 10 instances
of each agent type, where each instance was trained with a
different random seed. The reported statistical tests measure
the variability across these agent instances. Agent optimiza-
tion was performed by an implementation of asynchronous
actor-critic (Mnih et al., 2016).

First, to determine whether EMRL’s episodic memory was
performing effectively, we compared the reward EMRL ac-
quired with that acquired by a control meta-RL agent (MRL;
Figure 3a) that was trained and tested in exactly the same way,
but did not have access to episodic memory (i.e., its r-gate was
always fixed to zero). EMRL achieved more reward overall
than MRL (t(9)=4.28, p=1.21e-4). This increase in reward
came entirely from the cued trials: the difference between
reward obtained by EMRL and that obtained by MRL in the
cued trials was highly significant (t(9)=7.205, p=1e-6), while
the difference in uncued trials was not significant (t(9)=-1.09,
p=0.289). These results provide evidence that EMRL was able
to use its episodic memory to acquire the additional reward
available during cued trials.

Next, we asked whether EMRL exhibited the canonical
patterns of incremental model-based and model-free behav-
ior first described in the two-step task by (Daw et al., 2011).
We formally tested for these patterns of behavior by perform-
ing ANOVAs on the probabilities of repeating the previous
action, with two binary factors: whether the previous trial

was rewarded, and whether the previous trial had a common
transition. A main effect of previous trial being rewarded
would indicate a model-free strategy, while an interaction be-
tween previous trial being rewarded and previous trial being
common would indicate a model-based strategy1. On uncued
trials (Figure 3b), we found a strong effect of the interaction
term (F(1,9)=842, p=3.34e-10), indicating that the learned
algorithm correctly exploited the transition structure of the
task when no episodic information was available. This be-
havior reproduces the main two-step task result from Wang
et al. (2017). The main effect of reward was not significant,
indicating the absence of model-free behavior (F(1,9)=3.462,
p=0.096). The main effect of transition type was also not
significant F(1,9)=2.944, p=0.120). On cued trials (Figure 3c),
we also found an effect of the interaction term (F(1,9)=53.78,
p=4.4e-5), indicating that EMRL continued to use the incre-
mental strategy during the cued trials. The main effect of re-
ward was not significant, indicating the absence of model-free
behavior (F(1,9)=0.170, p=0.690). The main effect of transi-
tion type was also not significant (F(1,9)=5.017, p=0.052).

Next, most centrally, we asked whether EMRL could apply
model-based reasoning to information retrieved from episodic
memory (Figure 3d). We performed the same ANOVA de-
scribed above, but using as factors: whether the past cue-
associated trial was rewarded and whether the past cue-
associated trial had a common transition. Since our task
guaranteed receiving the same reward if the agent reached
the same state as the past trial, the agent should prefer to take
the opposite action as on the past trial if it experienced an
uncommon transition and received reward on that trial. We
indeed found a strong effect of the interaction term in this
analysis (F(1,9)=36.1, p=2e-4), and non-significant main ef-
fects of reward and transition type (F(1,9)=4.354, p=0.665;
F(1,9)=4.132, p=0.073). Note that we only performed this
analysis on cued trials because the factors would be undefined
on uncued trials.

To supplement the ANOVA analysis, we fit a probabilistic
choice model to EMRL’s behavior, similar to the model that
Vikbladh et al. (2017) fit to their human data. This model
casts participants’ choices as a softmax of the weighted sum
of valuations from the four valuation strategies. Fitting this
model yields estimates of the weight on each strategy (see
Supplement for full details). In accordance with the ANOVA
results, binomial sign tests on the estimated weights (Figure 4)
revealed a significant contribution of incremental model-based
learning (cued trials, p=0.002; uncued trials, p=0.002) and
episodic model-based learning (cued trials, p=0.002), and no
significant effect of incremental model-free learning (cued
trials, p=0.754; uncued trials, p=0.109) or episodic model-free
learning (cued trials, p=0.344).

Overall, the ANOVA and model fit results confirm that
EMRL exhibits both incremental and episodic model-based
learning, but not episodic model-free learning, in accord with
the human behavior observed by Vikbladh et al. (2017). The
results show further that, like MRL (Wang et al., 2018), EMRL
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(a) Performance (b) Incremental Uncued (c) Incremental Cued (d) Episodic

Figure 3: EMRL achieves more reward than MRL and exhibits both incremental and episodic model-based behavior. Bar heights indicate
means over 10 trained agents with different random seeds. Error bars indicate the standard error of the mean over the 10 trained agents. (a)
Average reward obtained by MRL and EMRL on cued and uncued trials. EMRL earns more reward than MRL on cued trials, suggesting that
EMRL can use its episodic memory to exploit the task’s episodic structure. For comparison, a random policy achieves 0.5 reward on this task.
(b) Proportion of uncued trials in which EMRL repeated the action it took on the previous trial (t−1), split by whether it received reward on
t−1 and whether the transition on t−1 was common. The interaction between those two factors is a sign of model-based learning1. (c) Same
as b, but for cued trials. (d) Same as b, but split by whether EMRL received reward on the past trial k when the cue was first encountered and
whether the transition on trial k was common.

