Content uploaded by Manuel Goyanes
Author content
All content in this area was uploaded by Manuel Goyanes on Jun 12, 2018
Content may be subject to copyright.
Media and
Communications
Media@LSE Working Paper Series
Editors: Bart Cammaerts, Nick Anstead and Richard Stupart
The Sociology of Fake News
Factors affecting the probability of sharing political
fake news online
Goyanes, Manuel
Lavin, Ana
The Sociology of Fake News
Factorsaffectingtheprobabilityofsharingpoliticalfakenewsonline
GOYANES,MANUEL1
LAVÍN,ANA2
1ManuelGoyanes(mgoyanes@hum.uc3m.es),PhD,teachesattheCarlosIIIUniversityinMadridandhismain
interestsareinmediamanagementandsociologyofcommunicationsciences.Hehaswrittenaboutleadership,
newsoverload,consumercultureandbusinessmodels.HeistheauthorofDesafíoalaInvestigaciónEstándaren
Comunicación.CríticayAlternativas,EditorialUOC.Address:UniversidadCarlosIIIdeMadrid,C/Madrid,133.
28903Getafe(Madrid),Spain.(CorrespondingAuthor)
2AnaLavín(analavinv@gmail.com),studiesattheUniversityCarlosIIIUniversityinMadridandhermain
interestsareinpoliticalcommunication,speciallypoliticalextremismandpopulism,andgenderstudiesinmedia.
Address:UniversidadCarlosIIIdeMadrid,C/Madrid,133,28903Getafe(Madrid)Spain.
PublishedbyMedia@LSE,LondonSchoolofEconomicsandPoliticalScience(ʺLSEʺ),
HoughtonStreet,LondonWC2A2AE.TheLSEisaSchooloftheUniversityofLondon.Itisa
CharityandisincorporatedinEnglandasacompanylimitedbyguaranteeunderthe
CompaniesAct(Regnumber70527).
Copyright,ManuelGoyanesandAnaLavin©2018.
Theauthorshaveassertedtheirmoralrights.
ISSN:1474‐1938/1946
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem
ortransmittedinanyformorbyanymeanswithoutthepriorpermissioninwritingofthe
publishernorbeissuedtothepublicorcirculatedinanyformofbindingorcoverotherthan
thatinwhichitispublished.Intheinterestsofprovidingafreeflowofdebate,viewsexpressed
inthispaperarenotnecessarilythoseofthecompilersortheLSE.
Abstract
Drawingonrecentliteratureonfakenews,thisworkingpapershedslightonthedemographic
factorsandsituationalpredictorsthatinfluencetheprobabilitytosharepoliticalfakenews
throughsocialmediaplatforms.Byusingarepresentativesampleof1.002USadultsfromthe
PewResearchCenter,theresultsofthelogisticregressionanalysisrevealedrelationships
betweentheprobabilitytosharepoliticalfakenewsonlineandpredictorvariablessuchas
demographics(age,gender,politicalorientationandincome),andsituationalfactors
(perceptionoffrequencyofpoliticalfakenewsonline,previousunconsciouslyfakenews
sharingandperceptionofresponsibility[ofdifferentagents]).Theresearchoffersevidence
regardingtheprototypeuserthatcontributestothespreadofmisinformationandthemain
implicationsthatthisphenomenonentailsforprofessionaljournalism.
TheSociologyofFakeNews
Media@LSEWorkingPaper#55
1
1 INTRODUCTION
Inthepastfewdecades,readers’newsconsumptionbehaviourhasdramaticallychanged
(Goyanes,2014;Shuetal.,2017).Thegrowingpopularityofdigitalinformationplatformsand
thesharpdeclineinnewspapercirculationandnetworknewsratingshaveledmanyscholars
tospeculatethatnewmediawouldeventuallyreplacetraditionalsourcesofnewsand
information(Meyer2004;Ahlers2006).Inthischangingmediacontext,thepowerand
importanceofsocialmediaplatformstoaccessorbeingexposedtonewsfromdifferentmedia
outlets(GildeZuñiga,WeeksandArdèvol‐Abreu,2017),hasgrowndramatically(Reuters,
2014).Forinstance,accordingtorecentdatafromtheReutersInstitute(2017),morethanhalf
(54%)ofallonlineusersacross36countriesusesocialmediaasasourceofnews,andmore
thanoneinten(14%)usesocialmediaastheirmainsource.Theseconsumptionpatternsare
especiallyremarkableintheUSA,acountryinwhich43%ofthepopulationgotnewsfrom
socialmediain2013(ReutersInstitute2013),increasingupto67%in2017(PewResearch
Center2017).
Althoughsomeobservershaveclaimedsocialmediamightpositivelyimpactmediabrands
bydrivingtraffic(NielsenandSchrøder,2014;Ju,JeongandChyi,2014),offeringconsumers
thepossibilitytointeractwithotherreaders(Shuetal.,2017),thealternativehypothesis,i.e.
thatsocialmediaplatformsaresubstitutingmediaoutlets(asasource),seemsequally(ifnot
more)plausible,givingrisetoanambientjournalism(newsisomnipresent),andaperception
thatnewswillfindreaders(Herminda,2010;GildeZuñiga,WeeksandArdèvol‐Abreu,2017).
Thisrisingpopularityofsocialmediaplatformsintermsofnewsconsumptionhasalsoledto
seriousconcernsamongscholarsandlegislatorsaroundtheworldabouttheirpotential
influenceindisseminatinglargevolumesofnon‐supervisedjournalisticcontent(Baumetal.,
2017),empoweringamisinformationphenomenon,(Darnton,2017)andthusprovokingthe
possibilitytomanipulatethepublic’sperceptionofrealitythroughtheviralspreadoffake
news(Gu,etal.,2017).
