Cloud-fog infrastructure revolutionized the modern world, providing, low latency, high efficiency, better security, faster decision making, while lowering operational cost [1]. However, integration of Smart Grid (SGs) with cloud-fog platform provides high quality supply and secure generation, transmission and distribution of power; uninterrupted demand-supply chain management. In this paper,
... [Show full abstract] integration of SG uses cloud-fog based environment is proposed, for better resource distribution. Six fogs are considered in different geographical regions. Whereas, each fog is connected with clusters, each cluster consists of 500 smart homes. In order to fulfill energy demand of homes, fogs receive a number of requests, where different load balancing algorithms are used on Virtual Machines (VMs), in order to provide efficient Response Time (RT) and Processing Time (PT). However, in this paper, Max-Min algorithm is proposed, for load balancing with advanced service broker policy. Considering the proposed load balancing algorithm, results are compared with Round Robin (RR), from simulations, we conclude, proposed load balancing algorithms outperform than RR.