ArticlePDF Available

Cannabigerol Action at Cannabinoid CB1 and CB2 Receptors and at CB1–CB2 Heteroreceptor Complexes

Abstract and Figures

Cannabigerol (CBG) is one of the major phytocannabinoids present in Cannabis sativa L. that is attracting pharmacological interest because it is non-psychotropic and is abundant in some industrial hemp varieties. The aim of this work was to investigate in parallel the binding properties of CBG to cannabinoid CB1 (CB1R) and CB2 (CB2R) receptors and the effects of the compound on agonist activation of those receptors and of CB1–CB2 heteroreceptor complexes. Using [3H]-CP-55940, CBG competed with low micromolar Ki values the binding to CB1R and CB2R. Homogeneous binding in living cells, which is only technically possible for the CB2R, provided a 152 nM Ki value. Also interesting, CBG competed the binding of [3H]-WIN-55,212-2 to CB2R but not to CB1R (Ki: 2.7 versus >30 μM). The phytocannabinoid modulated signaling mediated by receptors and receptor heteromers even at low concentrations of 0.1–1 μM. cAMP, pERK, β-arrestin recruitment and label-free assays in HEK-293T cells expressing the receptors and treated with endocannabinoids or selective agonists proved that CBG is a partial agonist of CB2R. The action on cells expressing heteromers was similar to that obtained in cells expressing the CB2R. The effect of CBG on CB1R was measurable but the underlying molecular mechanisms remain uncertain. The results indicate that CBG is indeed effective as regulator of endocannabinoid signaling.
| Competition by CBG of agonist binding to CB 1 R and/or CB 2 R. (A,B) Competition curves for CBG in radioligand-based assays using either [ 3 H]-CP-55940 (A) or [ 3 H]-WIN-55,212-2 (B) binding on membranes from CHO cells stably expressing human CB 1 R or CB 2 R. (C) Scheme of the HTRF-based competitive binding assay. The GPCR of interest with the SNAP-tagged enzyme fused to its N-terminal domain is expressed at the cell surface. SNAP is a commercially available tag consisting of circa 180 amino acids, that can be labeled with fluorophores or other probes in a covalent fashion. The GPCR-SNAP-tagged cells are subsequently labeled with a Tb-containing probe (SNAP-Lumi4-Tb) through a covalent bond between the Tb and the reactive side of the SNAP enzyme. The Tb acts as FRET donor of an acceptor covalently linked to a selective CB2 receptor ligand. Thus, upon binding of a fluorophore-conjugated ligand (FRET acceptor) on the donor-labeled SNAP-tagged/GPCR fusion protein, an HTRF signal from the sensitized acceptor can be detected since the energy transfer can occur only when the donor and the acceptor are in close proximity. In competition binding assays using CM-157, the unlabelled specific ligand competes for receptor binding site with the fluorophore-conjugated ligand, leading to a decrease in the HTRF signal detected. (D-G) HEK-293T were transiently transfected with 1 µg cDNA for SNAP-CB 2 R in the absence (D,E) or presence of 0.5 µg cDNA for CB 1 R (F,G). Competition curves of specific binding of 20 nM fluorophore-conjugated CM-157 using CM-157 (0-10 µM) (D,F) or of CBG (0-10 µM) (E,G) as competitors are shown. Data represent the mean ± SEM of five experiments in triplicates.
… 
Content may be subject to copyright.
A preview of the PDF is not available
... PUFAs may be linked to the ECS and involved in the maintenance of brain plasticity, memory and learning, blood flow, and the genesis of neural cells [25]. The ECS is a pervasive neuromodulatory system that plays an important role in the development of the central nervous system, synaptic plasticity, the response to endogenous and environmental insults [24,26], neurotransmission, and microglial activation [27]. Cannabigerol, one of the major phytocannabinoids present in Cannabis sativa L., may regulate signaling and exert therapeutic effects via cannabinoid receptors [27]. ...
... The ECS is a pervasive neuromodulatory system that plays an important role in the development of the central nervous system, synaptic plasticity, the response to endogenous and environmental insults [24,26], neurotransmission, and microglial activation [27]. Cannabigerol, one of the major phytocannabinoids present in Cannabis sativa L., may regulate signaling and exert therapeutic effects via cannabinoid receptors [27]. ECS's action is mediated by CB1 and CB2 receptors, which form heteromeric complexes (CB1-CB2 heteroreceptor complexes) [27]. ...
