ArticlePDF Available

Progress on microstructure design of high performance cu-based shape memory alloys

Authors:

Abstract

Cu-based shape memory alloys (Cu-SMAs) have the broadest application prospect owing to their excellent shape memory properties, high electrical and thermal conductivities, wide adjustable range of transformation temperature, as well as low cost. However, the ordinary polycrystalline Cu-SMAs show poor ductility and fatigue life because of suffering from intergranular fracture and low transformation critical stress, which are serious obstacles to wide application of the Cu-SMAs. Fortunately, these issues could be solved well by microstructure design. This paper reviewed the major progress in microstructure design of the Cu-based SMAs with high superelasticity and high transformation critical stress in the recent years. The results indicate that according to some principles such as obtaining grain orientation with high phase transformation strain, increasing grain size, obtaining straight low-energy GBs, etc., high superelasticity of above 7% can be obtained in columnar-gained or bamboo-liked-grained Cu-SMAs. Then, high superelasticity of above 5% and high transformation critical stress of above 650 MPa can be obtained through reasonable heat treatments. © 2016, The Editorial Board of Materials China. All right reserved.
35 11
2016 11
中国材料进展
MATERIALS CHINA Vol郾 35摇 No郾 11
Nov郾 2016
收稿日期:2015 - 10 - 19
基金项目:国家重点研发计划资助项目(2016YFB0700505 ) ; 国家
自然科学基金项目(51574027 ) ; 中央高校基本科研业
务费专项资金资助项目(FRF-TP -14 -089 A2)
第一作者:黄海友,, 1979 年生,副研究员
通讯作者:谢建新,, 1958 ,中国工程院院士,
, Email: jxxie@ mater郾 ustb edu郾 cn
DOI: 10郾 7502 / j郾 issn郾 1674-3962郾 2016郾 11 04
性能 Cu 基形状记忆合金组织设计研究进展
黄海友1,王伟丽1,刘记立2,谢建新1,2
(1 北京科技大学 现代交通金属材料与加工技术北京实验室,北京 100083)
(2 北京科技大学 新金属材料国家重点实验室,北京 100083)
谢建
:Cu 基形状记忆合金以其良好的形状记忆性能优秀的导电导热性能相变温度可调范围
宽以及价格低廉等诸多优点,成为具 有重 要发 展前 的一 状记 但普通多晶组织 Cu
形状记忆合金在应用时存在塑性差易发生晶界开裂疲劳寿命短马氏体相变临界应力低等问
,严重制约了其应用范围,通过合理的组织设计可 解决 问题 综述了近年来高超弹性
高马氏体相变临界应力 Cu 基形状记忆合金组织设计方面的研究进展研究发现,按照获得具有高
相变应变的晶粒取向获得大的晶粒尺度获得平直的低能晶界等组织设计原则制备的竹节晶组织
和柱状晶组织 Cu 基形状记忆合金的超弹性可达到 7 % 以上再经热处理析出贝氏体强化相后,
获得超弹性大于 5% , 马氏体相变临界应力大于 650 MPa 的优秀性能
关键词:综述; Cu 基形状记忆合金;组织设计;超弹性; 氏体
中图分类号:TG139郾 6摇 文献标识码:A摇摇文章编号:1674-3962(2016)11-0835-08
Progress on Microstructure Design of High Performance
Cu鄄Based Shape Memory Alloys
HUANG Haiyou1, WANG Weili1, LIU Jili2, XIE Jianxin1 ,2
(1郾 Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Beijing 100083, China)
(2郾 State Key Laboratory for Advanced Metals and Materials, University of Science and
Technology Beijing, Beijing 100083, China)
Abstract:Cu鄄based shape memory alloys (Cu鄄SMAs) have the broadest application prospect owing to their excellent
shape memory properties, high electrical and thermal conductivities, wide adjustable range of transformation temperature, as
well as low cost. However, the ordinary polycrystalline Cu鄄SMAs show poor ductility and fatigue life because of suffering
from intergranular fracture and low transformation critical stress, which are serious obstacles to wide application of the Cu鄄
SMAs. Fortunately, these issues could be solved well by microstructure design. This paper reviewed the major progress in
microstructure design of the Cu鄄based SMAs with high superelasticity and high transformation critical stress in the recent
years. The results indicate that according to some principles such as obtaining grain orientation with high phase
transformation strain, increasing grain size, obtaining straight low鄄energy GBs, etc. , high superelasticity of above 7% can
be obtained in columnar鄄gained or bamboo鄄liked鄄grained Cu鄄SMAs. Then, high superelasticity of above 5% and high
transformation critical stress of above 650 MPa can be obtained through reasonable heat treatments.
