Content uploaded by Jibran Haider
Author content
All content in this area was uploaded by Jibran Haider on Jul 03, 2018
Content may be subject to copyright.
Motivation Governing equations Methodology Implementation Results Conclusions
An upwind cell centred Finite Volume Method
for nearly incompressible explicit solid dynamics
Jibran Haider a, Chun Hean Lee a, Antonio J. Gil a, Antonio Huerta b& Javier Bonetc
aZienkiewicz Centre for Computational Engineering (ZCCE),
College of Engineering, Swansea University, UK
bLaboratory of Computational Methods and Numerical Analysis (LaCàN),
Universitat Politèchnica de Catalunya (UPC BarcelonaTech), Spain
cUniversity of Greenwich, London, UK
ECCOMAS ECCM-ECFD Conference 2018 (11th -15th June 2018)
http://www.jibranhaider.weebly.com
June 20, 2018
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 1
Motivation Governing equations Methodology Implementation Results Conclusions
Large strain solid dynamics
Objectives:
•Simulate fast-transient solid dynamic problems.
•Develop an efficient low order numerical scheme.
Displacement based FEM/FVM formulations:
•Linear tetrahedral elements suffer from
×Volumetric locking in nearly incompressible materials.
×Reduced order of convergence for stresses and strains.
×Poor performance in bending and shock scenarios.
Proposed mixed formulation:
•First order conservation laws in a Total Lagrangian formalism.
•An upwind cell-centred Finite Volume scheme.
•Entitled TOtal Lagrangian Upwind Cell-centred FVM for
Hyperbolic conservation laws (TOUCH).
•Implemented using the open-source OpenFOAM code.
[Mixed formulation in OpenFOAM]
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 4
Motivation Governing equations Methodology Implementation Results Conclusions
Large strain solid dynamics
Objectives:
•Simulate fast-transient solid dynamic problems.
•Develop an efficient low order numerical scheme.
Displacement based FEM/FVM formulations:
•Linear tetrahedral elements suffer from
×Volumetric locking in nearly incompressible materials.
×Reduced order of convergence for stresses and strains.
×Poor performance in bending and shock scenarios.
Proposed mixed formulation:
•First order conservation laws in a Total Lagrangian formalism.
•An upwind cell-centred Finite Volume scheme.
•Entitled TOtal Lagrangian Upwind Cell-centred FVM for
Hyperbolic conservation laws (TOUCH).
•Implemented using the open-source OpenFOAM code.
[Mixed formulation in OpenFOAM]
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 4
Motivation Governing equations Methodology Implementation Results Conclusions
Large strain solid dynamics
Objectives:
•Simulate fast-transient solid dynamic problems.
•Develop an efficient low order numerical scheme.
Displacement based FEM/FVM formulations:
•Linear tetrahedral elements suffer from
×Volumetric locking in nearly incompressible materials.
×Reduced order of convergence for stresses and strains.
×Poor performance in bending and shock scenarios.
Proposed mixed formulation:
•First order conservation laws in a Total Lagrangian formalism.
•An upwind cell-centred Finite Volume scheme.
•Entitled TOtal Lagrangian Upwind Cell-centred FVM for
Hyperbolic conservation laws (TOUCH).
•Implemented using the open-source OpenFOAM code.
[Mixed formulation in OpenFOAM]
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 4
Motivation Governing equations Methodology Implementation Results Conclusions
Total Lagrangian formulation
Conservation laws
•Linear momentum
∂p
∂t=DIV P(F) + ρ0b;p=ρ0v
•Deformation gradient
∂F
∂t=DIV p
ρ0
⊗I
Additional equations
•Cofactor of deformation
∂H
∂t=CURL p
ρ0
F
•Jacobian of deformation
∂J
∂t=DIV HTp
ρ0
•Total energy
∂E
∂t=DIV 1
ρ0
PTp−Q+s
1
x,
1
X
3
x,
3
X
2
x,
2
X
)t,X(φ=x
dV
JdV=dv
Xd
XdF=xd
AdH=ad
Ad
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 6
Motivation Governing equations Methodology Implementation Results Conclusions
Total Lagrangian formulation
Conservation laws
•Linear momentum
∂p
∂t=DIV P(F) + ρ0b;p=ρ0v
•Deformation gradient
∂F
∂t=DIV p