... Cannabigerol, one of the major phytocannabinoids present in Cannabis sativa L., may regulate signaling and exert therapeutic effects via cannabinoid receptors [27]. ECS's action is mediated by CB1 and CB2 receptors, which form heteromeric complexes (CB1-CB2 heteroreceptor complexes) [27]. ECS-induced metabolic outcomes may support key mediators and inflammatory resolution pathways critical for maintaining homeostasis [25]. ...
Article
Full-text available
The signaling pathways associated with lipid metabolism contribute to the pathophysiology of autism spectrum disorder (ASD) and provide insights for devising new therapeutic strategies. Prostaglandin E2 is a membrane-derived lipid molecule that contributes to developing ASD associated with canonical Wnt signaling. Cyclooxygenase-2 plays a key role in neuroinflammation and is implicated in the pathogenesis of neurodevelopmental diseases, such as ASD. The endocannabinoid system maintains a balance between inflammatory and redox status and synaptic plasticity and is a potential target for ASD pathophysiology. Redox signaling refers to specific and usually reversible oxidation–reduction reactions, some of which are also involved in pathways accounting for the abnormal behavior observed in ASD. Redox signaling and redox status-sensitive transcription factors contribute to the pathophysiology of ASD. Cannabinoids regulate the redox balance by altering the levels and activity of antioxidant molecules via ROS-producing NADPH oxidase (NOX) and ROS-scavenging superoxide dismutase enzymes. These signaling cascades integrate a broad range of neurodevelopmental processes that may be involved in the pathophysiology of ASD. Based on these pathways, we highlight putative targets that may be used for devising novel therapeutic interventions for ASD.
... CBG is another non-psychoactive Cannabis component that is produced at elevated levels in some industrial hemps [204][205][206]. It binds to both CB1 and CB2 receptors and modulates the signaling through these receptors, as well as the CB1-CB2 receptor heteromer, at concentrations as low as 0.1-1 µM [207]. CBG competes with the binding of [ 3 H]-WIN-55,212-2 to CB2, but not to CB1 [207]. ...
... It binds to both CB1 and CB2 receptors and modulates the signaling through these receptors, as well as the CB1-CB2 receptor heteromer, at concentrations as low as 0.1-1 µM [207]. CBG competes with the binding of [ 3 H]-WIN-55,212-2 to CB2, but not to CB1 [207]. Further studies suggest that CBG is a partial agonist of CB1 and CB2 [207][208][209]. ...
... CBG competes with the binding of [ 3 H]-WIN-55,212-2 to CB2, but not to CB1 [207]. Further studies suggest that CBG is a partial agonist of CB1 and CB2 [207][208][209]. CBG activates TRPV1, TRPV2, TRPV3, TRPV4, TRPA1, 5-HT 1a receptor, α2-adrenergic receptor, and PPARγ, while being a TRPM8 antagonist [210][211][212][213][214][215]. ...
Article
Full-text available
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
... It is tempting to speculate that differential benefits of phytocannabinoids in terms of therapeutic potential could depend on the binding mode, i.e., on how each molecule interacts with the orthosteric site and with exosites in the CB 2 R. This is particularly relevant when it comes to cannabinoid receptors since (i) orthosteric sites have room accommodate different structures differently, (ii) orthosteric sites are not open to the extracellular medium, (iii) entry to the orthosteric center occurs through the lipid bilayer of the membrane, and (iv) the entrance is constituted by a narrow vestibule in which part of the chemical structure can be trapped [11,[40][41][42][43]. Our results on comparing CBD and CBG effects are consistent with differences in binding modes that may be further modulated due to allosteric modulations resulting from the interaction of the 5HT 1A receptor with the CB 2 receptor. ...