Key words:review; shape memory alloy; microstructure design; superelasticity; bainite
1
形状记合金 ( Shape Memory Alloys, SMAs) 是一种
集感知与驱动功能于一体的智能型功能材料1932
瑞典物理学 魻lander 首次发现在低温下发生形变的 Au-
Cd 合金,加热后能够恢复其原来的形状[1] ,这个早观
察到形状记忆效应 道开 , 形状 合金
研究已经历了 80 年的 Cu 基形状记忆合金具有
形状记忆性能优良,价格低廉(只有 Ni-Ti 合金的 1 / 10 )、
网络出版时间:2016-12-02 15:26:13
网络出版地址:http://www.cnki.net/kcms/detail/61.1473.TG.20161202.1526.008.html
中国材料进展 35
导电和
[2] ,但在实 , Cu
易发生晶 疲劳寿命短强度,
重制约了其可应用范围
普通多晶组织 Cu 基形状记忆合金易发生晶界开裂的
根源在于: 淤Cu 基形状记忆合金的弹性各向异性因
例如 Cu-Al-Ni Cu-Al-Mn 合金的弹性各向异性因
A= 2C44 / ( C11 -C12 ) 抑13[3] , Cu-Zn-Al A= 15[ 4] ,
Ni-Ti A= 2[5] , C11 C12 C44 为弹性刚
; 于Cu 基形状记忆合金的马氏体相变应变具有 取向
依赖性,当沿 ,
相变应变差能达到 8% [ 6-8] 大的各向异性因子和相
变应变强取向依赖 存在,造成 取向 间形
和相变极不协调在晶 变连 条件 束下,
粒取向随机分布的 多晶 晶界 , 三叉
界处产生大的应力集中,从而易引发晶界开[8 -10]
正是由于上述问题的存在,导致普通多 Cu 基形状
记忆合金的实际超弹性应变(仅有 3% ~ 4% ) 形状记忆
效应疲劳性能和加工 远低 Ni- Ti
,只能在较小的形记忆 和较 循环 条件
下使用,极大限制了其异的 记忆 的发 [6,7]
同时,普通多 Cu 基形状记忆合金较差的冷加工性能
增大了其加工成薄 细管 的工 度和
,严重阻碍了 Cu 基形状记忆合金的发展与大规模应
因此,提高 Cu 基形状记忆合金形变与相变协调能
降低晶界应力集中提升晶界强度是改善多晶 Cu
形状记忆合金使用性能和加工成形性能的关键
2组织因素对超弹性的影响
通过对多 Cu 基形状记忆合金的组织结构进行合理
的设计,例如通过 高取 ,低多 粒间
取向差异,;
通过改变晶界形 ,减弱晶界的约束作用,可以减少晶
界应力集中,可以有效的改善多晶 Cu 基形状记忆合
的使用性能和成形加工性能为了获得高超弹性 Cu 基形
状记忆合金的组织 原则,首先需要明确各种组织因
(晶粒取向和尺寸,晶界形貌面积分布方向和类型
)对超弹性的影响规律和显著性
21晶粒取向
马氏体相变产生的相 变决 合金 弹性
变和形状 , ,
具有强各向异性[11] 采用晶体学 象理方法,
形状应变和点阵变 阵进 ,可以 晶体
取向与超弹性应变之间的关系1是分别利用 Sachs
型和 Taylor 模型 的用 三角 示的 Cu -Al - Mn
合金拉 形时 11' 变等 线 Sachs
Taylor 模型的主要区 在于 用了不同 晶界 束条
,其中 Sachs 模型不考虑晶界约束[12, 13] ,Taylor
型采用了完全晶界约束条件[14- 16]
1摇 唯象理论方法计算的 Cu-Al-Mn 合金相变应变与晶体取向的关系: ( a) Sachs 模型 [13 ] ,
(b) Taylor 模型[16 ]
Fig郾 1摇 The relationship between the transformation strain of Cu-Al-Mn SMAs and crystallographic
orientation calculated by phenomenological theory: (a) Sachs model[ 13] , (b) Taylor model[16]
从图 1看出,于无 Sachs
,当拉伸轴取向为< 015 > ,
10郾 3% ; 取向为<111>,有最小值 2郾 0% , 两者
8郾 3% 而对于考虑完全晶界约束作用的 Taylor 模型,
织构取向沿<001>,相变应变达到最大 9郾 4 % , 当织
构取 向沿 < 011 > , 1郾 5% ,
7郾 9% 无论采用哪种模型计算,都显示出晶粒取向 1
1相变应变 响程 8% ,,
向对合金的超弹性性能具有决定性影响
除了理论计算, 果也 了这 ,
638
11 黄海友等:性能 Cu 基形状记忆合金组织设计研究进展
过轧制热处理 Cu- Al -Mn - Ni ,沿 RD、
宽度方向 TD RD 45 方向,
<110 >、<111 >、 < 102 > , 2 , RD
45毅向上 获得 6郾 8% 超弹 ,TD 向超
弹性应变(2% ) 的近 3郾 5 [13]
2摇 Cu-Al-Mn-Ni 轧制板材不同方向的超弹性应力-变曲线[17]
Fig郾 2摇 Tensile stress-stain curves in the loading direction RD, 45毅 from
RD and TD of the (Cu73郾 5 Al17 Mn9郾 5 )97 -Ni3textured sheet[ 17]
22晶粒尺寸
形状记忆性能与晶尺寸密切 [18 , 19] 例如,
粒尺寸 d对相变温度 明显 ,当晶粒尺寸 d
100 滋m ,对马氏体相变开始温度影响很, d
100 滋m ,包括 Cu-Al-Ni[20] Cu-Al-Mn[ 21] 在内的
大部分多晶形状记忆合金的 体相 始温 d
减小而降低 ,
除晶粒尺寸 d,品尺 t(圆柱试样的直径或板状
样的厚度)对形状记忆合金的超弹性等性能的影响也很
为了便于讨论,常采用归一化的晶粒尺度, d/t
特征参数来讨论形状记忆合金性能的尺寸效应
Sutou 等研究了晶 d/t0郾 05 ~ 6 Cu -Al -
Mn 形状记忆合金线材试样[ 22] d/t0郾 24 ~ 15郾 38 之间
Cu-Al- Mn 形状记忆合金薄板试样[23]
,发现 t不变时,形状记忆性能随 d/t的增大而提高
随着晶粒尺寸增大,晶界 减小,晶界
体相变的阻碍作用也相应降低,从而有利 于马氏 /母相
界面移动,因此超性性 于晶 寸与
面积对超弹性的影 有相 机制,所以 详细
内容参见下文关于晶界面积的讨论
23晶界面积
在上文提到,晶粒 和样 寸对 记忆
的超弹性均有重 影响,因此,为了 准确
晶界面积对超弹性 ,用单 度试 总晶
面积与试样总表面积的比值 Sgb /S为特征参数来分析
界面积对性能的影响规律
3总结了作者等人测量和文献报道的 Cu-Al-Mn
SMAs [13, 16 , 23, 24] (合金成分范围: Al
16 at% ~ 20 at% ; Mn 9 at% ~ 12 at% , 文献中一
加了少量(总含量<2 at % ) 对超弹性能影响不 Co,
B, Ni, Cr 等元
Ms+50 K), SE Sgb /S的关系
从图 3可以,合金 从无 存在
,变化到细组织,晶界 逐渐 ,金的
弹性应变 10郾 3% 下降 2% 除晶
的影响,采用无 Sachs 模型进行了计算,
出无晶界约束条件下随机取向组织的超弹性应变为
7郾 1% , 大量实验结果已证明 Sachs 型可 对单
超弹性应变进行很 预测因此晶界面积对超弹性应