Thelimited,butgrowingtheoreticalandempiricalresearchonfakenewshaveaddressed
differentdimensionsofthephenomena,suchasitscross‐countryprevalence(Reuters
Institute,2017),the(theoretical)consequencesofitsspread(Guptaetal.,2013)and/orthemain
producers’motivationsfortheircreationanddissemination(AllcottandGentzkow,2017;
Subramanian,2017;Silverman,2016;MarwickandLewis,2017).Theliteraturesuggeststhat
althoughthereisanincreasingawarenessoftheprevalenceoffakenews,theextentofits
impactinEuropeisstillverylimited(ReutersInstitute,2017),thekeymotivationsare
pecuniary(AllcottandGentzkow,2016)butalso(andincreasingly)ideological(Marwickand
Lewis,2017),whilethetheoreticalandpotentiallynegativeconsequencesoftheirspreadpoint
TheSociologyofFakeNews
Media@LSEWorkingPaper#55
2
toamyriadofagentsandsocialcircumstances,suchaspoliticalleadersanddemocratic
societies(Gu,etal.,2017)stockmarkets(Ferraraetal.,2016),healthpolicies(Fernández‐Luque
andBau,2015)citizensincrisissituations(Guptaetal.,2013),and,fundamentally,readers’
interpretationofreality(Cooketal.,2012;Silverman,2016).
Whilethisgrowingliteraturehasgenerallyemphasizedthecentralityoffakenewsproducers
andhowthespreadoffakeinformationleadstoagrowingdifficultyofaudiencesto
distinguishbetweenprofessionalandnon‐professionalnewscontent(Tandocetal.,2017)and
thusmakinghumansmorevulnerabletoonlinemanipulations(Shaoetal.,2017),akey
questionstillremainsunanswered:whatdemographicandsituationalfactorsdriveconsumers
tosharefakenewsonline?Specifically,giventheincreasingimpactoffakenewsonthe
politicalagendaandvoters’decisions(Balmas,2014),wefocusontheprobabilitytoshare
politicalfakenewsthroughsocialmedia.Byaddressingthisgapintheliterature,andbased
onarepresentativeUSAsurveyfromthePewResearchCenter(2017),weaimtocontributeto
amorenuancedunderstandingofthisrecentphenomenabyempiricallyconfirmingor
refutingmanyoftheassumptionsheldinthemediaandpoliticalphoraregardingthe“who”
question,offeringalsosomeindirectinsightsregardingthemainmotivationsforfakenews
sharing.
Concretely,thispaperinvestigateshowdifferentdemographicfactors(sex,age,gender,
politicalorientationandincome)andsituationalpredictors(perceptionoffrequencyof
politicalfakenews,previousonlinefakenewssharing[unnoticed],andperceptionof
responsibilityinpreventingfakenews[ofmembersofthepublic,politiciansandsocial
networkingsites]),affectstheprobabilitytosharepoliticalfakenewsthroughsocialmedia
platforms.Byusingalogisticregressionanalysis,ninemainfindingsemerged:(1)the
probabilityofsharingpoliticalfakenewsonlineishigherinmalesthanfemales;(2)older
peoplearemorelikelytosharepoliticalfakenewsonlinethanyoungerpeople;(3)peoplewith
lowerincomeshavemoreprobabilitytosharepoliticalfakenewsonline;(4)democratvoters
havelessprobabilitytosharepoliticalfakenewsthanindependentvoters(thereisnostatistical
significancebetweendemocratsandrepublicans);(5)peoplewhohaveahighperceptionof
frequencyofonlinefakenewsaremorelikelytosharepoliticalfakenews;(6)peoplewho
inadvertentlyhavesharedfakenewshavelessprobabilitytosharepoliticalfakenewsonline
onpurpose;(7)peoplewhograntgreatresponsibilitytothepublicinpreventingfakenews
storiesfromgainingattentionarelesslikelytosharepoliticalfakenews;(8)peoplewhogrant
greatresponsibilitytosocialnetworkingsitesinpreventingfakenewsstoriesfromgaining
attentionaremorelikelytosharepoliticalfakenewsstoriesand(9)democrat‐femalevoters
arelesslikelytosharepoliticalfakenewsthanmale‐independentvoters.
TheSociologyofFakeNews
Media@LSEWorkingPaper#55
3
2 LITERATURE REVIEW AND RESEARCH QUESTIONS
Inordertoinvestigatethepotentialinfluencethatdifferentdemographicandsituational
factorsmighthaveontheprobabilityofconsumerstosharepoliticalfakenewsviasocial
mediaplatforms,itisimportanttofirstunderstandthemotivationsforproducingfakenews
andthescaleofthisphenomena.Wefirstassessrecentstudiesonfakenewsandaddressthe
relevanceofcommercialandpoliticalinterestsbehindfakenewsproviders,emphasizingthe
keyroleofsocialmediaplatformsascentralspacesoffakenewsamplification.Fromthere,we
turntotheconsequencesofthescaleofonlinefakenewsandtheroleofprofessional
journalismintheirprevention.Finally,welookattheimpactofnewsconsumptionthrough
socialnetworkingsitesandthedemographicsoffakenewssharing.
2.1 Fake news online
AccordingtoCollinsDictionarytheconceptof“fakenews”startedbeingusedonUStelevision
todescribe“false,oftensensational,informationdisseminatedundertheguiseofnews
reporting”.Communicationscholarshavescrutinizeddifferentanglesofthefakenews
phenomena,especiallyaroundthemotivationsfortheirproductionanddissemination(Allcott
andGentzkow,2017;Subramanian,2017)andthepotential(negative)consequencesoftheir
consumption(Ferraraetal.,2016;Silverman,2016;Gu,etal.,2017).Inthisregard,thereisan
academicagreementthatthemainmotivationsbehindfakenewsproductionarecommercial
(chrematisticinterest)andpolitical(ideological)(Hirst,2017).Ontheonehand,the
commercialmotivationsrefertothecreationanddisseminationoffakenewsinorderto
increasethereadershipofanewssite,andgetmoreadvertisingrevenuesasaconsequence
(AllcottandGentzkow,2016).Forinstance,inthe2016USelectionsoneofthemostimportant
fakenewsproviderswascreatedbyteenagersinatowninMacedoniawithnoideological
agendabutrathereconomicincentives(Subramanian,2017;Silverman,2016).Theystatedthat
publishingpro‐Trumpcontentgeneratedthemmoreadvertisingrevenue(Marwickand
Lewis,2017).