Article
Full-text available
Background: Cannabidiol (CBD) is a phytocannabinoid with potential in one of the most prevalent syndromes occurring at birth, the hypoxia of the neonate. CBD targets a variety of proteins, cannabinoid CB2 and serotonin 5HT1A receptors included. These two receptors may interact to form heteromers (CB2–5HT1A-Hets) that are also a target of CBD. Aims: We aimed to assess whether the expression and function of CB2–5HT1A-Hets is affected by CBD in animal models of hypoxia of the neonate and in glucose- and oxygen-deprived neurons. Methods: We developed a quantitation of signal transduction events in a heterologous system and in glucose/oxygen-deprived neurons. The expression of receptors was assessed by immuno-cyto and -histochemistry and, also, by using the only existing technique to visualize CB2–5HT1A-Hets fixed cultured cells and tissue sections (in situ proximity ligation PLA assay). Results: CBD and cannabigerol, which were used for comparative purposes, affected the structure of the heteromer, but in a qualitatively different way; CBD but not CBG increased the affinity of the CB2 and 5HT1A receptor–receptor interaction. Both cannabinoids regulated the effects of CB2 and 5HT1A receptor agonists. CBD was able to revert the upregulation of heteromers occurring when neurons were deprived of oxygen and glucose. CBD significantly reduced the increased expression of the CB2–5HT1A-Het in glucose/oxygen-deprived neurons. Importantly, in brain sections of a hypoxia/ischemia animal model, administration of CBD led to a significant reduction in the expression of CB2–5HT1A-Hets. Conclusions: Benefits of CBD in the hypoxia of the neonate are mediated by acting on CB2–5HT1A-Hets and by reducing the aberrant expression of the receptor–receptor complex in hypoxic-ischemic conditions. These results reinforce the potential of CBD for the therapy of the hypoxia of the neonate.
... Cannabigerol (CBG, 1, Figure 1) is often referred to as the mother of phytocannabinoids (pCBs) since most of the pCBs in the cannabis plant, including Δ 9 -tetrahydrocannabinol (Δ 9 -THC, 3) and cannabidiol (CBD, 4) are synthesized from the related cannabigerolic acid (CBGA, 2). 1 Phytocannabinoids demonstrated beneficial effects in the treatment of pain, cancer, asthma, and arthritis, [2][3][4] and while most research has been focused on major constituents Δ 9 -THC and CBD, CBG is increasingly being used for medicinal purposes owing to its non-psychotropic behavior and wide range of pharmacological effects. 5 It was postulated that CBG mimics the endocannabinoids due to its versatility in physiological function; 6 however, conclusive mechanistic work is still required in this regard. Recent studies have shown that CBG interacts weakly with the cannabinoid receptors (CBR1 and CBR2), 7,8 is the most potent ligand of transient receptor potential (TRPV1) among the phytocannabinoids, 9 and can also activate α2 adrenoceptor (α2-AR). ...
Preprint
The phytocannabinoid cannabigerol (CBG) is the central biosynthetic precursor to many cannabinoids, including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Though the use of CBG has recently witnessed a widespread surge because of its beneficial health effects and lack of psychoactivity, its metabolism by human cytochrome P450s is largely unknown. Herein, we describe comprehensive in vitro and in vivo cytochrome P450 (CYP)-mediated metabolic studies of CBG, ranging from LC-MS/MS-based primary metabolic site determination, synthetic validation, and kinetic behavior using targeted mass spectrometry. These investigations revealed that cyclo-CBG, a recently isolated phytocannabinoid, is the major metabolite that is rapidly formed by selected human cytochrome P450s (CYP2J2, CYP3A4, CYP2D6, CYP2C8, and CYP2C9). Additionally, in vivo studies with mice administered with CBG, supported these studies, where cyclo-CBG is the major metabolite as well. Spectroscopic binding studies along with docking and modeling of CBG molecule near the heme in the active site of P450s confirmed these observations, pointing at the preferred site-selectivity of CBG metabolism at the prenyl chain over other positions. Importantly, we found out that CBG and its oxidized CBG metabolites reduced inflammation in BV2 microglial cells stimulated with LPS. Overall, combining enzymological studies, mass spectrometry, and chemical synthesis, we showcase that CBG is rapidly metabolized by human P450s to form oxidized metabolites that are bioactive. The study reveals the structure-activity relationship of CBG metabolites and analogs to their anti-inflammatory activity.
... We observed a previously identified phenomenon whereby coactivation of CB 1 and CB 2 receptors using a nonselective agonist produced unique effects compared to activation of CB 1 or CB 2 receptors via selective agonists. This phenomenon has been previously explained by the formation of physically interacting receptor complexes known as heteromers (Callén et al., 2012;Navarro et al., 2018aNavarro et al., , 2018b. This has been shown to occur in cell types that express both receptors such as microglia which primarily mediate the anti-inflammatory effects of cannabinoids in the central nervous system (Navarro et al., 2018a;Staiano et al., 2016). ...