-2

-1

0

1

2

3

4

5

6

7

8

Incremental
model-free

Incremental
model-based

Episodic
model-free

Episodic
model-based

uncued trials
cued trials

Pa
ra

m
et

er
 e

st
im

at
e

**

** **

Figure 4: Parameter estimates in a model with weighted contributions
of four decision systems. The estimates provide evidence that incre-
mental and episodic model-based valuations contribute to EMRL’s
behavior. The model was fit to EMRL’s actions separately on cued
and uncued trials. Each gray dot denotes the model fit parameter for
one of the 10 trained agents. ** denotes significant difference from 0
at p<0.005 by binomial sign test.

does not use incremental model-free learning, opting instead
for the model-based incremental learning that achieves greater
reward in the two-step task.

Analysis of Reinstatement Gate Activations
To see what kind of gating function the r-gates learned, we
carried out preliminary analyses of the r-gate activations. Fig-
ure 5a shows timecourses (averaged over 500 episodes) of
the r-gate mean for a single trained agent. Each timecourse
represents one two-step trial step; that is, whether it was a step

1Akam, Costa, and Dayan (2015) demonstrated that there exist
sophisticated model-free strategies which can, under the right condi-
tions, produce this reward-by-transition interaction. See Wang et al.
(2018), Supp. Figures 6 and 7 for an in depth analysis of this issue
with respect to MRL.

where the agent took an action, saw an outcome, or received
a reward. The timecourses show that the r-gate was more
open during cued trials compared to uncued trials, consistent
with the presence of useful episodic information on cued trials.
Further, the r-gate was most open during the first stage of
each trial. This is sensible, because this is the step on which
reinstated information can be used to select an action. Figure
5b compares the r-gate mean for a single trained agent on cued
trials when the agent selected the optimal or the opposite ac-
tion. The r-gate was significantly more open on correct trials,
consistent with the idea that retrieved information is necessary
to select the correct action on these trials.

While these effects are very clear, and the latter is highly
significant, their magnitude is very small. Indeed, the r-gates
allow a substantial proportion of the retrieved vector into work-
ing memory even during uncued trials when the information is
not useful, and this proportion only increases slightly during
the cued trials, where the information is critical. This sug-
gests that mechanisms other than complete gating in/out are
at play. For instance, the r-gates may subtly modify retrieved
vectors to help the recurrent dynamics and policy layer deter-
mine whether or not to use the retrieved information. Further
work will be needed to understand the solution the r-gates
have found, and the insights gained may extend to biolog-
ical gating systems. Alternatively, applying regularization,
such as dropout, may lead to more easily interpretable neural
mechanisms, as in Banino et al. (2018).

Discussion
The experiments in this work establish that when trained via
model-free learning on a task distribution with both incre-
mental and episodic reward structure, EMRL learns to si-
multaneously execute incremental and episodic model-based
learning algorithms. This ability to deploy and coordinate
both learning algorithms mirrors that of the participants in the
study by Vikbladh and colleagues, providing initial support
for EMRL as a model of human decision making. EMRL
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(a) r-gate throughout an episode (b) r-gate correct vs incorrect

Figure 5: (a) Timecourse of the mean values of the reinstatement
gate averaged over 500 episodes, split by stage of the trial. (b) Mean
values of the reinstatement gate on cued trials on which the agent
selected the optimal action (correct) and on cued trials on which it
selected the opposite action (incorrect), averaged over all units.

thus provides an empirically grounded unified account of in-
cremental and episodic learning processes, whereby a single
model-free learning mechanism learns to execute and deploy
the variety of learning algorithms observed in humans. In
addition to support from behavioral data, the model accords
in principle with a large neuroscientific literature supporting
the notion that episodic memory retrieval recreates patterns of
activity in neural circuits supporting working memory (Cohen
& O’Reilly, 1996; Staresina, Henson, Kriegeskorte, & Alink,
2012; Hoskin et al., 2017; Xiao et al., 2017). Further, EMRL’s
system for controlling the influence of reinstated activations
on working memory is formally equivalent to LSTM gates,
which functionally resemble gating mechanisms hypothesized
to operate in prefrontal cortex (Chatham & Badre, 2015)