Ontheotherhand,thesecondmotivationisideological(AllcottandGentzkow,2017;Gu,
Kropotov,andYarochkin,2017),basedoncampaignsmanipulation,defamationofcandidates
withtheintentofdamagingtheirpublicimage.Inthiscase,theobjectiveoffakenews
providersistoempowerthecandidatetheyfavourthroughfalseinformationthatcanchange
theopinionoftheaudience(AllcottandGentzkow,2017;Gu,etal.,2017).Aclearexampleof
thisphenomenonhappenedonJuly2016whenthewebsitewtoe5news.compublishedan
articleallegingthatPopeFrancissupportedDonaldTrump’spresidentialcandidacy(Allcott
andGentzkow,2017).ThenewswassharedonFacebookmorethanonemilliontimesand
manypeoplebelievedthattheheadlinewastrustworthy.
TheSociologyofFakeNews
Media@LSEWorkingPaper#55
4
Accordingtopreviousstudies,thescaleandinfluenceoffakenewsistiedtothepowerof
socialnetworkstodisseminateitandtheirincreasingroleonnewsconsumption;AsAllcot
andGentzkow(2017:221)pointout:
Onsocialmediathefixedcostsofenteringthemarketandproducingcontentare
vanishinglysmallandtheformatofsocialmediacanmakedifficulttojudgeanarticle’s
veracity.
Recentdataontherelationshipbetweensocialnetworkingsitesandthescaleoffakenews
indicatesthat41,8%ofthefakenewswebsitestrafficcomesfromsocialmedia,while
traditionalandtopnewssitesonlyrepresent10%ofthetotalsharetraffic(Allcottand
Gentzkow,2017).Someobserverslinktheviraldiffusionofdigitalfakeinformationtotherise
ofsocialbots(Shaoetal.,2017).Ferraraetal.(2017:1)observeamassiveincreasein‘social
mediaaccountscontrolledbycomputerscriptsthattrytodisguisethemselvesaslegitimate
humanusers’.Suchfakeaccounts,onFacebookorInstagram,butespeciallyonTwitter,post
content,interactwitheachotherandlegitimateusersviasocialconnections,makinghumans
morevulnerabletoonlinemanipulations(Shaoetal.,2017).AccordingtothePewResearch
Center,74%ofTwitterusersgotnewsthere,whereasbetween9%and15%ofactiveaccounts
onTwitterarebots(Ferraraetal.,2017).InRussia,45%ofTwitteractivityismanagedbyhighly
automatedaccounts(Woolley,andHoward,2017).
Thescaleoffakenewsisgrowingrapidlybecausetheaccessbarrierstoinformation
consumptionhavealmostdisappearedandsocialmediasiteshavebecomeopen,freeand
unrestrictedplatformsfornewssharingandconsumption(AllcottandGentzkow,2017).In
today’smediaenvironment,informationisfree‐floatingontheInternet(Sundar,2008)and
traditionalgatekeeperslikeprofessionaleditorsjournalistsarelargelyabsent(McGrewetal.,
2017;Cooketal.,2012).Thisphenomenongivespeopleahugeresponsibilitytocriticallyself‐
evaluatethereliabilityofonlineinformation(McGrewetal.,2017),generatingagrowing
difficultyfortheaudiencetodistinguishbetweenjournalisticandnon‐journalisticnews
contentandthustocalibratethedifferencebetweenfalseandcorrectinformation(Tandocet
al.,2017).Accordingtorecentmarketresearch,64%ofAmericanssayfabricatednewsstories
causesthemagreatdealofconfusionrelatingtothebasicfactsofcurrentissuesandevents
(PewResearchCenter2016).Thismightleadthemtomakedecisionsagainsttheirown
interests(McGrewetal.,2017).Inthiscontextofnewsuncertainty,thereisacademicconsensus
onthecontinuedimportanceofprofessionaljournalismandfact‐checkinginordertoreduce
theprobabilityofaudiencesbeinginfluencedbymisinformation(Amazeen,2017).
Atthesametime,trustandconfidenceamongstcitizensintraditionalmassmediais
continuouslydecreasing(GoyanesandVara‐Miguel,2017;AllcottandGentzkow,2017).This
lackoftrustinmainstreammediacouldexplaintheincreaseddemandfornewsfromnon‐
TheSociologyofFakeNews
Media@LSEWorkingPaper#55
5
traditionalsources(AllcottandGentzkow,2017).AstudyfromReutersshowsthatamong36
countriesjustone‐thirdoftherespondentsfeltthattheycouldtrustnewsmedia(Reuters
Institute,2017).Peopleprefernewssourcesthatsupporttheirexistingviews[selective
exposure](Cooketal.,2012),whichreflectsthathumansarebiasedinformation‐seekers(Baum
etal.,2017).Becauseofthisprocess,audiencesperceivepartisancontentasmoreinteresting
andinformativethancontentwhichcontradictstheirownideas(Coeetal.,2008).Social
networkslikeFacebookorTwitterareideologicallysegregatedanduserstendtoreadand
sharenewsarticlesalignedwiththeirideologicalposition(Bakshyetal.,2015).Inadditionto
this,readerstrustthesharermorethanwhoproducesthearticle–regardlessofwhetherthe
articleisproducedbyarealnewsorganizationorafictionalone(MediaInsightProject2016).
Whenpeopleseeapostfromatrustedpersontheyfeelmorelikelytorecommendthenews
sourcetofriends(MediaInsightProject2016),andwhentheinformationcomesfroman
unfamiliaroranoppositionsourceitwillusuallybeignored(Baumetal.,2017).
Peoplewhousemoretime‐consumingmedia,arenotonlyolderandtendtohaveahigher
educationallevel,theyalsohavemoreaccuratebeliefsaboutnews(AlcottandGentzkow,
2017).Ontheotherhand,youngsocialmediausers’newsconsumptioncanbedefinedas
“incidental”,becauseforthem,newscomestothemundifferentiatedfromentertainment
informationtheyfindonInternetwhiletheyaresurfingonsocialnetworks(GildeZuñigaet
al.,2017).Ontheotherhand,emotionsareimportantinhowpeoplerespondtoincorrect
politicalmisinformation(Weeks,2015).Unlikeangrypeoplewhoprocessinformationina
partisanmanner,peoplewithanxietyreducetherelianceonpartisanship(Weeks,2015).