Article
Microglia are resident immune cells of the brain that survey the microenvironment, provide trophic support to neurons, and clear debris to maintain homeostasis and healthy brain function. Microglia are also drivers of neuroinflammation in several neurodegenerative diseases. Microglia produce endocannabinoids and express both cannabinoid receptor subtypes suggesting that this system is a target to suppress neuroinflammation. We tested whether cannabinoid type 1 (CB1) or type 2 (CB2) receptors could be targeted selectively or in combination to dampen the pro-inflammatory behavior of microglia, and whether this would have functional relevance to decrease secondary neuronal damage. We determined that components of the endocannabinoid system were altered when microglia are treated with lipopolysaccharide and interferon-gamma and shift to a pro-inflammatory phenotype. Furthermore, pro-inflammatory microglia released cytotoxic factors that induced cell death in cultured STHdhQ7/Q7 neurons. Treatment with synthetic cannabinoids that were selective for CB1 receptors (ACEA) or CB2 receptors (HU-308) dampened the release of nitric oxide (NO) and pro-inflammatory cytokines and decreased levels of mRNA for several pro-inflammatory markers. A nonselective agonist (CP 55,940) exhibited similar influence over NO release but to a lesser extent relative to ACEA or HU-308. All three classes of synthetic cannabinoids ultimately reduced the secondary damage to the cultured neurons. The mechanism for the observed neuroprotective effects appeared to be related to cannabinoid-mediated suppression of MAPK signaling in microglia. Taken together, the data indicate that activation of CB1 or CB2 receptors interfered with the pro-inflammatory activity of microglia in a manner that also reduced secondary damage to neurons.
... These endocannabinoids have the chemical structure of alkyl-amide are reproduced from the membrane lipids. Apart from cannabinoids, numerous other constituents were also elucidated, such as D 9tetrahydrocannabinol (D 9 -THC) [19], cannabigerol [20,21], and cannabichromene [22][23][24]. D 9 -THC is the most potent constituent present in abundance in the cannabis plant; thus, majorly are employed in medical research [25]. ...
Article
Various preclinical and clinical studies exhibited the potential of cannabis against various diseases, including cancer and related pain. Subsequently, many efforts have been made to establish and develop cannabis-related products and make them available as prescription products. Moreover, FDA has already approved some cannabis-related products, and more advancement in this aspect is still going on. However, the approved product of cannabis is in oral dosage form, which exerts various limitations to achieve maximum therapeutic effects. A considerable translation is on a hike to improve bioavailability, and ultimately, the therapeutic efficacy of cannabis by the employment of nanotechnology. Besides the well-known psychotropic effects of cannabis upon the use at high doses, literature has also shown the importance of cannabis and its constituents in minimizing the lethality of cancer in the preclinical models. This review discusses the history of cannabis, its legal aspect, safety profile, the mechanism by which cannabis combats with cancer, and the advancement of clinical therapy by exploiting nanotechnology. A brief discussion related to the role of cannabinoid in various cancers has also been incorporated. Lastly, the information regarding completed and ongoing trials have also been elaborated.
Article
Perturbation of the endocannabinoid system can have profound effects on immune function and synaptic plasticity. Microglia are one of few cell types with a self-contained endocannabinoid system and are positioned at the interface between the immune system and the central nervous system. Past work has produced conflicting results with respect to the effects of pro-inflammatory conditions on the microglial endocannabinoid system. Thus, we systematically investigated the relationship between the concentration of two distinct pro-inflammatory stimuli, lipopolysaccharide and interferon gamma, on the abundance of components of the endocannabinoid system within microglia. Here we show that lipopolysaccharide and interferon gamma influence messenger RNA abundances of the microglial endocannabinoid system in a concentration-dependent manner. Furthermore, we demonstrate that the efficacy of different synthetic cannabinoid treatments with respect to inhibition of microglia nitric oxide release is dependent on the concentration and type of pro-inflammatory stimuli presented to the microglia. This indicates that different pro-inflammatory stimuli influence the capacity of microglia to synthesize, degrade, and respond to cannabinoids which has implications for the development of cannabinoid-based treatments for neuroinflammation.