变的影响程度为 5郾 1%
由图 3可以 ,柱状晶( Columnar Grain, 简称
CG) 织试 Sgb /S
竹节晶(Bamboo-Like Grain, BLG) 组织和普通多
组织试,是因为柱状晶组织具有特殊 界形
晶界类型 ( ) ,
节晶组织 ( )
组织(网状晶界形貌大角 ) 这一现象表明
除晶界面积,界形貌和晶界类型对超 也具
要影响
3摇 Cu-Al -Mn 形状记忆合金超弹性应变 SE 与总晶界面积与
试样表面积比值 Sgb /S的关系[25] , ( BLG: 竹节晶组织,
CG: 柱状晶组织, OPS: 普通多晶组织; SD TD
表示拉伸方向与柱状晶组织试样凝固方向平行和垂直)
Fig郾 3摇 Variations of SE versus Sgb /Sin Cu鄄Al鄄Mn SMAs, where BLG:
bamboo-like grain[ 25] , CG: columnar grain, OPS: ordinary
polycrystal; SD and TD denote the tensile direction of the CG
samples parallel and perpendicular to the solid direction
738
中国材料进展 35
24晶界形貌
通多晶体在变形时晶界处有 5个独立约束条
[26-28 ] ,需同时开动 5独立的滑 系才协调其复
的晶界变形当合 动的 目少 5
个时,多晶体就会现出 变形 ,导致
集中,甚至晶界开裂等问题当晶界具有平直的形貌时,
如在竹节晶或柱状 ,时晶 的约 件减
3,即只需开 3个滑 就可 良好 形协
调性因此,平直的晶 貌有 晶间 变形
,对于应力诱导相变 ,的晶 貌也
晶界两侧的晶粒协 生形 应力 相变,降低
于晶界 [29 -35]
Ueland 等人[29 ] 详细研究了 Cu-Zn- Al 记忆 在平
直晶界处和三叉晶 发生 诱导 的异 ,
与容易产生应力集 三叉 相比,平直 可以
高合金的形状记忆性能
25晶界方向
对于平直晶界,当平行于晶界方向受力时,晶界受切
应力作用,变形 ,切应 利于 纵向
,从而抵消部分晶间变形不协调引起的应变,使得变
形协调性增加;当垂直于晶界方向受力时,晶界受张应力
作用,易引发晶界微裂纹的形成和扩展,导致合金发生沿
晶界断裂[36] 另外,作者等人针对晶界方向对柱状晶 Cu
-Al-Mn 合金超弹性的影响进行了详细研究,发现当晶界
平行于<001>取向时,在最大加载应变为 12% 条件,
着试样拉伸方向与晶界方向的夹角 0毅90毅变化,
弹性应变呈现出“V形变化,即从 0毅9郾 8% 先降低到 60毅
2郾 7% , 后再 90毅 8郾 4% ,
7郾 1% , 而合金试样的相变临界应力 模量相变
台斜率等性能参数呈现与超弹性应变相反的变化规[37]
将上述结果中晶粒取向对超弹性应变的影响扣除,就可
以获得晶界方向对超弹性应变的影响4绘出了不同取
向条件下,柱状晶晶界对 Cu-Al-Mn 11相变
变的影响[37] 以看,晶界 向对状晶试样 弹性
应变的影响具有明 的取依赖<001> ,
晶界对相变应变的影响最小( 0) ; <123>取向
近时,达到最大值 ( -2郾 7 % ), 晶界向对 性应
影响程度约为 2郾 7%
26晶界类型
晶界的强化作用于晶 侧晶 取向
的能量,根据取向差的大小可以将晶界分为小角晶界
(<15毅) 和大角(逸15毅) 当取向差较大时,滑移
位错在晶界附近 塞积,引起 集中,必须
动晶界另一侧的新位错源以释放内应力而当晶界取向
4摇 柱状晶 Cu-Al-Mn 合金的平直晶界对 11相变应变的
影响与晶粒取向的关系(单位:% ) [37]
Fig郾 4摇 The relationship between GB constraint on transformation strain
and grain orientation in CG Cu-Al-Mn alloys (unit: % ) [37]
差较小时,晶界对移位 动的 作用 ,
错不易在 , 穿 ,
大大减少了由此产应力集中[38 -40] 如以小角晶界
的柱状晶纯铜在拉 程中,几乎所有滑移线均可不改
变方向地穿过小 ,不发 界塞 ,使
超延展变形能力[41]
对于大角晶界,由于晶界处原子错配度高,
粒的变形协调性差,各种缺陷容易在大角晶界处塞积,
引发局部应力集 ,加剧了发生晶界开裂的可能性
在大角晶界,当晶两侧 粒具 些特 取向
差时,大量原子处重合 位置,界面 错配
界面 ,通常将这类晶界称为重合点阵
(CSL)晶界相对 界而 ,重合点阵晶界处
的原子有较高的匹 ,晶界能比普通大角晶界要低很
而且重合点阵晶两侧 还可 过刚 移和
原子松弛进一步 能量,因此,通常将重合点阵晶界
与小角度晶界合称 能晶 界可 减少
界处杂质元素的偏 析出,具有较高的晶界抗氧化性
与耐蚀性,同时具较高 面结 ,于抵
界开裂,获得高塑性和高可加工性能[42, 43 ]
5为作者等 金相 ( In - situ OM)
方法,Cu-Al-Mn 形状记忆合金试样中的低能晶界和
大角晶界在超弹性应力-应变循环过程中与马氏体相变的
交互作用进行的原位观察结果[35] 5以看,
着变形量的增加,氏体 数量 ,能晶
样不同晶粒内的马 变体 分布 ,马氏体变体
的方向与拉伸方向基本垂直,且马氏体变体 1、 2 3、 4
分别 1 ( GB1) 和晶界 2 ( GB2 ) ,
3( GB3) 两边的变体群也只呈现很小的角度差与拉伸轴
838
11 黄海友等:性能 Cu 基形状记忆合金组织设计研究进展
5摇 低能晶界和普通大角晶界 Cu-Al-Mn 形状记忆合金试样拉伸至变形量 2% 4 % 6 % 11% 及卸载后的表面形貌
(实线箭头标识晶界方向 SD 与拉伸方向 F, 低能晶界试样中数字 1 ~ 6 标识不同位向的马氏体变体群, GB1 ~ 3
标识晶界位置;普通大角晶界试样中虚线圈内标识出现明显形变带的区域,虚线箭头标识微裂纹位置)[35]
Fig郾 5摇 In鄄situ observation of CG and OPS Cu鄄Al鄄Mn alloys during tensile loading and unloading (solid arrows show the SD of CG sample
and the tensile direction F; 1 to 6 and GB 1 ~3 denote different martensitic variants and GBs in CG sample, respectively;
the dashed circles and dashed arrows point out plastic deformation zone and microcrack, respectively. )
垂直度不高的变 1、 3 5 随拉伸变 的增
分别被垂直度更高 体群 2 4、 6 吞并,变形
11% 时吞并长大后的变体群 匀扩到整个区 ,
明马氏 ,这与有关文献中描述的单晶
Cu-Al-Mn[44] 拉伸时表面形貌变化基本相似
不同变形量下的普通 晶界 的马 变体
均十分紊乱,由于不同 取向 ,粒的
相变的进行程度和 程度 相同,导致 处畸
,产生明显应力 ,受到 应力
作用,马氏体变体晶界 先形 , 使同一
内也存在 4% 以上时,
局部晶界处可观察到粗大形变(5虚线圈内 ) ,
种形变带是变形过 位错 和位 积产
载后,不能恢复的形带和 角晶 扎的 马氏