ρ0
⊗I
Additional equations
•Cofactor of deformation
∂H
∂t=CURL p
ρ0
F
•Jacobian of deformation
∂J
∂t=DIV HTp
ρ0
•Total energy
∂E
∂t=DIV 1
ρ0
PTp−Q+s
1
x,
1
X
3
x,
3
X
2
x,
2
X
)t,X(φ=x
dV
JdV=dv
Xd
XdF=xd
AdH=ad
Ad
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 6
Motivation Governing equations Methodology Implementation Results Conclusions
Total Lagrangian formulation
Conservation laws
•Linear momentum
∂p
∂t=DIV P(F) + ρ0b;p=ρ0v
•Deformation gradient
∂F
∂t=DIV p
ρ0
⊗I
Additional equations
•Cofactor of deformation
∂H
∂t=CURL p
ρ0
F
•Jacobian of deformation
∂J
∂t=DIV HTp
ρ0
•Total energy
∂E
∂t=DIV 1
ρ0
PTp−Q+s
1
x,
1
X
3
x,
3
X
2
x,
2
X
)t,X(φ=x
dV
JdV=dv
Xd
XdF=xd
AdH=ad
Ad
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 6
Motivation Governing equations Methodology Implementation Results Conclusions
Total Lagrangian formulation
Conservation laws
•Linear momentum
∂p
∂t=DIV P(F) + ρ0b;p=ρ0v
•Deformation gradient
∂F
∂t=DIV p
ρ0
⊗I
Additional equations
•Cofactor of deformation
∂H
∂t=CURL p
ρ0
F
•Jacobian of deformation
∂J
∂t=DIV HTp
ρ0
•Total energy
∂E
∂t=DIV 1
ρ0
PTp−Q+s
1
x,
1
X
3
x,
3
X
2
x,
2
X
)t,X(φ=x
dV
JdV=dv
Xd
XdF=xd
AdH=ad
Ad
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 6
Motivation Governing equations Methodology Implementation Results Conclusions
Total Lagrangian formulation
Conservation laws
•Linear momentum
∂p
∂t=DIV P(F) + ρ0b;p=ρ0v
•Deformation gradient
∂F
∂t=DIV p
ρ0
⊗I
Additional equations
•Cofactor of deformation
∂H
∂t=CURL p
ρ0
F
•Jacobian of deformation
∂J
∂t=DIV HTp
ρ0
•Total energy
∂E
∂t=DIV 1
ρ0
PTp−Q+s
1
x,
1
X
3
x,
3
X
2
x,
2
X
)t,X(φ=x
dV
JdV=dv
Xd
XdF=xd
AdH=ad
Ad
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 6
Motivation Governing equations Methodology Implementation Results Conclusions
Hyperbolic system
First order conservation laws
∂U
∂t=∂FI
∂XI
+S;∀I=1,2,3
U=
p
F
H
J
E
;FN=FINI=
P N
1
ρ0p⊗N
F1
ρ0p⊗N
H:1
ρ0p⊗N
1
ρ0PTp·N−Q·N
;S=
ρ0b
0
0
0
s
Aims to bridge the gap between CFD and computational solid dynamics.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 7
Motivation Governing equations Methodology Implementation Results Conclusions
Hyperbolic system
First order conservation laws
∂U
∂t=∂FI
∂XI
+S;∀I=1,2,3
U=
p
F
H
J
E
;FN=FINI=
P N
1
ρ0p⊗N
F1
ρ0p⊗N
H:1
ρ0p⊗N
1
ρ0PTp·N−Q·N
;S=
ρ0b
0
0
0
s
Aims to bridge the gap between CFD and computational solid dynamics.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 7
Motivation Governing equations Methodology Implementation Results Conclusions
Hyperbolic system
First order conservation laws
∂U
∂t=∂FI
∂XI
+S;∀I=1,2,3
U=
p
F
H
J
E
;FN=FINI=
P N
1
ρ0p⊗N
F1
ρ0p⊗N
H:1
ρ0p⊗N
1
ρ0PTp·N−Q·N
;S=
ρ0b
0
0
0
s
Aims to bridge the gap between CFD and computational solid dynamics.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 7
Motivation Governing equations Methodology Implementation Results Conclusions
Hyperbolic system
First order conservation laws
∂U
∂t=∂FI
∂XI
+S;∀I=1,2,3
U=
p
F
H
J
E
;FN=FINI=
P N
1
ρ0p⊗N
F1
ρ0p⊗N
H:1
ρ0p⊗N
1
ρ0PTp·N−Q·N
;S=
ρ0b
0
0
0
s
Aims to bridge the gap between CFD and computational solid dynamics.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 7
Motivation Governing equations Methodology Implementation Results Conclusions
Hyperbolic system
First order conservation laws
∂U
∂t=∂FI
∂XI
+S;∀I=1,2,3
U=
p
F
H
J
E
;FN=FINI=
P N
1
ρ0p⊗N
F1
ρ0p⊗N
H:1
ρ0p⊗N
1
ρ0PTp·N−Q·N
;S=
ρ0b
0
0
0
s
Aims to bridge the gap between CFD and computational solid dynamics.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 7
Motivation Governing equations Methodology Implementation Results Conclusions
Outline
1. Motivation
2. Governing equations
3. Numerical methodology
Spatial discretisation
Flux computation
Involutions
4. OpenFOAM implementation
5. Results
6. Conclusions
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 8
Motivation Governing equations Methodology Implementation Results Conclusions
Outline
1. Motivation
2. Governing equations
3. Numerical methodology
Spatial discretisation
Flux computation
Involutions
4. OpenFOAM implementation