Article
Off-target binding is one of the primary causes of toxic side effects of drugs in clinical development, resulting in failures of clinical trials. While off-target drug binding is a known phenomenon, experimental identification of the undesired protein binders can be prohibitively expensive due to the large pool of possible biological targets. Here, we propose a new strategy combining chemical similarity principle and deep learning to enable proteome-wide mapping of compound-protein interactions. We have developed a pipeline to identify the targets of bioactive molecules by matching them with chemically similar annotated “bait” compounds and ranking them with deep learning. We have constructed a user-friendly web server for drug-target identification based on chemical similarity (DRIFT) to perform searches across annotated bioactive compound datasets, thus enabling high-throughput, multi-ligand target identification, as well as chemical fragmentation of target-binding moieties.
Article
Background: Cannabigerol (CBG) is a non-psychoactive phytocannabinoid produced by the plant Cannabis sativa with affinity to various receptors involved in nociception. As a result, CBG is marketed as an over-the-counter treatment for many forms of pain. However, there is very little research-based evidence for the efficacy of CBG as an anti-nociceptive agent. Methods: To begin to fill this knowledge gap, we assessed the anti-nociceptive effects of CBG in C57BL/6 mice using three different models of pain; cisplatin-induced peripheral neuropathy, the formalin test, and the tail-flick assay. Results: Using the von Frey test, we found that CBG attenuated mechanical hypersensitivity evoked by cisplatin-induced peripheral neuropathy in both male and female mice. Additionally, we observed that this CBG-induced reduction in mechanical hypersensitivity was attenuated by the α2 -adrenergic receptor antagonist atipamezole (3 mg/kg, i.p.) and the CB1 R antagonist, AM4113 (3 mg/kg, i.p.), and blocked by the CB2 R antagonist/inverse agonist, SR144528 (10 mg/kg, i.p.). We found that the TRPV1 antagonist, SB705498 (20 mg/kg, i.p.) was unable to prevent CBG actions. Furthermore, we show that CBG:CBD oil (10 mg/kg, i.p.) was more effective than pure CBG (10 mg/kg) at reducing mechanical hypersensitivity in neuropathic mice. Lastly, we show that pure CBG and CBG:CBD oil were ineffective at reducing nociception in other models of pain, including the formalin and tail flick assays. Conclusions: Our findings support the role of CBG in alleviating mechanical hypersensitivity evoked by cisplatin-induced peripheral neuropathy, but highlight that these effects may be limited to specific types of pain.
Article
Full-text available
The constant search for new pharmacologically active compounds, especially those that do not exhibit toxic effects, intensifies the interest in plant-based ingredients and their potential use in pharmacotherapy. One of the plants that has great therapeutic potential is Cannabis sativa L., a source of the psychoactive Δ9-tetrahydrocannabinol (Δ9-THC), namely cannabidiol (CBD), which exhibits antioxidant and anti-inflammatory properties, and cannabigerol (CBG)—a biologically active compound that is present in much smaller quantities. CBG is generated during the non-enzymatic decarboxylation of cannabigerolic acid, a key compound in the process of biosynthesis of phytocannabinoids and consequently the precursor to various phytocannabinoids. By interacting with G-protein-coupled receptors, CBG exhibits a wide range of biological activities, inter alia, anti-inflammatory, antibacterial and antifungal activities, regulation of the redox balance, and neuromodulatory effects. Due to the wide spectrum of biological activities, CBG seems to be a very promising compound to be used in the treatment of diseases that require multidirectional pharmacotherapy. Moreover, it is suggested that due to the relatively rapid metabolism of cannabigerol, determination of the concentration of the phytocannabinoid in blood or oral fluid can be used to determine cannabis use. Therefore, it seems obvious that new therapeutic approaches using CBG can be expected.