体使晶界清晰地显示出来 6% 变形时晶界局部即产生
微裂纹(5中虚线箭头所示), 清楚地表明普通大角晶
界在形变和相变过程中不协 晶界 易应
从而导致其试样 开裂另一 ,低能晶界试样在
4% 变形卸载后表面仍十分平整, 6% 变形后卸载仅有
撞17 晶界 GB1 显现出来,撞1 小角度晶界 GB2 11%
变形卸载后仍难以 ,有力的证明了小角度晶界对形
变和相变的阻碍作 很小,而具有低 面能 CSL
与马氏体变体间的交互碍作 要明 于普
度晶界
由于竹节晶组织的 类型 角晶 ,
组织的晶界类型为以小度晶 重合 晶界
低能晶 , 3中具有相同晶粒取向和
Sgb /S值的竹节晶试样和拉伸方向沿凝固方向的柱状晶试
(还具有相同的晶界形貌 )比较 ,
可以粗略估算晶界类型对 Cu - Al - Mn 合金 性应
影响效果 4郾 3% , 影响显著性接近晶界面积,高于
晶界方向和晶界形貌
938
中国材料进展 35
3高超弹性Cu 形状记忆合金的织设
原则
基于上述各组织因素对 Cu-Al-Mn 形状记忆合金的超
弹性应变影响的定量分析,可以获得各组织因素影响程度
由大 :晶粒取向( 8 3%),
(5郾 1%) , 晶界类型(4 3% ), 晶界方(2郾 7% )。 于各组
织因素的影响规律和影响程度,可以制定高超弹性 Cu 基形
状记忆合金的组织设计原则(由主及次)[25]: 获得具有高
相变应变的晶粒取向; 获得大的晶粒尺度(更少的晶界面
); 获得平直的低能晶界,特别是小角度晶界; 晶界
方向尽可能与受力方向平行按照上述组织设计原则,
些研究者通过在材料制备过程中施加特殊的组织控制手段,
开发了竹节晶组织(如图 6a 所示)[13, 45-48] 和柱状晶组(
6b 所示)[35, 37,49] 等特殊组织的 Cu 形状记忆合金,并取
得了显著的效例如, Sutou [16, 23, 48] 采用特殊的循环热
处理方法使普通多晶组织发生晶粒异常长大,再经选择性
切割后,制备了竹节晶组 Cu-Al -Mn 合金板 和丝
Chen [45] Ueland [50] 分别采 Taylor 纺丝技术也制备
出了具有竹节晶组织的 Cu-Al-Ni Cu-Zn-Al 金微丝
其超弹性应变可分别达到 7% (Cu-Al- Mn), 6郾 8% ( Cu-Al-
Ni)7郾 5%(Cu-Zn-Al)。 本文作者[35] 采用定向凝固方法制
备了柱状晶 Cu-Al-Mn 合金棒材,其超弹性应变可 10%
以上,相同成分等轴多晶组织合金试样室温超弹性应变
(3%)3倍以上,如图 7所示温拉伸断后伸长率
6摇 竹节晶( a) 柱状晶(b)和等轴多晶(c)组织示意图(F 为应
/应变方向)
Fig郾 6摇 Schematic of different microstruture: (a) bamboo-like-grained
(BLG) , (b) columnar-grained (CG) and (c) ordinary
polycrystalline ( OPS) (F denotes srress / strain orientation)
7摇 竹节晶组织[ 23] (a) 柱状晶组织[ 35] ( b) 和等轴多晶组织[35] ( c) Cu-Al-Mn 合金的性能比较
(合金成分分别为 Cu72郾 7 Al16郾 9 Mn10郾 4 Cu71郾 8 Al17郾 8 Mn10郾 4 Cu72 Al17郾 8 Mn10郾 2 )
Fig郾 7摇 Superelastic stress-strain curves of Cu鄄Al鄄Ni alloys with different microstruture: (a) BLG Cu72郾 7 Al16郾 9 Mn10郾 4 ,
(b) CG Cu71郾 8 Al17郾 8 Mn10郾 4 and (c) OPS Cu72 Al17郾 8 Mn10郾 2
40% , 是普通多晶组织合试样(9郾 8 % )4以上
同时,柱状晶 Cu-Al-Mn 金也展示出优异的疲劳性,
4% 变下,最大 水平 合金 应力
( ~ 462 MPa) 67% , 试样 1000 次加 -
载循 ,残余应变小于
0郾 4% , 如图 8所示[ 37]
4Cu 基形状记忆合金的强度提升
制备同时具有高超弹性和高强度的 Cu 基形状记忆合
金的关键在于获 超弹 节中,通过
,制备柱 ,
可以显著提升合金 弹性 弹性 提升
基础上,通过采用 手段 步提 金强 ,
获得高弹高强 Cu 基形状记忆合金但对于形状记忆
8柱状晶组织 Cu7 1 Al1 8 Mn1 1 合金的循环拉伸应力-应变曲线
Fig郾 8摇 Fatigue cyclic tensile stress鄄strain curves of CG Cu71 Al1 8
Mn1 1 alloy at 4% strain level at a strain rate of 5伊10-3 s-1
048
11 黄海友等:性能 Cu 基形状记忆合金组织设计研究进展
,常用的金材料 方法,例如 合金
晶强化形变强化 往在 合金 ,成合
相变温度的大幅改 超弹 能的 衰减例如
Zn, Fe, Co, Ni, Ti 等合金元素会在一定程度提高合金
的强度,但是会显 变合 相变 ,严重
低合金的超弹性和 记忆 细晶 细晶
织形状记忆合金,合金的强度和韧性会得到提升,但由
于晶界的大量增多,马氏体相变的阻碍作用显著增大,
会导致合金的超弹 形状 性能 下降形变
化的效果与细晶强化类似,由于位错等缺陷的大量产,
也会导致合金使用 的恶 强化 种可
的形状记忆合金强化方法在一定温度范围内对 Cu-Al-
Mn 形状记忆合金进行 ,金可 具有
高强度的贝氏体 , 升形 忆合 硬度
氏体相变临界应力和疲劳度等(出强) , 且实验证
明析出的贝氏体相 氏体 有共 ,马氏
相变和逆相变的阻碍作用很小[51] ,合金弹性和形
记忆效应的影响较小因此,将具有高超弹性的柱状晶
竹节晶组织 Cu 基形状记忆合金经过合理的热处理,使
金析出一定量的强化,可以实现显著提 Cu 基形状
忆合金强,超弹性性能缓慢下降Cu- Al -
Mn 合金为例, Sutou [52] 和作分别对具 高超性的
竹节晶组织和柱状 织合 样进 研究,经热
理后,两种组织的合试样 够获 弹性 大于
5% , 马氏体相变临界应力大于 650 MPa 的综合性能,
Ni-Ti 形状记忆合金的水平
5
通过总结 Cu 基形状记忆合金不同组织结构因素对性
能的影响,结合理模型 验数 ,现晶
晶界面积(晶粒尺寸) 晶界 和晶 向是
Cu 基形状记忆合金性能的重要因素例如,对于 Cu-Al
-Mn 形状记忆合金,这些因素 其超性的响效
别可达到 8郾 3% 5郾 1% 4郾 3% 2郾 7% 提出
Cu 基多晶形状记忆合金的组织设计应遵循以下由主及
次的原则: 获得有高 应变 粒取 ;
大的晶粒尺(更少的 界面); 平直低能
界特别是小角晶界; 界方 可能 力方
平行按照上述计原 ,采用短流程效的
固技术制备的柱状晶组织 Cu - Al - Mn 形状 合金
10% 以上的高超 ,可与单晶相比拟对高
状晶组织 Cu-Al-Mn 形状记忆合金再进行合理的热处,
使之析出 ,可获得超弹性应变大于 5% ,
马氏体相 650 MPa 的综合性能,
Ni-Ti形状记忆合金的水平
参考文献References
[1]摇 O Lander A. Journal of the American Chemical Society [J], 1932, 54
(10): 3819-3833.