5. Results
6. Conclusions
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 9
Motivation Governing equations Methodology Implementation Results Conclusions
Finite volume methodology
Conservation equations for an arbitrary element:
dUe
dt =1
Ωe
0ZΩe
0
3
X
I=1
∂FI
∂XI
dΩ0+Se=1
Ωe
0Z∂Ωe
0
FNdA +Se
Standard Godunov-type CC-FVM
dUe
dt =1
Ωe
0
X
f∈Λf
e
FC
Nef kCef k
+Se
eFC
Nef
kCef kΩe
0
Alternative nodal CC-FVM
dUe
dt =1
Ωe
0
X
a∈Λa
e
FC
Nea kCeak
+Se
FC
Nea
kCeak
Ωe
0
e
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 10
Motivation Governing equations Methodology Implementation Results Conclusions
Finite volume methodology
Conservation equations for an arbitrary element:
dUe
dt =1
Ωe
0ZΩe
0
3
X
I=1
∂FI
∂XI
dΩ0+Se=1
Ωe
0Z∂Ωe
0
FNdA +Se
Standard Godunov-type CC-FVM
dUe
dt =1
Ωe
0
X
f∈Λf
e
FC
Nef kCef k
+Se
eFC
Nef
kCef kΩe
0
Alternative nodal CC-FVM
dUe
dt =1
Ωe
0
X
a∈Λa
e
FC
Nea kCeak
+Se
FC
Nea
kCeak
Ωe
0
e
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 10
Motivation Governing equations Methodology Implementation Results Conclusions
Finite volume methodology
Conservation equations for an arbitrary element:
dUe
dt =1
Ωe
0ZΩe
0
3
X
I=1
∂FI
∂XI
dΩ0+Se=1
Ωe
0Z∂Ωe
0
FNdA +Se
Standard Godunov-type CC-FVM
dUe
dt =1
Ωe
0
X
f∈Λf
e
FC
Nef kCef k
+Se
eFC
Nef
kCef kΩe
0
Alternative nodal CC-FVM
dUe
dt =1
Ωe
0
X
a∈Λa
e
FC
Nea kCeak
+Se
FC
Nea
kCeak
Ωe
0
e
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 10
Motivation Governing equations Methodology Implementation Results Conclusions
Finite volume methodology
Conservation equations for an arbitrary element:
dUe
dt =1
Ωe
0ZΩe
0
3
X
I=1
∂FI
∂XI
dΩ0+Se=1
Ωe
0Z∂Ωe
0
FNdA +Se
Standard Godunov-type CC-FVM
dUe
dt =1
Ωe
0
X
f∈Λf
e
FC
Nef kCef k
+Se
eFC
Nef
kCef kΩe
0
Alternative nodal CC-FVM
dUe
dt =1
Ωe
0
X
a∈Λa
e
FC
Nea kCeak
+Se
FC
Nea
kCeak
Ωe
0
e
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 10
Motivation Governing equations Methodology Implementation Results Conclusions
Finite volume methodology
Standard Godunov-type CC-FVM
dUe
dt =1
Ωe
0
X
f∈Λf
e
FC
Nef kCef k
+Se
w
dpe
dt =1
Ωe
0X
f∈Λf
e
tC
fkCef k+ρ0be
dFe
dt =1
Ωe
0X
f∈Λf
e
pC
f
ρ0
⊗Cef
dHe
dt =Fe
1
Ωe
0X
f∈Λf
e
pC
f
ρ0
⊗Cef
dJe
dt =He:1
Ωe
0X
f∈Λf
e
pC
f
ρ0
⊗Cef
dEe
dt =1
Ωe
0X
f∈Λf
e
pC
f
ρ0
·tC
f!kCef k
Alternative nodal CC-FVM
dUe
dt =1
Ωe
0
X
a∈Λa
e
FC
Nea kCeak
+Se
w
dpe
dt =1
Ωe
0X
a∈Λa
e
tC
ea kCeak+ρ0be
dFe
dt =1
Ωe
0X
a∈Λa
e
pC
a
ρ0
⊗Cea
dHe
dt =Fe
1
Ωe
0X
a∈Λa
e
pC
a
ρ0
⊗Cea
dJe
dt =He:1
Ωe
0X
a∈Λa
e
pC
a
ρ0
⊗Cea
dEe
dt =1
Ωe
0X
a∈Λa
e pC
a
ρ0
·tC
ea!kCea k
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 11
Motivation Governing equations Methodology Implementation Results Conclusions
Finite volume methodology
Standard Godunov-type CC-FVM
dUe
dt =1
Ωe
0
X
f∈Λf
e
FC
Nef kCef k
+Se
w
dpe
dt =1
Ωe
0X
f∈Λf
e
tC
fkCef k+ρ0be
dFe
dt =1
Ωe
0X
f∈Λf
e
pC
f
ρ0
⊗Cef
dHe
dt =Fe
1
Ωe
0X
f∈Λf
e
pC
f
ρ0
⊗Cef
dJe
dt =He:1
Ωe
0X
f∈Λf
e
pC
f
ρ0
⊗Cef
dEe
dt =1
Ωe
0X
f∈Λf
e
pC
f
ρ0
·tC
f!kCef k
Alternative nodal CC-FVM
dUe
dt =1
Ωe
0
X
a∈Λa
e
FC
Nea kCeak
+Se
w
dpe
dt =1
Ωe
0X
a∈Λa
e
tC
ea kCeak+ρ0be
dFe
dt =1
Ωe
0X
a∈Λa
e
pC
a
ρ0
⊗Cea
dHe
dt =Fe
1
Ωe
0X
a∈Λa
e
pC
a
ρ0
⊗Cea
dJe
dt =He:1
Ωe
0X
a∈Λa
e
pC
a
ρ0
⊗Cea
dEe
dt =1
Ωe
0X
a∈Λa
e pC
a
ρ0
·tC
ea!kCea k
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 11
Motivation Governing equations Methodology Implementation Results Conclusions
Outline
1. Motivation
2. Governing equations
3. Numerical methodology
Spatial discretisation
Flux computation
Involutions
4. OpenFOAM implementation
5. Results
6. Conclusions
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 12
Motivation Governing equations Methodology Implementation Results Conclusions
Godunov-type flux
where flux Jacobian matrix ANef := ∂FNef
∂U
pC
f=1
2(p−
ef +p+
ef ) + 1
2St
ef (t+
ef −t−
ef )
tC
f=1
2(t−
ef +t+
ef ) + 1
2Sp
ef (p+
ef −p−
ef )
St
ef =1
cp
(nef ⊗nef ) + 1
cs
(I−nef ⊗nef )
Sp
ef =cp(nef ⊗nef ) + cs(I−nef ⊗nef )
Interface states U−,+
f:
Least-square gradient operator and Barth & Jespersen slope limiter.