Article
Full-text available
Background: G-protein-coupled receptor (GPCR) heteromeric complexes have distinct properties from homomeric GPCRs, giving rise to new receptor functionalities. Adenosine receptors (A1R or A2AR) can form A1R-A2AR heteromers (A1-A2AHet), and their activation leads to canonical G-protein-dependent (adenylate cyclase mediated) and -independent (β-arrestin mediated) signaling. Adenosine has different affinities for A1R and A2AR, allowing the heteromeric receptor to detect its concentration by integrating the downstream Gi- and Gs-dependent signals. cAMP accumulation and β-arrestin recruitment assays have shown that, within the complex, activation of A2AR impedes signaling via A1R. Results: We examined the mechanism by which A1-A2AHet integrates Gi- and Gs-dependent signals. A1R blockade by A2AR in the A1-A2AHet is not observed in the absence of A2AR activation by agonists, in the absence of the C-terminal domain of A2AR, or in the presence of synthetic peptides that disrupt the heteromer interface of A1-A2AHet, indicating that signaling mediated by A1R and A2AR is controlled by both Giand Gsproteins. Conclusions: We identified a new mechanism of signal transduction that implies a cross-communication between Giand Gsproteins guided by the C-terminal tail of the A2AR. This mechanism provides the molecular basis for the operation of the A1-A2AHet as an adenosine concentration-sensing device that modulates the signals originating at both A1R and A2AR.
Article
Full-text available
The adenosine receptor (AR) subtypes A2A and A2B are rhodopsin-like Gs protein-coupled receptors whose expression is highly regulated under pathological, e.g. hypoxic, ischemic and inflammatory conditions. Both receptors play important roles in inflammatory and neurodegenerative diseases, are blocked by caffeine, and have now become major drug targets in immuno-oncology. By Förster resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), bimolecular fluorescence complementation (BiFC) and proximity ligation assays (PLA) we demonstrated A2A-A2BAR heteromeric complex formation. Moreover we observed a dramatically altered pharmacology of the A2AAR when co-expressed with the A2BAR (A2B ≥ A2A) in recombinant as well as in native cells. In the presence of A2BARs, A2A-selective ligands lost high affinity binding to A2AARs and displayed strongly reduced potency in cAMP accumulation and dynamic mass redistribution (DMR) assays. These results have major implications for the use of A2AAR ligands as drugs as they will fail to modulate the receptor in an A2A-A2B heteromer context. Accordingly, A2A-A2BAR heteromers represent novel pharmacological targets.
Article
Full-text available
As part of an increasing worldwide use of designer drugs, recent use of compounds containing cathinones and synthetic cannabinoids is especially prevalent. Here, we reviewed current literature on the prevalence, epidemiology, bio-behavioral effects, and detection of these compounds. Gender differences and clinical effects will also be examined. Chronic use of synthetic cathinone compounds can have major effects on the central nervous system and can induce acute psychosis, hypomania, paranoid ideation, and delusions, similar to the effects of other better-known amphetamine-type stimulants. Synthetic cannabinoid products have effects that are somewhat similar to those of natural cannabis but more potent and long-lasting than THC. Some of these compounds are potent and dangerous, having been linked to psychosis, mania, and suicidal ideation. Novel compounds are developed rapidly and new screening techniques are needed to detect them as well as a rigorous regulation and legislation reinforcement to prevent their distribution and use. Given the rapid increase in the use of synthetic cathinones and cannabinoid designer drugs, their potential for dependence and abuse, and harmful medical and psychiatric effects, there is a need for research and education in the areas of prevention and treatment.
Article
Full-text available
The hypothalamus is a key integrator of nutrient-seeking signals in the form of hormones and metabolites originated in both the central nervous system and the periphery. The main autocrine and paracrine target of orexinergic-related hormones such as leptin, orexin/hypocretin, and ghrelin are neuropeptide Y neurons located in the arcuate nucleus of the hypothalamus. The aim of this study was to investigate the expression and the molecular and functional relationships between leptin, orexin/hypocretin and ghrelin receptors. Biophysical studies in a heterologous system showed physical interactions between them, with potential formation of heterotrimeric complexes. Functional assays showed robust allosteric interactions particularly different when the three receptors are expressed together. Further biochemical and pharmacological assays provided evidence of heterotrimer functional expression in primary cultures of hypothalamic neurons. These findings constitute evidence of close relationships in the action of the three hormones already starting at the receptor level in hypothalamic cells.