[2]摇 Otsuka K, Wayman C M. Shape Memory Materials[M]. Cambridge:
Cambridge University Press, 1998.
[3]摇 Suezawa M, Sumino K. Scripta Metallurgica [J] , 1976, 10(9): 789-
792.
[4]摇 Guenin G, Morin M, Gobin P F, et al.Scripta Metallurgica [J],
1977, 11(12): 1071-1075.
[5]摇 Mercier O, Melton K N, Gremaud G, et al. Journal of Applied Physics
[J], 1980, 51(3): 1833-1834.
[6]摇 Sakamoto H, Kijima Y, Shimizu K I. Trans JIM [J] , 1981, 23(10):
585-594.
[7]摇 Janssen J, Willems F, Verelst B, et al. Journal de Physique [J],
1982, 43(C4): 809-812.
[8]摇 Bertolino G, Larochette P A, Castrodeza E M, et al. Materials Letters
[J], 2010, 64(13): 1448-1450.
[9]摇 Miyazaki S, Kawai T, Otsuka K. Scripta Metallurgica [J], 1982, 16
(4): 431-436.
[10] Miyazaki S, Otsuka K. ISIJ International [J] , 1989, 29 (5): 353
-377.
[11] Otsuka K, Wayman C M, Nakai K, et al.Acta Metallurgica [J ],
1976, 24(3): 207-226.
[12] Sachs G. Z Verein Deutsch Ing [J], 1928, 72: 734.
[13] Sutou Y, Omori T, Kainuma R, et al. Metallurgical and Materials
Transactions A [J], 2002, 33(9): 2817-2824.
[14] Ono N, Satoh A, Ohta H. Materials Transactions,JIM [J] , 1989, 30
(10): 756-764.
[15] Ono N, Satoh A. Materials Transactions,JIM [J], 1988, 29(4): 267
-273.
[16] Sutou Y, Omori T, Yamauchi K, et al. Acta Materialia [J], 2005, 53
(15): 4121-4133.
[17] Sutou Y, Omori T, Wang J J, et al. Materials Science and
Engineering:A[J], 2004, 378(1-2): 278-282.
[18] Sure G N, Brown L C. Metallurgical Transactions A [J], 1984, 15
(8): 1613-1621.
[19] Dvorak I, Hawbolt E B. Metallurgical Transactions A [J], 1975, 6
(1): 95-99.
[20] Mukunthan K, Brown L C. Metallurgical Transactions A [J], 1988,
19(12): 2921-2929.
[21] Lopez Del Castillo C, Mellor B G, Blazquez M L, et al. Scripta
Metallurgica [J], 1987, 21(12): 1711-1716.
[22] Sutou Y, Omori T, Furukawa A, et al. Journal of Biomedical
Materials Research Part B:Applied Biomaterials [J], 2004, 69B(1):
64-69.
[23] Sutou Y, Omori T, Kainuma R, et al.Acta Materialia [J], 2013, 61
(10): 3842-3850.
148
中国材料进展 35
[24] Sutou Y, Omori T, Kainuma R, et al. Materials Science and
Technology [J], 2008, 24(8): 896-901.
[25] Xie J X, Liu J L, Huang H Y. Rare Metals [J], 2015,34(9): 607-624.
[26] Green A E, Taylor G I. Proceedings of the Royal Society of London.
Series A. Mathematical and Physical Sciences [J], 1939, 173(953):
162-172.
[27] Taylor G I. Stephen Timoshenko 60th Anniversary Volume [J], 1938:
218-224.
[28] Taylor G F. Physical Review [J], 1924, 23(5): 655-660.
[29] Ueland S M, Schuh C A. Journal of Applied Physics [J], 2013, 114
(5): 53503.
[30] Ibarra A, Caillard D, San Juan J, et al. Applied Physics Letters [J].
2007, 90(10): 101907.
[31] Wang Y, Huang H Y, Xie J X. Materials Science and Engineering:A
[J], 2011, 530(12): 418-425.
[32] Wang Y, Huang H Y, Xie J X. Materials Letters [J], 2011, 65(7):
1123-1126.
[33] Xie Jianxin(谢建新), Wang Yu( ), Huang Haiyou(
). The Chinese Journal of Nonferrous Metals(中国有色金属学报)
[J], 2011, 21(10): 2324-2336.
[34] Huang H Y, Wang Y, Xie J X. Materials Science and Engineering:A
[J], 2014, 596(4): 103-111.
[35] Liu J L, Huang H Y, Xie J X. Materials & Design [J], 2014, 64:
427-433.
[36] San Juan J, N佼 M L, Schuh C A. Acta Materialia [J], 2012, 60
(10): 4093-4106.