XEnsures second order spatial accuracy.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 13
Riemann solver:
FC
Nef U−
f,U+
f=1
2hFNef (U−
f) + FNef (U+
f)i
| {z }
average
Motivation Governing equations Methodology Implementation Results Conclusions
Godunov-type flux
where flux Jacobian matrix ANef := ∂FNef
∂U
pC
f=1
2(p−
ef +p+
ef ) + 1
2St
ef (t+
ef −t−
ef )
tC
f=1
2(t−
ef +t+
ef ) + 1
2Sp
ef (p+
ef −p−
ef )
St
ef =1
cp
(nef ⊗nef ) + 1
cs
(I−nef ⊗nef )
Sp
ef =cp(nef ⊗nef ) + cs(I−nef ⊗nef )
Interface states U−,+
f:
Least-square gradient operator and Barth & Jespersen slope limiter.
XEnsures second order spatial accuracy.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 13
Riemann solver:
FC
Nef U−
f,U+
f=1
2hFNef (U−
f) + FNef (U+
f)i
| {z }
Unstable flux
X
Motivation Governing equations Methodology Implementation Results Conclusions
Godunov-type flux
where flux Jacobian matrix ANef := ∂FNef
∂U
pC
f=1
2(p−
ef +p+
ef ) + 1
2St
ef (t+
ef −t−
ef )
tC
f=1
2(t−
ef +t+
ef ) + 1
2Sp
ef (p+
ef −p−
ef )
St
ef =1
cp
(nef ⊗nef ) + 1
cs
(I−nef ⊗nef )
Sp
ef =cp(nef ⊗nef ) + cs(I−nef ⊗nef )
Interface states U−,+
f:
Least-square gradient operator and Barth & Jespersen slope limiter.
XEnsures second order spatial accuracy.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 13
Riemann solver:
FC
Nef U−
f,U+
f=1
2hFNef (U−
f) + FNef (U+
f)i
| {z }
Unstable flux
−1
2ZU+
f
U−
fANef dU
| {z }
Upwinding stabilisation
X
Motivation Governing equations Methodology Implementation Results Conclusions
Godunov-type flux
where flux Jacobian matrix ANef := ∂FNef
∂U
pC
f=1
2(p−
ef +p+
ef ) + 1
2St
ef (t+
ef −t−
ef )
tC
f=1
2(t−
ef +t+
ef ) + 1
2Sp
ef (p+
ef −p−
ef )
St
ef =1
cp
(nef ⊗nef ) + 1
cs
(I−nef ⊗nef )
Sp
ef =cp(nef ⊗nef ) + cs(I−nef ⊗nef )
Interface states U−,+
f:
Least-square gradient operator and Barth & Jespersen slope limiter.
XEnsures second order spatial accuracy.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 13
Acoustic Riemann solver:
FC
Nef U−
f,U+
f=1
2hFNef (U−
f) + FNef (U+
f)i
| {z }
Unstable flux
−1
2ANef U+
f−U−
f
| {z }
Upwinding stabilisation
X
Motivation Governing equations Methodology Implementation Results Conclusions
Godunov-type flux
where flux Jacobian matrix ANef := ∂FNef
∂U
pC
f=1
2(p−
ef +p+
ef ) + 1
2St
ef (t+
ef −t−
ef )
tC
f=1
2(t−
ef +t+
ef ) + 1
2Sp
ef (p+
ef −p−
ef )
St
ef =1
cp
(nef ⊗nef ) + 1
cs
(I−nef ⊗nef )
Sp
ef =cp(nef ⊗nef ) + cs(I−nef ⊗nef )
Interface states U−,+
f:
Least-square gradient operator and Barth & Jespersen slope limiter.