Peopleshareinformationthatwillevokeanemotionalresponseinthereceiver,regardlessof
ofwhethertheinformationistrueornot(Cooketal.,2012).Asaresult,newsreadersmight
contributeconsciouslyorunconsciouslytothespreadoffakeinformationbysharingnews
thatmighthavealargerimpactontheironlinesocialconnections(Bartheletal.,2016).
Whenitcomestoideology,Democratsaremorepronetodistinghuishtruefromfakearticles
thanRepublicanswhose‘trustandconfidence’intraditionalmassmediaissharplydecreasing
(AllcottandGentzkow,2017).TheescalationoftheRepublicans’discredittowardstraditional
mediaisreflectedonthecurrentpresidentoftheU.S.,DonaldTrump,whoclaimed146times
inhisTwitterpersonalaccountthatmainstreammediaisasourceoffakeinformationand
newsmanipulation(Hirst,2017).Inthiscase,thetermfakenewsreferstonewshedoesnot
like.DuringtheUSelections2016campaign,peoplewhosupportedTrumpusedtovisitfake
newswebsitesmorethanHillarysupporters(Guessetal.,2018)andonFacebook,therewere
aboutthreetimesmorefakepro‐Trumparticlesthanpro‐Clintonones(AllcottandGentzkow,
2017).Inaddition,Republicans(39%)haveslightlymoreprobabilitiestousesocialmediato
repostcontentrelatedtopoliticalmattersthanDemocrats(34%)(Rainieetal.,2012).
TheSociologyofFakeNews
Media@LSEWorkingPaper#55
6
Despitetherelevanceandtheoreticalramificationsoftheliteratureonfakenews,researchon
thedemographicandsituationalfactorsthatmightinfluencenewsconsumers’probabilityto
sharepoliticalfakenewsonlineisscarce.Paststudieshavemainlyexaminedtheprevalence
ofthephenomena(ReutersInstitute,2017),themotivationsforfakenewscreation(Allcottand
Gentzkow,2017;MarwickandLewis,2017)andtheeffectsoffakenewsdisseminationon
society,politicalleaders,stockmarkets,etc(Silverman,2016;Ferraraetal.,2016;Guetal.,2017).
However,giventheincreasingimpactoffakenewsonthepoliticalagendaandvoters’
decisions(Balmas,2014)andtherelevanceofsocialmediaplatformsintheamplificationof
themisinformationphenomenon,thisstudyfocusesontheconsumerimpactonfakenews
disseminationandanalysesthedemographicandsituationalfactorsbehindthereachof
politicalfakenews.Therefore,thisstudyexploresthefollowingresearchquestions(RQ):
RQ1.Howdodemographics(sex,age,gender,politicalorientationandincome),affect
theprobabilitytosharepoliticalfakenewsonline?
RQ2.Whatistheinteractionbetweenpoliticalorientationandgender?
RQ3.Howdoestheperceptionoffrequencyofpoliticalfakenewsonlineaffectthe
probabilitytosharethem?
RQ4.Howdoespreviousonlinefakenewssharing(unnoticed),affecttheprobability
tosharepoliticalfakenewsonline(onpurpose)?
RQ5.Howdoestheperceptionofresponsibilityof1)membersofthepublic,2)
government,politiciansandelectedofficialsand3)FacebookandTwitter,intryingto
preventfakenewsaffecttheprobabilitytosharethemonline?
3 METHODOLOGY
TheanalysisinthisstudyisbasedonaPewResearchCentersurveyconductedDec.1through
Dec.4,2016,amonganationalrepresentativesampleof1,002adults,18yearsofageorolder,
livinginthecontinentalUnitedStates3.TheresultsofthestudycarriedoutbythePew
ResearchCenter(Journalism&Media)aredescriptive.Thatis,onlydescriptivestatisticsare
usedtoexplorethegeneralsituationofU.S.fakenewswithoutadvancinganyinferential
analysis.Theanalysisperformedandtheresultsobtainedandexposedherearenew,except
forthedescriptive(raw)datainrelationtothedependentvariableitself.
3Tohavemoreinformationaboutthemethodologyconsultsthefollowingweb:
http://www.pewresearch.org/methodology/u‐s‐survey‐research/
TheSociologyofFakeNews
Media@LSEWorkingPaper#55
7
Themodelconstructedisbasedonabinomiallogisticregression,analyzingtheprobabilityof
sharingpoliticalfakenewsasadependentvariable.Logisticregressionteststheprobabilityof
adichotomouseventoccurring—inthiscase,sharingornotpoliticalfakenews.Thepredicted
proportionofactivitiesfollowsthelogisticmodeloflnP/(1
Pi)=βXi,wherePiisthe
probabilityofsharingpoliticalfakenews.Allpredictorvariableswereintroducedfive
differentblocks:demographics,frequencyofpoliticalfakenews,unnoticedfakenews,
perceptionofresponsibility,andinteractionbetweenpoliticsandgender.
3.1 Variables and Measurements
Dependentvariable:Thedependentvariable,theprobabilitytosharepoliticalfakenews,was
measuredbyaskingparticipantsthefollowingquestion:“Haveyoueversharedapolitical
newsstoryonlinethatyouthoughtatthetimewasmadeup?(0)Noand(1)yes.