[37] Liu J L, Huang H Y, Xie J X. Materials & Design [J], 2015, 85:
211-220.
[38] Zou F L, Gao K W, Xie J X, et al. Acta Metallrugica Sinica [J].
2008, 44(3): 297-301.
[39] Zhang Z F, Hu Y M, Wang Z G. Acta Metallrugica Sinica [J], 1999,
7: 9.
[40] Clark W, Wagoner R H, Shen Z Y, et al. Scripta Metallurgica et
Materialia [J], 1992, 26(2): 203-206.
[41] Xie J X, Wang Y, Huang H Y. The Chinese Journal of Nonferrous
Metals [J], 2011, 21(10): 2324-2336.
[42] Watanabe T, Tsurekawa S. Materials Science and Engineering:A[J].
2004, 387(36): 447-455.
[43] Watanabe T, Tsurekawa S. Acta Materialia [J], 1999, 47(15): 4171
-4185.
[44] Kato H, Ozu T, Hashimoto S, et al. Materials Science and
Engineering:A[J]. 1999, 264(1): 245-253.
[45] Chen Y, Zhang X X, Dunand D C, et al. Applied Physics Letters [J],
2009, 95(17): 171906.
[46] Chen Y, Schuh C A. Acta Materialia [J], 2011, 59(2): 537-553.
[47] Ueland S M, Chen Y, Schuh C A. Advanced Functional Materials
[J], 2012, 22(10): 2094-2099.
[48] Omori T, Kusama T, Kawata S, et al. Science [J], 2013, 341(6153):
1500-1502.
[49] Wang Z, Liu X F, Xie J X. Progress in Natural Science:Materials
International [J], 2011, 21(5): 368-374.
[50] Ueland S M, Schuh C A. Acta Materialia [J], 2012, 60(1): 282
-292.
[51] Sutou Y, Koeda N, Omori T, et al. Acta Materialia [J], 2009, 57
(19): 5748-5758.
[52] Sutou Y, Koeda N, Omori T, et al. Acta Materialia [J], 2009, 57
(19): 5759-5770.
(本文为本刊约稿,编辑盖少飞)
248
... In particular, CueAleMn alloys have attracted intensive attention owing to their wide transformation temperature range [25] and large transformation strain [26]. It has been reported that grain structure design [27,28] and texture control [29,30] are effective in enhancing the mechanical properties especially superelasticity (SE) of Cu-based SMAs, thus improving the elastocaloric properties. For example, a columnargrained CueAleMn alloy, with C001D texture and straight grain boundary fabricated by unidirectional solidification, showed a large and reversible superelastic strain of 10%, leading to a giant DT ad of 12e13 K [31]. ...
... It can be seen that the grain orientations show a random characteristic, where three grains were aligned close to C111D direction (purple and navy blue) while others between C001D and C101D. It is worth noting that both C001D and C101D orientations are favorable orientations for superelasticity in CueAl-based alloys [27,29], implying possible large ε tr in the present microwire. Fig. 2 shows the DSC curves of the bamboo-grained Cu 71.1 Al 17.2 Mn 11.7 microwires. ...
... The Bain transformation matrix and the corresponding grain orientation data (Euler angles via EBSD) are used for the calculation [83]. Details of the calculation procedure are shown in Supplementary Materials [27,29,83]. The corresponding εid tr value for each grain is listed in Supplementary Materials Table S1. ...
Article
Bamboo-grained Cu71.1Al17.2Mn11.7 microwires with diameter ∼150 μm were created by Taylor-Ulitovsky method and subsequent annealing. The grain architecture dependent superelasticity (SE) and elastocaloric effects (eCE) were confirmed. The bamboo-grained microwires exhibited low stress hysteresis loss during SE due to the reduced constraints caused by grain boundary, which is favorable for the mobility of martensite-austenite interface. Consequently, a large isothermal entropy change ∼21 J/kg K with a wide temperature range 90 K was achieved. The produced adiabatic temperature change (ΔTad) reached −11.9 K under a maximum stress 400 MPa. A stable ΔTad of −5.6 K showing little degradation in 200 eCE cycles was found with applied stress 325 MPa. This work reveals a fact that the bamboo-grained Cu–Al–Mn microwire may act as a desirable material for miniature solid-state refrigeration devices.
... Cu-Al-Mn alloys are widely used to produce vibration-damping components because they exhibit significant superelastic properties at room temperature and are also considered one of the most promising superelastic materials for large-scale applications due to their low manufacturing costs [1][2][3][4][5][6][7]. However, Cu-Al-Mn alloys have the disadvantages of low strength and high anisotropy factor, which greatly limits their extended application [7]. ...
... Cu-Al-Mn alloys are widely used to produce vibration-damping components because they exhibit significant superelastic properties at room temperature and are also considered one of the most promising superelastic materials for large-scale applications due to their low manufacturing costs [1][2][3][4][5][6][7]. However, Cu-Al-Mn alloys have the disadvantages of low strength and high anisotropy factor, which greatly limits their extended application [7]. Experiments have shown that the superelasticity hysteresis curve of Cu-Al-Mn alloys varies significantly with crystal orientation under uniaxial stretching [8][9][10]. ...
Article
Full-text available
It has been found that the addition of Ti can improve the strength of Cu-Al-Mn alloys and adjust their mechanical properties. However, the internal mechanism has not been fully understood. In order to clarify the influence of Ti content on the mechanical properties and microscopic mechanism of Cu-Al-Mn alloys, the mechanical, structural, and electronic properties of Cu2AlMn1–xTix (x = 0, 0.25, 0.50, 0.75, 1) alloys were studied by first-principles calculations. Results show that the substituted Ti prefers to occupy the Mn site directly due to the lower formation energy. With the increase of Ti substitution content, the L21 phase stability of the alloy improves. Moreover, the elastic modulus of the alloy increases and the anisotropy factor decreases. Further analysis shows that the proportion of antibonding states under the Fermi energy of the alloy decreases and the covalent bond is enhanced after Ti substitutes Mn, which is the main mechanism for the enhancement of stability and mechanical properties. Mulliken charges change little after Ti replaces Mn, indicating that Ti has little effect on the ionic bond strength.