Article
Full-text available
p>Research in the last decades has widely investigated the anti-oxidant properties of natural products as a therapeutic approach for the prevention and the treatment of oxidative-stress related disorders. In this context, several studies were aimed to evaluate the therapeutic potential of phytocannabinoids, the bioactive compounds of Cannabis sativa . Here, we examined the anti-oxidant ability of Cannabigerol (CBG), a non-psychotropic cannabinoid, still little known, into counteracting the hydrogen peroxide (H2O2)-induced oxidative stress in murine RAW264.7 macrophages. In addition, we tested selective receptor antagonists for cannabinoid receptors and specifically CB1R (SR141716A) and CB2R (AM630) in order to investigate through which CBG may exert its action. Taken together, our in vitro results showed that CBG is able to counteract oxidative stress by activation of CB2 receptors. CB2 antagonist pre-treatment indeed blocked the protective effects of CBG in H2O2 stimulated macrophages, while CB1R was not involved. Specifically, CBG exhibited a potent action in inhibiting oxidative stress, by down-regulation of the main oxidative markers (iNOS, nitrotyrosine and PARP-1), by preventing IκB-α phosphorylation and translocation of the nuclear factor-κB (NF-κB) and also via the modulation of MAP kinases pathway. On the other hand, CBG was found to increase anti-oxidant defense of cells by modulating superoxide dismutase-1 (SOD-1) expression and thus inhibiting cell death (results focused on balance between Bax and Bcl-2). Based on its antioxidant activities, CBG may hold great promise as an anti-oxidant agent and therefore used in clinical practice as a new approach in oxidative-stress related disorders.</p
Chapter
Full-text available
Cannabis sativa has been used for recreational, therapeutic and other uses for thousands of years. The plant contains more than 120 C21 terpenophenolic constituents named phytocannabinoids. The Δ9-tetrahydrocannabinol type class of phytocannabinoids comprises the largest proportion of the phytocannabinoid content. Δ9-tetrahydrocannabinol was first discovered in 1971. This led to the discovery of the endocannabinoid system in mammals, including the cannabinoid receptors CB1 and CB2. Δ9-Tetrahydrocannabinol exerts its well-known psychotropic effects through the CB1 receptor but this effect of Δ9-tetrahydrocannabinol has limited the use of cannabis medicinally, despite the therapeutic benefits of this phytocannabinoid. This has driven research into other targets outside the endocannabinoid system and has also driven research into the other non-psychotropic phytocannabinoids present in cannabis. This chapter presents an overview of the molecular pharmacology of the seven most thoroughly investigated phytocannabinoids, namely Δ9-tetrahydrocannabinol, Δ9-tetrahydrocannabivarin, cannabinol, cannabidiol, cannabidivarin, cannabigerol, and cannabichromene. The targets of these phytocannabinoids are defined both within the endocannabinoid system and beyond. The pharmacological effect of each individual phytocannabinoid is important in the overall therapeutic and recreational effect of cannabis and slight structural differences can elicit diverse and competing physiological effects. The proportion of each phytocannabinoid can be influenced by various factors such as growing conditions and extraction methods. It is therefore important to investigate the pharmacology of these seven phytocannabinoids further, and characterise the large number of other phytocannabinoids in order to better understand their contributions to the therapeutic and recreational effects claimed for the whole cannabis plant and its extracts.
Article
Full-text available
BACKGROUND New psychoactive substances constitute a growing and dynamic class of abused drugs in the United States. On July 12, 2016, a synthetic cannabinoid caused mass intoxication of 33 persons in one New York City neighborhood, in an event described in the popular press as a “zombie” outbreak because of the appearance of the intoxicated persons. METHODS We obtained and tested serum, whole blood, and urine samples from 8 patients among the 18 who were transported to local hospitals; we also tested a sample of the herbal “incense” product “AK-47 24 Karat Gold,” which was implicated in the outbreak. Samples were analyzed by means of liquid chromatography–quadrupole time-of-flight mass spectrometry. RESULTS The synthetic cannabinoid methyl 2-(1-(4-fluorobenzyl)-1H-indazole-3-carboxamido)-3-methylbutanoate (AMB-FUBINACA, also known as MMB-FUBINACA or FUB-AMB) was identified in AK-47 24 Karat Gold at a mean (±SD) concentration of 16.0±3.9 mg per gram. The de-esterified acid metabolite was found in the serum or whole blood of all eight patients, with concentrations ranging from 77 to 636 ng per milliliter. CONCLUSIONS The potency of the synthetic cannabinoid identified in these analyses is consistent with strong depressant effects that account for the “zombielike” behavior reported in this mass intoxication. AMB-FUBINACA is an example of the emerging class of “ultrapotent” synthetic cannabinoids and poses a public health concern. Collaboration among clinical laboratory staff, health professionals, and law enforcement agencies facilitated the timely identification of the compound and allowed health authorities to take appropriate action.