Independentvariables:Dataforthedemographicvariables(i.e.,gender,age,income,education
andpoliticalorientation)werecollectedusingstandardsurveymeasurements.Theperception
offrequencyofpoliticalfakenewswasmeasuredbyaskingparticipantsthefollowing
question:“Howoftendoyoucomeacrossnewsstoriesonlinethatyouthinkarealmost
completelymadeup”,onafour‐pointLikertscale,rangingfrom1)never,2)hardlyever,3)
sometimesand,4)often.Unnoticedfakenewssharingwasmeasuredbyaskingparticipants
thefollowingquestion:“Haveyoueversharedapoliticalnewsstoryonlinethatyoulater
foundoutwasmadeup?(0)Noand(1)yes.Theperceptionofresponsibilitywasmeasured
byaskingparticipantsthefollowingquestion:“Asyoumayhaveheard,therehaverecently
beensomeinstancesofsocalled“fakenewsstories”circulatingwidelyonline.Howmuch
responsibilitydoeseachofthefollowinghaveintryingtopreventmadeupstoriesfrom
gainingattention”a)membersofthepublic,b)thegovernment,politicians,andelected
officials,c)socialnetworkingsiteslikeFacebookandTwitter,andsearchsiteslikeGoogle,on
afour‐pointLikertscale,rangingfrom:1)noresponsibilityatall,2)notmuchresponsibility,
3)afairamountofresponsibility,4)agreatdealofresponsibility.
TheSociologyofFakeNews
Media@LSEWorkingPaper#55
8
4 RESULTS
4.1 Descriptive statistics
Thesampleof1,002U.S.residentsincludedslightlymorewomen(51,3%)thanmen(48.7%),
withanagerangebetween18and99(M=47.22;SD=18.22).Mostparticipants(50,7%)
declaredthey“often”cameacrossnewsstoriesonlinethattheythinkwerealmostcompletely
madeup,27,1%declared“sometimes”,8,4%“hardlyever”andanegligible10,4%declared
they“never”cameacrosspoliticalfakenews.Withregardtothedependentvariable,13.8%of
thetotalsampledeclaredtheysharedpoliticalfakenews,whilethevastmajority,thatis,85.5%
ofparticipantsdeclaredtheyneversharedpoliticalfakenewsonline.Thecorrelationanalysis
revealedsomeimportantassociations.Interestingtonote,forexample,arethenegative
associationsbetweenageandfakenewsfrequencyandpublicresponsibility,whileapositive
statisticallyassociationwithgovernmentresponsibility.Ontheotherhand,ourcorrelation
analysisrevealedastatisticallysignificantandpositiveassociationbetweeneducationand
fakenewsfrequency,publicresponsibilityandSNSresponsibility.Thesamepatternsare
appliedwithregardtoincome.
Table 1. Correlations between quantitative variables
4.2 Probability to share political fake news online: Logistic regression
analysis
Thelogisticregressionanalysisresultsrevealedtherelationshipbetweentheprobabilityto
sharepoliticalfakenewsandsomepredictorvariables(p<.05)Thefirstmodel
(demographics),accountedfor4.4%or2.5%ofthevarianceintheprobabilitytosharepolitical
fakenews(NagelkerkeR2andCox&SnellR2),thesecondmodel(perceptionoffrequencyof
politicalfakenews),accountedfor4.7%or2.7%ofthevariance,thethirdmodel(unnoticed
fakenews),accountedfor23.5%or13.3%ofthevariance,thefourthmodel(perceptionof
responsibility),accountedfor24.1%or13.6%ofthevariance,andthefifthmodel(interaction
AgeEduc.Inc.FakeNews
Freq
Resp.(1)Resp.(2)Resp.(3)
Age1 ‐,010,008 ‐,092** ‐,060**,097**,031
Education ‐,0101,507**,114**,148** ‐,031,048**
Income,008,507**1,190**,115**,001,088**
FNFreq. ‐,092**,114**,190**1,171**,143**,227**
Resp.(1) ‐,060**,148**,115**,171**1,268**,234**
Resp.(2),097** ‐,031,001,143**,268**1,330**
Resp.(3),031,048**,088**,227**,234**,330**1
TheSociologyofFakeNews
Media@LSEWorkingPaper#55
9
betweenpoliticsandgender),accountedfor24.1%or13.6%ofthevariance.Thesefindings
thussuggestconsiderableexplanatorypower.
Withregardtothefirstresearchquestion,whichaddressedtheassociationbetween
demographicvariablesandtheprobabilitytosharepoliticalfakenews;age,gender,income,
educationandpoliticalorientationwereenteredinthefirstblockoftheanalysis.Thelogistic
regressionresultsrevealedastatisticallysignificantassociation(p<.05)withgender,age,
income,andpoliticalorientation.Therefore,theprobabilityofsharingpoliticalfakenews(p=
<.05;β=‐,695;,499ex)washigherinmalesthanfemales.Thelogisticregressionalsoidentified
ageasastatisticallysignificantandpositivepredictor;thatis,theprobabilityofsharing
politicalfakenews(p=<.05;β=,013;1,013ex)increaseswithage.However,incomewasa
negativepredictor(p=<.05;β=‐,073;,930ex),insuchawaythatpeoplewithlowerincome
havemoreprobabilitytosharepoliticalfakenews.Finally,theregressionanalysisrevealeda
significantandnegativeassociationbetweenpoliticalorientationandtheprobabilitytoshare
politicalfakenews.Specifically,democratvoters(p=<.05;β=‐,237;,789ex)haveless
probabilitytosharepoliticalfakenewsthatindependentvoters(thereisnostatistical
significancebetweendemocratsandrepublicans).
Thesecondresearchquestionaskedwhethertheperceptionoffrequencyofonlinefakenews
wouldpredicttheprobabilitytosharepoliticalfakenews.Inadditiontogender(p=<.05;β=
‐,701;,496ex),age(p=<.05;β=,014;1,014ex),andincome(p=<.05;β=‐,081;,923ex),the
perceptionofonlinefakenewsfrequency(p=<.05;β=,125;1,133ex)wasasignificant
predictor.Hence,theincreasingperceptionofonlinefakenewsincreasestheprobabilityto
sharepoliticalfakenews.Thethirdresearchquestionaskedwhetherpreviouslyunnoticed
fakenewssharingwouldpredicttheprobabilitytosharepoliticalfakenews.Inadditionto
gender(p=<.05;β=‐,800;,449ex),age(p=<.05;β=,011;1,011ex),income(p=<.05;β=‐,072;
,931ex),andpolitics(p=<.05;β=‐,296;,744ex),unnoticedfakenewssharing(p=<.05;β=‐
2,210;,110ex),wasasignificantandnegativepredictorofpoliticalfakenewssharingonline.
