3D-printed construction is an additive, layer-by-layer construction method with the potential to reduce material consumption, optimize design, decrease construction time, lower labor requirements, minimize logistical demand, improve sustainability, and reduce costs as compared to conventional construction. This paper presents the results of a systematic review of 4491 publications spanning from 1998 through 2019. The review presents the viability of 3D-printed construction as a replacement for conventional construction methods, specifically in remote, isolated, or expeditionary environments, where conventional construction capability may be limited. The paper includes an analysis and characterization of the existing body of 3D-printed construction literature before evaluating seven viability factors of the method: materials, structural design, process efficiency, logistics, labor, environmental impact, and cost. In addition, the paper highlights three case studies of 3D-printed construction in remote, isolated, and expeditionary environments. The paper concludes by suggesting areas of future research to ensure the viability of this technology, such as printing full-scale structures and components with locally sourced materials in uncontrolled environments, defining standards for 3D printing, automating additional construction processes, and performing both environmental impact and cost life-cycle analyses. With continued investment in research and development, 3D printing could become a more viable and accepted method of construction, transforming the way the industry is managed in remote, isolated, and expeditionary environments.