XEnsures second order spatial accuracy.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 13
Acoustic Riemann solver:
FC
Nef U−
f,U+
f=1
2hFNef (U−
f) + FNef (U+
f)i
| {z }
Unstable flux
−1
2ANef U+
f−U−
f
| {z }
Upwinding stabilisation
X
Motivation Governing equations Methodology Implementation Results Conclusions
Godunov-type flux
where flux Jacobian matrix ANef := ∂FNef
∂U
pC
f=1
2(p−
ef +p+
ef ) + 1
2St
ef (t+
ef −t−
ef )
tC
f=1
2(t−
ef +t+
ef ) + 1
2Sp
ef (p+
ef −p−
ef )
St
ef =1
cp
(nef ⊗nef ) + 1
cs
(I−nef ⊗nef )
Sp
ef =cp(nef ⊗nef ) + cs(I−nef ⊗nef )
Interface states U−,+
f:
Least-square gradient operator and Barth & Jespersen slope limiter.
XEnsures second order spatial accuracy.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 13
Acoustic Riemann solver:
FC
Nef U−
f,U+
f=1
2hFNef (U−
f) + FNef (U+
f)i
| {z }
Unstable flux
−1
2ANef U+
f−U−
f
| {z }
Upwinding stabilisation
X
Motivation Governing equations Methodology Implementation Results Conclusions
Outline
1. Motivation
2. Governing equations
3. Numerical methodology
Spatial discretisation
Flux computation
Involutions
4. OpenFOAM implementation
5. Results
6. Conclusions
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 14
Motivation Governing equations Methodology Implementation Results Conclusions
Involutive constraints
Conservation of deformation gradient:∂F
∂t=DIV p
ρ0
⊗ICURL ˙
F=0
Conservation of cofactor of deformation:∂H
∂t=CURL p
ρ0
FDIV ˙
H=0
Three involution-free methodologies
XGodunov-type constrained transport algorithm C-TOUCH 1.
XGodunov-type penalisation based scheme P-TOUCH 1.
XAlternative nodal scheme X-GLACE [Kluth & Desprès 2010; Georges et al. 2017 ].
1J. Haider, C. H. Lee, A. J. Gil and J. Bonet. “A first order hyperbolic framework for large strain computational solid
dynamics: An upwind cell centred Total Lagrangian scheme”, IJNME (2017), 109(3): 407–456.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 15
Motivation Governing equations Methodology Implementation Results Conclusions
Involutive constraints
Conservation of deformation gradient:∂F
∂t=DIV p
ρ0
⊗ICURL ˙
F=0
Conservation of cofactor of deformation:∂H
∂t=CURL p
ρ0
FDIV ˙
H=0
Three involution-free methodologies
XGodunov-type constrained transport algorithm C-TOUCH 1.
XGodunov-type penalisation based scheme P-TOUCH 1.
XAlternative nodal scheme X-GLACE [Kluth & Desprès 2010; Georges et al. 2017 ].
1J. Haider, C. H. Lee, A. J. Gil and J. Bonet. “A first order hyperbolic framework for large strain computational solid
dynamics: An upwind cell centred Total Lagrangian scheme”, IJNME (2017), 109(3): 407–456.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 15
Motivation Governing equations Methodology Implementation Results Conclusions
Involutive constraints
Conservation of deformation gradient:∂F
∂t=DIV p
ρ0
⊗ICURL ˙
F=0
Conservation of cofactor of deformation:∂H
∂t=CURL p
ρ0
FDIV ˙
H=0
Three involution-free methodologies
XGodunov-type constrained transport algorithm C-TOUCH 1.
XGodunov-type penalisation based scheme P-TOUCH 1.
XAlternative nodal scheme X-GLACE [Kluth & Desprès 2010; Georges et al. 2017 ].
1J. Haider, C. H. Lee, A. J. Gil and J. Bonet. “A first order hyperbolic framework for large strain computational solid
dynamics: An upwind cell centred Total Lagrangian scheme”, IJNME (2017), 109(3): 407–456.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 15
Motivation Governing equations Methodology Implementation Results Conclusions
Involutive constraints
Conservation of deformation gradient:∂F
∂t=DIV p
ρ0
⊗ICURL ˙
F=0
Conservation of cofactor of deformation:∂H
∂t=CURL p
ρ0
FDIV ˙
H=0
Three involution-free methodologies
XGodunov-type constrained transport algorithm C-TOUCH 1.
XGodunov-type penalisation based scheme P-TOUCH 1.
XAlternative nodal scheme X-GLACE [Kluth & Desprès 2010; Georges et al. 2017 ].
1J. Haider, C. H. Lee, A. J. Gil and J. Bonet. “A first order hyperbolic framework for large strain computational solid
dynamics: An upwind cell centred Total Lagrangian scheme”, IJNME (2017), 109(3): 407–456.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 15
Motivation Governing equations Methodology Implementation Results Conclusions
OpenFOAM for solids
A high-end object oriented software package in C++ widely used in the CFD community.
Existing solid mechanics in OpenFOAM
×Displacement based implicit dynamics.
×Linear elastic material with small/moderate
strain deformation.
×Poor performance in bending and shock
dominated scenarios.
Contribution to OpenFOAM
XA novel solid dynamics tool-kit.