Therefore,peoplewhohaveinadvertentlysharedfakenewshavelessprobabilitytoshare
politicalfakenewsonline.
Thefourthresearchquestionaskedwhethertheperceptionofresponsibilityofdifferentsocial
stakeholdersintryingtopreventfakenewscouldpredicttheprobabilitytosharepoliticalfake
news.Inadditiontogender(p=<.05;β=‐,805;,447ex),age(p=<.05;β=,010;1,010ex),income
(p=<.05;β=‐,068;,934ex),politics(p=<.05;β=‐,327;,721ex),andunnoticedsharingfake
news(p=<.05;β=‐2,24;,106ex),publicresponsibility(p=<.05;β=‐,132;,876ex),andsocial
networkingsitesresponsibility(p=<.05;β=,161;1,174ex),werefoundtobesignificant
predictorsofpoliticalfakenewssharing.
TheSociologyofFakeNews
Media@LSEWorkingPaper#55
10
Table2.Logisticregressionanalysis.*p<0,05;**p</0,01
Model1Model2Model3Model4Model5
BExp(B)BExp(B)BExp(B)BExp(B)BExp(B)
Gender ‐,695**,499 ‐,701**,496 ‐,800**,449 ‐,805**,447 ‐,630**,528
Age,013**1,013,014**1,014,011**1,011,010**1,010,010**1,010
Education ‐,016,984 ‐,016,984 ‐,017,983 ‐,011,989 ‐,005,995
Income ‐,073**,930 ‐,081**,923 ‐,072**,931 ‐,068*,934 ‐,071*,931
Politics(1) ‐,001,999,0211,021 ‐,017,983 ‐,027,973 ‐,040,961
Politics(2) ‐,237*,789 ‐,212,809 ‐,296*,744 ‐,327*,721 ‐,122,885
FNFreq ,125*1,133 ‐,031,969 ‐,059,943 ‐,065,937
UnnoticedFN ‐2,210**,110 ‐2,24**,106 ‐2,23**,107
Resp.Pub ‐,132*,876 ‐,136*,873
Resp.Gov ‐,009,991 ‐,005,995
Resp.SNS ,161**1,174,161**1,17
Gend(1)*Pol(1) ‐,005,995
Gend(1)*Pol(2) ‐,511*,553
NagelkerkeR2,044 ,047 ,235 ,241 ,243
Cox&SnellR2,025 ,027 ,133 ,136 ,137
Chi266,89** 4,26* 306,9** 9,76* 3,625
Loglikelihood2146,0 2141,8 1834,8 1825,0 1821,4
No.ofobservations1.002 1.002 1.002 1.002 1.002
TheSociologyofFakeNews
Media@LSEWorkingPaper#55
11
Withregardtopublicresponsibility,thelogisticregressionanalysisrevealedastatistically
significantandnegativerelationwithpoliticalfakenewssharing.Therefore,peoplewhogrant
greatresponsibilitytothepublicinpreventingfakenewsstoriesfromgainingattentionare
lesslikelytosharepoliticalfakenews.However,whenitcomestosocialnetworkingsites,the
logisticregressionrevealedastatisticallysignificantbutpositiveassociation,insuchaway
thatpeoplewhograntgreatresponsibilitytosocialnetworkingsitesinpreventingfakenews
storiesfromgainingattentionaremorelikelytosharepoliticalfakenewsstories.
Thefifthresearchquestionaskedwhethertheinteractionbetweengenderandpolitical
orientationcouldpredicttheprobabilitytosharepoliticalfakenewsonline.Inadditionto
gender(p=<.05;β=;ex),age(p=<.05;β=;ex),income(p=<.05;β=;ex),unnoticedfake
newssharing(p=<.05;β=;ex),andsocial(p=<.05;β=;ex),andsocialnetworkingsites
responsibility(p=<.05;β=;ex),theinteractionbetweengender(1)andpolitics(1),werefound
tobeasignificantpredictoroftheprobabilitytosharepoliticalfakenewsonline(p=<.05;β=
;ex).Therefore,democrat‐femalevotersarelesslikelytosharepoliticalfakenewsthanmale‐
independentvoters.
5 CONCLUSION
Thispaperinvestigateshowdifferentdemographicfactors(age,gender,politicalorientation
andincome)andsituationalpredictors(perceptionoffrequencyofpoliticalfakenews,
previousonlinefakenewssharing[unnoticed],andperceptionofresponsibilityinpreventing
fakenews[ofmembersofthepublic,politiciansandsocialnetworkingsites]),affectthe
probabilitytosharepoliticalfakenewsthroughsocialmediaplatforms.First,ourresearch
addressestherelevantroleofdemographicvariablesinexplainingthevarianceofpolitical
fakenewssharing.Resultsofthelogisticregressionanalysisprovidesstrongevidence
regardingthekeyroleofage,gender,incomeandpoliticalorientationinthespreadofpolitical
misinformationonline.Inthisregard,theprobabilityofsharingpoliticalfakenewsonlineis
higherinmalesthanfemales,despitethefactthatwomenusesocialmediamorethanmen
(Krasnovaetal.,2017).Inaddition,ouranalysisalsorevealsthatsharingpoliticalfakenews
increaseswithage,despitethefactthatyoungpeoplearethemajorityofinternetusers
(McGrewetal,2017).Peopletendtoshowanincreasinginterestinnewsastheygetolder.For
youngerusers,topicslikedomesticpolitics,internationalpoliticsandeconomyareseenasless
interesting(Costera,2007),whichmightexplainwhyolderpeoplearemorelikelytoshare
politicalfakenewsonline.