It is worth pointing out why EMRL learns to use the val-
uation strategies that it does, and does not learn to use the
others (summarized in Figure 4). In essence, optimized neural
systems like MRL and EMRL will approach optimal behavior
on their training distribution, subject to the limitations of the
architecture design and efficacy of stochastic gradient learning.
In this work, the training distribution was the episodic two-step
task itself, which yields greater reward to model-based than
model-free strategies. EMRL’s architecture, with essential fea-
tures such as associative retrieval and differentiable working
memory, enables a broad spectrum of strategies – including
model-based and model-free – to be learned via gradient de-
scent. Accordingly, EMRL learns to use model-based instead
of model-free strategies because (1) it can, and (2) model-
based strategies earn more reward on the training distribution.
Future work may investigate ecologically inspired training
distributions (Anderson, 1990) that lead generic learning algo-
rithms like MRL/EMRL to reproduce human-like deviations
from optimality in laboratory tasks.

The key takeaway from the success so far of EMRL is a
proof of the sufficiency of a small set of well motivated ar-
chitectural components, when trained to optimize a specific
objective function, to produce a variety of episodic and in-
cremental learning processes observed in humans. The ar-
chitecture components are: 1) a recurrent working memory

with 2) a non-parametric store of working memory activations
that can be retrieved by context and reinstated through 3) a
learned gating system. The objective function is total reward
achieved on a distribution of learning tasks which contain both
incremental and episodic structure.

This model makes a number of predictions which may be
tested through further empirical work:
• Pattern reinstatement has been observed during the retrieval

of static stimuli (e.g., Bornstein & Norman, 2017); EMRL
predicts that such pattern reinstatement should also be mea-
surable during the retrieval of memories that encode se-
quences of events or the results of computation carried out
in WM.

• There is considerable evidence that gating mechanisms regu-
late the flow of information into and out of working memory
(Chatham & Badre, 2015). Analogous experiments should
find evidence for a similar mechanism that gates reinstated
activations from long-term memory into working memory.

• It should be possible to modulate the degree of WM pattern
reinstatement on a given task by training participants on
variants of that task where memory retrieval is either useful
or distracting. EMRL predicts specifically that pattern rein-
statement in PFC should be affected by such manipulations,
while reinstatement in hippocampus should be unaffected.
In summary, this work presents a new theory that explains

the collage of learning processes observed in humans during
decision making as an interplay between working and episodic
memory that is itself learned through training to maximize
reward on a distribution of learning tasks. Future work may
test the predictions made by this model and test the model’s
ability to replicate additional sources of empirical data.
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Supplement: Model Fit Details
The probability of the agent taking action a0 in the starting state s0
at trial t was modeled as the softmax of the weighted sum of the
differences between the value estimates for the two actions for each
of the four valuation strategies:

P(a0) =
1

1+ exp(−(βi f Qdiff
i f +βibQdiff

ib +βe f Qdiff
e f +βebQdiff

eb ))

where Qdiff = Q(s0,a0)−Q(s0,a1). At each trial t, the incremen-
tal model-free value estimate Qi f (s0,a) for the action a taken on trial
t was updated as

Qi f (s0,a)← Qi f (s0,a)+α(rt −Qi f (s0,a)).

The incremental model-based value estimate Qib(s0,a) was com-
puted as

Qib(s0,a) = p(s1,a)∗R(s1)+ p(s2,a)∗R(s2),

where s1 and s2 are the two second-stage states, R(s) is the agent’s
estimate of the reward received in state s and p(s,a) is the probability
of transitioning from state s0 into state s after taking action a. R(s)
was updated as

R(s)← R(s)+α(rt −R(s)).

The episodic model-free value estimate Qe f (s0,a) was set equal to
1 if on the past (cue-associated) trial, the agent took action a and was
rewarded, or took the other action and was not rewarded; Qe f (s0,a)
was 0 otherwise. Qeb(s0,a) was 1 if on the past (cue-associated) trial,
the agent took action a and this resulted in a common transition with
reward or an uncommon transition without reward, or if the agent
took the other action and this resulted in a common transition without
reward or an uncommon transition with reward. Qeb(s0,a) was 0
otherwise.

All incrementally learned values were updated with the same
learning rate α, for a total of five parameters. These were estimated
by maximum likelihood on the concatenated data of all 500 episodes,
with incrementally learned values reset to 0.5 at the beginning of
each episode. Cued and uncued trials were fit separately. Note that
episodic valuation is undefined during uncued trials.
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