XAdvanced constitutive models.
XParallel computing (excellent scalability).
XSoon to be open-sourced.
Explicit solid dynamics
applications
solvers
solidFoam
utilities
initialConditions
src
boundaryConditions
models
schemes
tutorials
Allwmake
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 17
Motivation Governing equations Methodology Implementation Results Conclusions
OpenFOAM for solids
A high-end object oriented software package in C++ widely used in the CFD community.
Existing solid mechanics in OpenFOAM
×Displacement based implicit dynamics.
×Linear elastic material with small/moderate
strain deformation.
×Poor performance in bending and shock
dominated scenarios.
Contribution to OpenFOAM
XA novel solid dynamics tool-kit.
XAdvanced constitutive models.
XParallel computing (excellent scalability).
XSoon to be open-sourced.
Explicit solid dynamics
applications
solvers
solidFoam
utilities
initialConditions
src
boundaryConditions
models
schemes
tutorials
Allwmake
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 17
Motivation Governing equations Methodology Implementation Results Conclusions
OpenFOAM for solids
A high-end object oriented software package in C++ widely used in the CFD community.
Existing solid mechanics in OpenFOAM
×Displacement based implicit dynamics.
×Linear elastic material with small/moderate
strain deformation.
×Poor performance in bending and shock
dominated scenarios.
Contribution to OpenFOAM
XA novel solid dynamics tool-kit.
XAdvanced constitutive models.
XParallel computing (excellent scalability).
XSoon to be open-sourced.
Explicit solid dynamics
applications
solvers
solidFoam
utilities
initialConditions
src
boundaryConditions
models
schemes
tutorials
Allwmake
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 17
Motivation Governing equations Methodology Implementation Results Conclusions
Outline
1. Motivation
2. Governing equations
3. Numerical methodology
4. OpenFOAM implementation
5. Results
Convergence
Momentum preservation
Benchmarking
Parallel performance
Algorithm robustness
6. Conclusions
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 18
Motivation Governing equations Methodology Implementation Results Conclusions
Outline
1. Motivation
2. Governing equations
3. Numerical methodology
4. OpenFOAM implementation
5. Results
Convergence
Momentum preservation
Benchmarking
Parallel performance
Algorithm robustness
6. Conclusions
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 19
Motivation Governing equations Methodology Implementation Results Conclusions
Low dispersion cube
Velocity
10−2 10−1 100
10−7
10−6
10−5
10−4
Grid Size (m)
L2 Norm Error
vx(C-T OUCH)
vy(C-T OUCH)
vz(C-T OUCH)
vx(P-TO UCH)
vy(P-TO UCH)
vz(P-TO UCH)
vx(X-GL ACE)
vy(X-GL ACE)
vz(X-GL ACE)
slope = 2
Stress
10−2 10−1 100
10−7
10−6
10−5
10−4
Grid Size (m)
L2 Norm Error
Pxx (C-TO UCH)
Pyy (C-T OUCH)
Pzz (C-T OUCH)
Pxx (P-TO UCH)
Pyy (P-TO UCH)
Pzz (P-TO UCH)
Pxx (X-GLA CE)
Pyy (X-GL ACE)
Pzz (X-G LACE)
slope = 2
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 20
Problem: Unit side cube, linear elastic material, ρ0=1100 kg/m3,E=17 MPa and ν=0.3.
Motivation Governing equations Methodology Implementation Results Conclusions
Outline
1. Motivation
2. Governing equations
3. Numerical methodology
4. OpenFOAM implementation
5. Results
Convergence
Momentum preservation
Benchmarking
Parallel performance
Algorithm robustness
6. Conclusions
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 21
Motivation Governing equations Methodology Implementation Results Conclusions
Spinning top
Global angular momentum
0 0.25 0.5 0.75 1
-1
0
1
2
3
410-4
Global linear momentum
0 0.25 0.5 0.75 1
-4
-2
0
2
4
610-17
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 22
Problem: Neo-Hookean material, ρ0=1000 kg/m3,E=50.05 kPa, ν=0.3and Ω = 40 rad/s.
Motivation Governing equations Methodology Implementation Results Conclusions
Outline
1. Motivation
2. Governing equations
3. Numerical methodology
4. OpenFOAM implementation
5. Results
Convergence
Momentum preservation
Benchmarking
Parallel performance
Algorithm robustness
6. Conclusions
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 23
Motivation Governing equations Methodology Implementation Results Conclusions
Twisting column
X, x
Y, y
(−0.5,0,0.5)m
(0.5,6,−0.5)m
Z, z
ω0= Ω [0,sin(πY /2H),0]Trad/s
H= 6 m
t=0.09 s
Pressure (Pa)
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 24
Problem: Neo-Hookean material, ρ0=1100 kg/m3,E=17 MPa, ν=0.499 and Ω = 105 rad/s.
Motivation Governing equations Methodology Implementation Results Conclusions
Twisting column
Height of column
0 0.2 0.4 0.6 0.8 1
0.6
0.8
1
1.2
1.4
Time (s)
Height (h/H)
4×24×4
8×48×8
16×9 6×16
Numerical dissipation
0 0.2 0.4 0.6 0.8 1
40
50
60
70
80
90
100
110
Time (s)
(ENumerical /E)×1 00 (%)
4×24×4
8×48×8
16 ×96×16
conserve d
XConvergence proved as the mesh is refined.