... However, the maximum recovery strain of ordinary polycrystalline Cu-based SMAs is about 2e5%, which is less than half of that of single crystalline Cu-based SMAs and polycrystalline Ni-Ti SMAs, not to mention high fatigue life [14,15]. Based on the idea of microstructure design [16,17], large-grained Cu-based SMAs, such as bamboolike-grained and columnar-grained Cu-based SMAs has been manufactured and exhibit satisfactory superelastic strain due to their high grain boundary coordination ability and strong grain texture [18e21]. According to some previous reports [20,22,23], columnar-grained Cu-Al-Mn SMAs have a high superelastic strain exceeding 7%, and greater than 90% superelastic recovery ratio at hundreds of loading-unloading cycles, reaching the level of single crystalline Cu-based or Ni-Ti SMAs. ...
... Al and 11.4 at.% Mn were prepared by unidirectional solidification technique, whose details can be found in previous papers [16,22,24]. An optical photo of the longitudinal section of a typical Cu-Al-Mn alloy sample cut from the middle of the ingot and its inverse pole images by the electron back-scattered diffraction (EBSD) technique are shown in Fig. 1a and Fig. 1b. ...
Article
Columnar-grained Cu-Al-Mn shape memory alloy (SMA) can experience high superelastic strain exceeding 7% and exhibits a nearly 100% superelastic recovery ratio due to its straight grain boundaries and strong texture along the solidification direction, which allows it to reach the strain level of a single crystalline Cu-based or Ni-Ti SMAs and possesses a potential for damping applications. In this paper, the damping capacity of Cu-Al-Mn SMA in various deformation conditions during a strain-controlled superelastic cyclic tensile process was studied. The anisotropy characteristics and the cyclic effect of damping capacity were analysed. The damping capacity of columnar-grained Cu-Al-Mn SMA increases as the loading strain increases in superelastic tensile processes, and a large damping capacity anisotropy occurs. At low loading strain (<6%), T-45° sample (45° is the angle between the loading direction and the axis of columnar grains) has the largest energy dissipation per unit recovery strain, ΔW1%, due to its high-stress level. At high loading strain (>6%), T-0° and T-15° samples can achieve a good damping capacity because of high superelasticity and plasticity. In addition, the damping capacity of columnar-grained Cu-Al-Mn SMA along the solidification direction has a significant cyclic effect. At the same loading strain (4%–10%), ΔW1%, and loss angle, ΔW/2πW first decrease to the minimum, then increase to the maximum and, finally, decreases as the number of cycles increases. The minima and maxima of ΔW1% and ΔW/2πW at different strain amplitudes correspond to the similar residual strain ratio, εr/εt. The change curves of damping capacity related to εr/εt can be divided into three stages: the stable damping capacity stage with low residual strain; the rapidly increasing damping capacity stage; the sharp cumulative stage of residual martensite with limited values of strain damping capacity.
... Shape memory alloys (SMAs) are widely used in electronic communications, biomedicine, micro-electromechanics systems, aerospace, robotics, civil construction and many other fields [1,2]. Among the various SMAs, Cu-based SMAs are the most potential ones for largescale industrial applications because of their low cost, high electrical and thermal conductivity [3]. Single-crystal Cu-based SMAs exhibit excellent shape memory properties, which are almost equivalent to those of Ni-Ti SMAs [1,2]. ...
... The precipitation of Ag retained in the matrix [16] occurs in sequence and is evidenced by peak E 3 at about 673 K. The thermal event E 4 can be due to the re-dissolution of Ag precipitates [17] and the T 3 -Cu 3 AlMn 2 +α+β Mn →β 2 (B2)+T 3 was ascribed to the T 3 -Cu 3 AlMn 2 +α+β 2 (B2)→β(A2)+α reaction [4]. The thermal event E 6 can be associated with the decomposition of some residual phase. ...
Article
The phase stability in the Cu-9wt.%Al-10wt.%Mn-3wt.%Ag alloy was analyzed using differential scanning calorimetry (DSC), X-ray diffractometry (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), optical microscopy (OM) and microhardness measurements with quenching temperature. The results showed that the presence of silver alters the phase stability range and enhances the effect of bainite precipitation on the microhardness values of the Cu-9wt.%Al-10wt.%Mn-3wt.%Ag alloy.
... The distinct microstructural evolution is expected to be well-suited for the functional behavior of the material, as was revealed in [21,22,24,25]. In previous studies it was found that oligocrystalline microstructures can be highly beneficial to the pseudoelastic performance of the material, since the volume fraction of grain boundaries is relatively low and, eventually, constraints as a result of grain boundary triple junctions are significantly reduced [27][28][29][30]. Processing temperature was 500 °C. ...
Article
In the present study, Iron-based FeMnAlNi and Cobalt-based CoNiGa shape-memory alloys (SMA) were processed by laser metal deposition for the first time. The materials show susceptibility to cracking upon processing when unheated substrates are employed. Pre-heating of the substrate materials eliminated cracking completely and enabled robust deposition of thin-wall structures. Microstructural analysis using optical microscopy revealed different microstructural evolution for the two materials considered.
... Cu-based SMAs have the potential to replace the expensive NiTi alloys because of its excellent memory property, simple processing, favorable electrical and thermal conductivity, and large adjustable range of transformation temperature [10]. The new type CueAleMn SMA has become another research hotspot in Cu-based SMAs because of its good thermal stability and excellent mechanical properties [11,12]. ...
Article
The effect of aging treatment at the temperature ranging from 250 to 400 °C on the damping capacity in columnar-grained Cu–Al–Mn shape memory alloy and its mechanism were studied in this paper. The results show that with the increase of aging temperature and time, the bainite precipitated phase increases, but the damping capacity of columnar-grained Cu–Al–Mn shape memory alloy decreases first, then increases and finally decreases. When the volume fraction of bainite phase is between 0.6 and 0.85, the damping capacity is excellent and the damping coefficient tanΦ is above 0.07, which is twice more than that of the alloy before aging treatment. The interaction between the martensite interface motion and the bainite is consistent with the pinning and depinning mechanisms. When the bainite phase reaches a certain content, the pinning and depinning of the martensite phase at the bainite phase produces additional energy dissipation, which increases the damping capacity of the alloy.
Article
The preparation of large-scale Cu—Al—Ni shape memory alloys with excellent microstructure and texture is a significant challenge in this field. In this study, large-scale Cu—Al—Ni shape memory alloy (SMA) slabs with good surface quality and strong orientation were prepared by the horizontal continuous casting (HCC). The microstructure and mechanical properties were compared with the ordinary casting (OC) Cu—Al—Ni alloy. The results showed that the microstructure of OC Cu—Al—Ni alloy was equiaxed grains with randomly orientation, which had no obvious superelasticity. The alloys produced by HCC had herringbone grains with strong orientation near ❬100❭ and the cumulative tensile superelasticity of 4.58%. The superelasticity of the alloy produced by HCC has been improved by 4–5 times. This work has preliminarily realized the production of large-scale Cu—Al—Ni SMA slab with good superelasticity, which lays a foundation for expanding the industrial production and application of Cu-based SMAs.