Peoplewithlowincomesarealsomorelikelytosharepoliticalfakenews.Previousstudies
suggestthateducatedpeopleearnmoremoneythatpeoplethathavenotaccessedtheschool
system(DienerandBiswas‐Diener,2002)whereeducationincreasespeople’scapacitiesto
TheSociologyofFakeNews
Media@LSEWorkingPaper#55
12
differentiatefactfromfictionand,also,offerpeoplebettermeanstocounterargueinconsistent
information(AllcottandGentzkow,2017).Whenitcomestoideology,democratvotersare
lesslikelytosharepoliticalfakenewsthanindependentvoters.However,thereisnostatistical
differenceintheprobabilitytosharepoliticalfakenewsbetweendemocratsandrepublicans,
despitethefactthatdemocratshavesomewhatlessprobability(34%)torepostnewsrelated
topoliticalaffairsthatwerepreviouslypostedbyotherpeopleonsocialmediathan
republicans(39%)(Rainieetal.,2012).
Resultsofthelogisticregressionrevealthattheincreasingperceptionofonlinefakenews
increasestheprobabilitytosharepoliticalfakenews.Nowadays,informationontheinternet
isreplacingprofessionaljournalismandexpertadvice(Cooketal.,2012)andabout40%ofthe
fakenewswebsitestrafficcomesfromsocialmediaplatforms(AllcottandGentzkow,2017).
Inaddition,peoplewhogetnewsfromsocialmediareadinformationthatisideologically
aligned(AllcottandGentzkow,2017)andmanyareunawareoftheeffectsofsocialmedia
manipulation(Glenski,andWeninger,2016).Furthermore,64%ofAmericansaffirmthatfake
newshasgeneratedthemagreatdealofconfusionaboutbasicfacts,and24%ofU.S.citizens
affirmthatthisphenomenonhasprovokedthemsomeconfusion(Bartheletal.,2016).Ina
contextwherefakenewsiseasilyspreadandconsumedthroughthemostimportantsocial
networks,theperceptionoftheirscalepositivelyaffectspeople’ssharingbehaviour.
Ouranalysissuggeststhatpeoplewhoinadvertentlysharefakenewshavelessprobabilities
tosharepoliticalfakenewsonline.Formanypeopleitiscomplicatedtorecognizethatapiece
ofinformationisfalseuntiltheyreceiveacorrection(Cooketal.,2012).Warningsseemtobe
effectivebecausetheyinducepeopleinatemporarystateofscepticism,increasingtheir
capacitiestodifferentiatebetweentrueandfalseinformation(Cooketal,2012).Therefore,
peoplewhograntgreatresponsibilitytothepublicinpreventingfakenewsstoriesfrom
gainingattentionarelesslikelytosharepoliticalfakenews.However,whenitcomestosocial
networkingsites,thelogisticregressionrevealedastatisticallysignificantbutpositive
association,insuchawaythatpeoplewhogranttheresponsibilitytopreventfakenewsstories
fromgainingattentiontosocialnetworkingsitesarethemselvesmorelikelytosharepolitical
fakenewsstories.Finally,ourstatisticalanalysisshowsaninteractionbetweenpolitical
orientationandgender.Tothisregard,democrat‐femalevotersarelesslikelytosharepolitical
fakenewsthanmale‐independentvoters.
Inconclusion,thecentraltheoreticalimplicationsemanatingfromtheobservationsmadein
thisarticleinclude(1)ashiftinthepointofviewbehindfakenewsdissemiantion,fromthe
importanceofproducerstotherelevanceofconsumers,(2)thesignificanceofdemographic
andsituationalfactorsinexplainingpoliticalfakenewssharingbehaviour,and(3)the
increasinglydecisive/complexroleoftraditionalandnewmediatocontrolthejournalisticflow
TheSociologyofFakeNews
Media@LSEWorkingPaper#55
13
ontheInternet,whereacombinationofdigitaltoolsandconsumers’behaviour,might
challengetheethosofjournalismandtheveracyofinformationonline.Inthiscontext,
professionaljournalismandfact‐checkingareincreasinglyimportanttomitigate,controland
discoverpoliticalfakenewsonlineandtolessentheirpotentialdamagetodemocratic
societies.
6 LIMITATIONS
Severallimitationsofthecurrentanalysisarenoteworthy.First,itisworthnotingthatwith
respecttopolitical‘fakenews’theAmericancontextisdifferenttoothercountries.Thereare
particularhistoric,socialandotherfactors,especiallyinthecurrenthighlypolarisedUS
politicalandmediacontextthatappearstomakemisinformationmoreeffectivethaninother
demoi.Second,thedatasetbeingfromthehighpointofpoliticalpolarisationjustafteroneof
themostdivisivepresidentialcampaignsever,shouldbetakenintoaccountwhen
generalizingthefindings.Third,thecross‐sectionalnatureofthesurveydatadoesnotallow
ustoidentifywithcertaintythedirectionofthecausalpatternsunderlyingthecorrelations
thatwefound.Therefore,wecannotruleoutthepossibilitythatthecausalordersarereversed.
Morerobustcausalclaimswouldbewarrantedbylongitudinalorexperimentalratherthan
cross‐sectionalsurveydataandmoreworkisneededtodisentanglethecausalmechanisms
behindthecorrelationspresentedhere.Thus,therelationshipstheorizedinthisworking
papersshouldbeinterpretedwithcaution.Futureresearchmayadoptalongitudinaldesign
todrawcausalinferenceswithgreaterconfidence.Furthermore,allvariablesweremeasured
usingasingleitem,whichprohibitsreliabilityassessments.Aswithanysurvey,wealsorelied
onself‐reportedmeasuresofonlinebehavior,whichrequiredsubjectiveassessmentsofthe
frequencyoffakenewssharing.
TheSociologyofFakeNews
Media@LSEWorkingPaper#55
14
REFERENCES
Ahlers D. (2006) News consumption and the new electronic media. Harvard International Journal of
Press/Politics 11(1): 29-52.
Amazeen A. (2017) Journalistic interventions: the structural factors affecting the global emergence of fact-
checking. Journalism, 1-17.
Allcott H. and Gentzkow M. (2017) Social media and fake news in the 2016 election. Journal of Economic
Perspectives 31(2): 211-36.
Barthel M., Mitchell A. and Holcomb J. (2016) Many Americans believe fake news is sowing confusion. Pew
Research Center. http://www.lse.ac.uk/media-and-
communications/assets/documents/research/working-paper-series/WP52.pdf [Last accessed: 23 April
2018].