XLesser numerical dissipation with increase in mesh density.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 25
Problem: Neo-Hookean material, ρ0=1100 kg/m3,E=17 MPa, ν=0.499 and Ω = 200 rad/s.
Motivation Governing equations Methodology Implementation Results Conclusions
Twisting column
Height of column
0 0.2 0.4 0.6 0.8 1
0.6
0.8
1
1.2
1.4
Time (s)
Height (h/H)
4×24×4
8×48×8
16×9 6×16
Numerical dissipation
0 0.2 0.4 0.6 0.8 1
40
50
60
70
80
90
100
110
Time (s)
(ENumerical /E)×1 00 (%)
4×24×4
8×48×8
16 ×96×16
conserve d
XConvergence proved as the mesh is refined.
XLesser numerical dissipation with increase in mesh density.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 25
Problem: Neo-Hookean material, ρ0=1100 kg/m3,E=17 MPa, ν=0.499 and Ω = 200 rad/s.
Motivation Governing equations Methodology Implementation Results Conclusions
Twisting column: Comparison against alternative schemes
t=0.1s
C-TOUCH P-TOUCH X-GLACE B-bar Taylor Hood JST-SPH SUPG-SPH
Pressure (Pa)
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 26
Problem: Neo-Hookean material, ρ0=1100 kg/m3,E=17 MPa, ν=0.495 and Ω = 105 rad/s.
Motivation Governing equations Methodology Implementation Results Conclusions
Outline
1. Motivation
2. Governing equations
3. Numerical methodology
4. OpenFOAM implementation
5. Results
Convergence
Momentum preservation
Benchmarking
Parallel performance
Algorithm robustness
6. Conclusions
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 27
Motivation Governing equations Methodology Implementation Results Conclusions
Scalability
Speedup ratio =Tserial
Tparallel
100101102103
100
101
102
103
Parallel efficiency =Speedup
Ncores
0 64 128 192 256 320 384 448 512
0
20
40
60
80
100
120
140
XSpeedup of over 200 achieved on 512 cores on the cluster at Swansea University.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 28
Motivation Governing equations Methodology Implementation Results Conclusions
Scalability
Speedup ratio =Tserial
Tparallel
100101102103
100
101
102
103
Parallel efficiency =Speedup
Ncores
0 64 128 192 256 320 384 448 512
0
20
40
60
80
100
120
140
XSpeedup of over 200 achieved on 512 cores on the cluster at Swansea University.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 28
Motivation Governing equations Methodology Implementation Results Conclusions
Outline
1. Motivation
2. Governing equations
3. Numerical methodology
4. OpenFOAM implementation
5. Results
Convergence
Momentum preservation
Benchmarking
Parallel performance
Algorithm robustness
6. Conclusions
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 29
Motivation Governing equations Methodology Implementation Results Conclusions
Stent-like structure
X, x
Y, y
Z, z
T= 0.1mm
Do= 10 mm
tb= [0,0, T ]TkPa
L= 20 mm
[Stent-like structure]
t=500µs
Pressure (Pa)
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 30
Problem: Neo-Hookean material, ρ0=1100 kg/m3,E=17 MPa, ν=0.45 and T=−100 kPa.
Motivation Governing equations Methodology Implementation Results Conclusions
Stent-like structure
X, x
Y, y
Z, z
T= 0.1mm
Do= 10 mm
tb= [0,0, T ]TkPa
L= 20 mm
[Stent-like structure]
t=500µs
Pressure (Pa)
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 30
Problem: Neo-Hookean material, ρ0=1100 kg/m3,E=17 MPa, ν=0.499 &T=−100 kPa.
Motivation Governing equations Methodology Implementation Results Conclusions
Imploding bottle
X, x
Y, y
Z, z
Do=102 mm
H=192 mm
X, x
Y, y
Z, z
15mm35mm
10mm
40mm
140mm
T=1 mm
p
[Imploding bottle]
t=15 ms t=19 ms
Pressure (Pa)
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 31
Problem: Neo-Hookean material, ρ0=1100 kg/m3,E=17 MPa, ν=0.3&p=2000 Pa.
Motivation Governing equations Methodology Implementation Results Conclusions
Imploding bottle: Mesh refinement
t=19 ms
251896 cells 435960 cells 251896 cells 435960 cells
Deformation
Pressure (Pa)
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 32
Problem: Neo-Hookean material, ρ0=1100 kg/m3,E=17 MPa, ν=0.3&p=2000 Pa.
Motivation Governing equations Methodology Implementation Results Conclusions
Imploding bottle: Mesh refinement
t=19 ms
251896 cells 435960 cells 251896 cells 435960 cells
Deformation
Pressure (Pa)
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 32
Problem: Neo-Hookean material, ρ0=1100 kg/m3,E=17 MPa, ν=0.3&p=2000 Pa.