Patent
The present specification discloses methods of purifying one or more cannabinoids from a plant material, purified cannabinoids and pharmaceutical compositions comprising one or more cannabinoids produced by the disclosed method, methods and uses for treating a disease or condition employing such purified cannabinoids and pharmaceutical compositions.
Article
Background and purpose: Phytocannabinoids are produced in Cannabis sativa L. in acidic form and are decarboxylated upon heating, processing, and storage. While the biological effects of decarboxylated cannabinoids such as Δ(9) -tetrahydrocannabinol (Δ(9) -THC) have been extensively investigated, the bioactivity of Δ(9) -THCA is largely unknown, despite its occurrence in different Cannabis preparations. The aim of this study was to determine whether Δ(9) -THCA modulates the PPARγ pathway and has neuroprotective activity EXPERIMENTAL APPROACH: The effects of six phytocannabinoids on PPARγ binding and transcriptional activity were investigated. The effect of Δ(9) -THCA on mitochondrial biogenesis and PGC-1α expression was investigated in N2a cells. The neuroprotective effect was analysed in STHdh(Q111/Q111) cells expressing a mutated form of the huntingtin protein, and in N2a cells infected with an adenovirus carrying human huntingtin containing 94 polyQ repeats (mHtt-q94). In vivo neuroprotective activity of Δ(9) -THCA was investigated in mice intoxicated with the mitochondrial toxin 3-nitropropionic acid (3-NP). Key results: Cannabinoid acids bind and activate PPARγ with higher potency than their decarboxylated products. Δ(9) -THCA increases mitochondrial mass in neuroblastoma N2a cells, and prevents cytotoxicity induced by serum deprivation in STHdh(Q111/Q111) cells and by mutHtt-q94 in N2a cells. Δ(9) -THCA, through a PPARγ-dependent pathway, was neuroprotectant in mice intoxicated with 3-NP, improving motor deficits and preventing striatal degeneration. In addition, Δ(9) -THCA attenuated microgliosis, astrogliosis and the upregulation of proinflammatory markers induced by 3-NP. Conclusion and implications: Δ(9) -THCA shows potent neuroprotective activity, worth consideration for the treatment of Huntington´s Disease and possibly other neurodegenerative and neuroinflammatory diseases.
Article
Endocannabinoids are important regulators of neurotransmission and, acting on activated microglia, they are postulated as neuroprotective agents. Endocannabinoid action is mediated by CB1 and CB2 receptors, which may form heteromeric complexes (CB1-CB2Hets) with unknown function in microglia. We aimed at establishing the expression and signaling properties of cannabinoid receptors in resting and LPS/IFN-γ-activated microglia. Unlike CB1, CB2 receptors and CB1-CB2Hets were upregulated in activated microglia. Resting cell refractory CB2 receptors became robustly coupled to Gi in activated cells, in which CB1-CB2Hets mediated a positive cross-talk. Resting cells were refractory while activated cells were highly responsive to cannabinoids. Interestingly, similar results were obtained in cultures treated with ß-amyloid (Aß1-42). Activation microglial markers were detected in the striatum of a Parkinson's disease (PD) model and, remarkably, in primary microglia cultures from the hippocampus of mutant β-amyloid precursor protein (APPSw,Ind) mice, a transgenic Alzheimer's disease (AD) model. Also of note was the similar cannabinoid receptor signaling found in primary cultures of microglia from APPSw,Ind and in cells from control animals activated using LPS plus IFN- γ. Expression of CB1-CB2Hets was increased in the striatum from rats rendered dyskinetic by chronic levodopa treatment. In summary, our results showed sensitivity of activated microglial cells to cannabinoids, increased CB1-CB2Het expression in activated microglia and in microglia from the hippocampus of an AD model, and a correlation between levodopa-induced dyskinesia and striatal microglial activation in a PD model. Cannabinoid receptors and the CB1-CB2 heteroreceptor complex in activated microglia have potential as targets in the treatment of neurodegenerative diseases.