Thesis
Full-text available
Due to the low costs of the alloying elements and due to their good processability, iron-based shape memory alloys are considered as promising candidates to substitute the commercially often used Ni-Ti in mass-intensive applications and to open up new application fields for the shape memory technology. In particular, the possibility of using pseudoelastic shape memory alloys as damping elements expands the field of application of such alloys significantly and already opens up new research fields. One of the most promising alloys in this context is Fe-Mn-Al-Ni. Therefore, the thermal processing and the functional behaviour of Fe-Mn-Al-Ni based shape memory alloys is the subject of the present work. First microstructural modifications with regard to grain size, grain boundaries and precipitations are introduced that have been established in order to promote good pseudoelastic properties. Subsequently, the functional properties have been studied to shed light on the influence of grain orientations, grain boundaries and finally cyclic loading. In the final chapter of the thesis, two phenomenological models establish the relationship between microstructural characteristics and pseudoelastic properties. The results show that the addition of titanium and chromium, respectively, have a considerable influence on the adjustable grain size, on the quenching sensitivity and on the formation of nanoscale precipitates in the alloy system. In particular, small amounts of titanium increase the grain boundary migration rate of the abnormal grain growth and reduce the quenching sensitivity of the alloy. This is beneficial for robust processing and the pseudoelastic properties. Based on quasi-static experiments, this work shows that the reversibility of the transformation is not only dependent on the orientation of the individual grains. Functional degradation is also caused by stress fields prevailing in the vicinity of the grain boundaries. In functional fatigue tests, an unusual, progressive degradation was observed, where the austenitic phase is partially stabilized in such a way that a martensitic transformation is more favourable in previously non transformed regions. By using scanning electron microscopy and transmission electron microscopy, elementary mechanisms of functional degradation were identified in the present work. The resulting phenomenological models were established to connect the microstructural properties with the resulting functional properties of the alloys.
Article
Full-text available
The unidirectionally solidified Cu-Al-Mn shape memory alloy with strong <001>-oriented texture along the solidification direction and high length-diameter ratio columnar-grained structure exhibits excellent superelastic properties compared to the Ni-Ti alloys. In this paper, the tension–compression asymmetry of unidirectionally solidified Cu71Al18Mn11 alloy was researched by the geometrically nonlinear theory and superelastic experiments. The results show that the tension–compression asymmetry of the alloy has a significant anisotropy. The theoretical asymmetry ratio of transformation strain along <011> reaches 14.2%, which is larger than other orientations. The tension and compression superelastic experiment research of unidirectionally solidified Cu71Al18Mn11 SMA along the direction parallel (<001> grain orientation) or perpendicular (<001>-<011> grain orientation) to the solidification direction indicates that their superelastic strain, transformation strain, elastic modulus, transformation platform slope, and critical stress have obvious tension–compression asymmetry.
Article
Full-text available
The elastic constants measurements have been made for the first time on a single crystal of the near‐equiatomic NiTi alloy. The results show that the elastic constants C′ and C 44 both have a low value and a positive slope with temperature; this behavior makes NiTi unique in the class of alloys showing a martensitic transition.
Article
The effects of ageing at 473–573 K on the hardness, microstructure and thermoelastic martensitic transformation in Cu–Al–Mn-based shape memory alloys were investigated. It was found that hardness was dramatically increased by ageing due to the formation of fine bainitic plates and that the volume fraction of the bainite phase with ageing time can be described by the Austin–Rickett equation. The martensitic transformation temperatures decreased with the formation of bainite plates, mainly due to the composition change of the β-matrix. Moreover, the growth of thermally induced martensite plates was disturbed by the existence of bainite plates. Consequently, the transformation intervals (Ms–Mf and Af–As) and transformation hystereses (Af–Ms and As–Mf) increased with the progress of bainitic transformation.
Article
Effects of aging at 473–573 K on stress-induced martensitic transformation for textured Cu71.9Al16.6Mn9.3Ni2B0.2 and random-textured Cu72.1Al16.9Mn10.5Co0.5 shape memory alloy (SMA) wires with a large relative grain size d/D = 6 were investigated by cyclic tensile testing at room temperature, where d and D indicate mean grain size and wire diameter, respectively. The random-textured Cu72.1Al16.9Mn10.5Co0.5 wire cannot be uniformly deformed and the ductility is drastically reduced by aging treatment. On the other hand, in the textured Cu71.9Al16.6Mn9.3Ni2B0.2 SMA wire, the critical stress for martensitic transformation σt and the tensile strength σf are increased by aging without the associated loss of superelasticity (SE). Even in textured wire with a high σt of over 750 MPa, an excellent SE strain of about 6% can be obtained due to the formation of a fine bainite phase. Moreover, it was confirmed by in situ observation that stress-induced martensite plates grow, accompanying distortion of the bainite plates.
Article
The effect of the relative grain size d/D (d: grain size, D: wire diameter) on stress–strain characteristics was investigated in Cu–Al–Mn-based shape memory alloy (SMA) wires. The yield stress (σy), the work-hardening rate after yielding (dσPE/dε) and the stress hysteresis (Δσ) in the wires with a random texture decrease with increasing d/D. The transformation strain (εTS) and the maximum pseudoelastic strain (εPEMAX) increase with increasing d/D. The effect of grain size on pseudoelastic behaviors can be clarified from the volume fraction of three-dimensionally constrained grains and the σy, dσPE/dε and Δσ increase proportionally with increasing (1−(d/D))2 while the εTS decreases proportionally with increasing (1−(d/D))2. Consequently, the effect of grain size on the pseudoelastic behaviors can be expressed using the Taylor and inverse Schmid factors. The σy and the εTS for wires with a 〈110〉 fiber texture are larger and smaller than those for wires with a random texture, respectively.
  • 摇 O Lander
摇 O Lander A. Journal of the American Chemical Society [J], 1932, 54 (10): 3819-3833.
  • J Janssen
  • F Willems
  • B Verelst
摇 Janssen J, Willems F, Verelst B, et al. Journal de Physique [ J], 1982, 43(C4): 809-812.
  • G Bertolino
  • P A Larochette
  • E M Castrodeza
摇 Bertolino G, Larochette P A, Castrodeza E M, et al. Materials Letters [J], 2010, 64(13): 1448-1450.