Motivation Governing equations Methodology Implementation Results Conclusions
Crushing of a thin cylinder
X, x
Y, y
Z, z
Do=200 mm
H=113.9mm
T=0.247 mm
db= [0, dmax,0]T
0 1 2 3 4 5
10-3
0
0.5
1
1.5
2
[Crushing cylinder]
t=1.8ms t=2.2ms
t=2.6ms t=5.0ms
Pressure (Pa)
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 33
Problem: Neo-Hookean material, ρ0=1000 kg/m3,E=5.56 GPa, ν=0.3,D0/t≈800 &dmax =−4.5mm.
Motivation Governing equations Methodology Implementation Results Conclusions
Crushing of a thin cylinder
X, x
Y, y
Z, z
Do=200 mm
H=113.9mm
T=0.247 mm
db= [0, dmax,0]T
0 1 2 3 4 5
10-3
0
0.5
1
1.5
2
[Crushing cylinder]
t=1.8ms t=2.2ms
t=2.6ms t=5.0ms
Pressure (Pa)
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 33
Problem: Neo-Hookean material, ρ0=1000 kg/m3,E=5.56 GPa, ν=0.3,D0/t≈800 &dmax =−4.5mm.
Motivation Governing equations Methodology Implementation Results Conclusions
Crushing of a thin cylinder: Mesh refinement
t=5ms
90000 cells 160000 cells 250000 cells
Pressure (Pa)
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 34
Problem: Neo-Hookean material, ρ0=1000 kg/m3,E=5.56 GPa, ν=0.3,D0/t≈800 &dmax =4.5mm.
Motivation Governing equations Methodology Implementation Results Conclusions
Conclusions
Summary:
•A Total Lagrangian cell centred finite volume scheme for explicit fast solid dynamic applications.
•An acoustic upwind Riemann solver is employed for the evaluation of contact fluxes.
•Velocities and stresses display the same rate of convergence.
•Robust scheme without locking and pressure checker-boarding.
Complex problems Plasticity Contact mechanics Thin-walled structures
On-going work:
•Open-source release of the solid dynamics tool-kit on GitHub.
•Thermo-mechanical constitutive model.
•Advanced Roe’s Riemann solver with robust shock capturing.
•Ability to handle tetrahedral/polyhedral elements.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 36
Motivation Governing equations Methodology Implementation Results Conclusions
Conclusions
Summary:
•A Total Lagrangian cell centred finite volume scheme for explicit fast solid dynamic applications.
•An acoustic upwind Riemann solver is employed for the evaluation of contact fluxes.
•Velocities and stresses display the same rate of convergence.
•Robust scheme without locking and pressure checker-boarding.
Complex problems Plasticity Contact mechanics Thin-walled structures
On-going work:
•Open-source release of the solid dynamics tool-kit on GitHub.
•Thermo-mechanical constitutive model.
•Advanced Roe’s Riemann solver with robust shock capturing.
•Ability to handle tetrahedral/polyhedral elements.
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 36
Motivation Governing equations Methodology Implementation Results Conclusions
Journal publications
•J. Haider, C. H. Lee, A. J. Gil, A . Huerta and J. Bonet. “An upwind cell centred Total Lagrangian finite volume
algorithm for nearly incompressible explicit solid dynamic applications”, CMAME (Accepted).
•J. Haider, C. H. Lee, A. J. Gil and J. Bonet. “A first order hyperbolic framework for large strain computational solid
dynamics: An upwind cell centred Total Lagrangian scheme”, IJNME (2017), 109(3): 407–456.
•C. H. Lee, A. J. Gil, J. Bonet and S. Kulasegaram. "An variationally consistent Streamline Upwind Petrov-Galerkin
Smooth Particle Hydrodynamics algorithm for large strain explicit fast dynamics,CMAME (2017), 318: 514–536.
•A. J. Gil, C. H. Lee, J. Bonet and R. Ortigosa. "A first order hyperbolic framework for large strain computational solid
dynamics. Part II: Total Lagrangian compressible, nearly incompressible and truly incompressible elasticity",
CMAME (2016); 300: 146-181.
•J. Bonet, A. J. Gil, C. H. Lee, M. Aguirre and R. Ortigosa. "A first order hyperbolic framework for large strain
computational solid dynamics. Part I: Total Lagrangian isothermal elasticity", CMAME (2015); 283: 689-732.
•M. Aguirre, A. J. Gil, J. Bonet and C. H. Lee. "An upwind vertex centred Finite Volume solver for Lagrangian solid
dynamics", JCP (2015); 300: 387-422.
•C. H. Lee, A. J. Gil and J. Bonet. "Development of a cell centred upwind finite volume algorithm for a new
conservation law formulation in structural dynamics", Computers and Structures (2013); 118: 13-38.
•J. Haider, C. H. Lee, A. J. Gil, A . Huerta and J. Bonet. “An open source OpenFOAM solver for large strain explicit
solid dynamics”, Computer Physics Communications (In preparation).
•J. Bonet, A. J. Gil, C. H. Lee, A. Huerta and J. Haider. "Adapted Roe’s Riemann solver in explicit fast solid
dynamics,JCP (In preparation).
Jibran Haider ( Swansea University, UK ) Explicit solid dynamics in OpenFOAM 37