Bakshy E., Adamic L. and Messing S. (2015) Exposure to ideologically diverse news and opinion on Facebook.
Science 348(6239): 1130-2.
Balmas M. (2014). When fake news becomes real: Combined exposure to multiple news sources and political
attitudes of inefficacy, alienation, and cynicism. Communication Research 41(3): 430-54.
Baum M., Mele N., Lazer D., Grinberg N., Joseph K., Hobbs W., Friedland L., and Mattsson C. (2017) Combating
Fake News: An Agenda for Research and Action. Available at: https://shorensteincenter.org/combating-
fake-news-agenda-for-research/ [Last accessed: 23 April 2018].
Cook J., Ecker U., Lewandowsky S. and Schwarz N. (2012) Misinformation and its correction continued influence
and successful debiasing. Psychological Science in the Public Interest 13: 106-31.
Costera I. (2007) The paradox of popularity. How young people experience the news. Journalism Studies 8(1): 96-
116.
Dice M. (2017) The true history of fake news. San Diego: The Resistance Manifesto.
Diener E. and Biswas-Diener R. (2002) Will money increase subjective well-being? Social Indicators Research
57(2): 119-69.
Fernández-Luque L. and Bau T. (2015) Health and social media: perfect storm of information. Healthcare
Information Research 21 (2): 67-73.
Ferrara E., Varol O., Davis C., Menczer F. and Flammini A. (2016) The rise of social bots. Communications of the
ACM 59(7): 96-104.
Glenski M., and Weninger T. (2016) Rating effects on social news posts and comments. ACM Transactions on
Intelligent Systems and Technology 8(6).
Gil de Zúñiga H, Weeks B., and Ardèvol-Abreu A. (2017) Effects of the news-finds-me perception in
communication: social media use implications for news seeking and learning about politics. Journal of
Computer-Mediated Communication 22(3): 105-23.
Goyanes M., and Vara-Miguel A. (2017) Probabilidad de pagar por noticias digitales en España. El profesional de
la información 26(3): 488-96.
Goyanes M. (2014) An empirical study of factors that influence the willingness to pay for online news. Journalism
Practice 8(6): 742-57.
Gu L., Kropotov V., and Yarochkin F. (2017) The fake news machine, how propagandists abuse the internet and
manipulate the public. Available at: http://documents.trendmicro.com/assets/white_papers/wp-fake-
news-machine-how-propagandists-abuse-the-internet.pdf [Last accessed: 23 April 2018].
Guess, A., Nyhan, B., and Reifler, J. (2018) Selective Exposure to Misinformation: Evidence from the
consumption of fake news during the 2016 US presidential campaign. Dartmouth College.
Gupta, A., Lamba, H., Kumaraguru, P., and Joshi, A. (2013) Faking Sandy: characterizing and identifying fake
images on Twitter during Hurricane Sandy. Proceedings of the 22nd International Conference on World
Wide Web: 729-36.
Hermida A. (2010) Twittering the news: The emergence of ambient journalism. Journalism practice 4(3): 297-
308.
Hirst M. (2017) Towards a political economy of fake news. The Political Economy of Communication 5(2): 82-94.
TheSociologyofFakeNews
Media@LSEWorkingPaper#55
15
Ju A., Jeong S. H. and Chyi H. (2014) Will social media save newspapers? Examining the effectiveness of
Facebook and Twitter as news platforms. Journalism Practice 8(1): 1-17.
Krasnova H., Veltri N. F., Eling N. and Buxmann P. (2017) Why men and women continue to use social
networking sites: The role of gender differences. The Journal of Strategic Information Systems 26(4): 261-
84.
Marwick A. and Lewis R. (2017) Media manipulation and disinformation online. Available at:
https://datasociety.net/pubs/oh/DataAndSociety_MediaManipulationAndDisinformationOnline.pdf
[Last accessed: 23 April 2018].
McGrew S., Breakstone J., Ortega T., Smith M. and Wineburg, S. (2018) Can students evaluate online sources?
Learning from assessments of civic online reasoning. Theory & Research in Social Education: Online First.
Meyer P. (2004) Saving journalism: How to nurse the good stuff until it pays. Columbia Journalism
Review 43(4): 55-8.
Nielsen R.K., and Schrøder K.C. (2014) The relative importance of social media for accessing, finding, and
engaging with news: An eight-country cross-media comparison. Digital journalism 2(4): 472-89.
Rainie L., Smith A., Lehman K., Brady H., and Verba S. (2012) Social Media and Political Engagement. Pew
Research Center. http://www.pewinternet.org/2012/10/19/social-media-and-political-engagement/ [Last
accessed: 23 April 2018].
Reuters Institute Digital News Report (2013) Available at:
https://reutersinstitute.politics.ox.ac.uk/sites/default/files/research/files/Digital%2520News%2520Repo
rt%25202013.pdf [Last accessed: 23 April 2018].
Reuters Institute Digital News Report (2014) Available at:
http://reutersinstitute.politics.ox.ac.uk/sites/default/files/research/files/Reuters%2520Institute%2520Di
gital%2520News%2520Report%25202014.pdf [Last accessed: 23 April 2018].
Reuters Institute Digital News Report (2017) Available at:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3026082 [Last accessed: 23 April 2018].
Shao C., Ciampaglia G., Varol O. Flammini A. and Menczer F. (2017) The spread of misinformation by social bots.
Available at: https://arxiv.org/pdf/1707.07592.pdf [Last accessed: 23 April 2018].
Shu K., Sliva A., Wang S., Tang J. and Liu H. (2017) Fake News Detection on Social Media: A Data Mining
Perspective. ACM SIGKDD Explorations Newsletter 19(1): 22-36.
Silverman C. (2016) This analysis shows how viral fake election news stories outperformed real news on
Facebook. Buzzfeed. https://www.buzzfeed.com/craigsilverman/viral-fake-election-news-outperformed-
real-news-on-facebook?utm_term=.qr5jwepJ9#.mtWol8APj [Last accessed: 23 April 2018].
Subramanian, S. (2017) Inside the Macedonian fake-news complex. Wired magazine.
https://www.wired.com/2017/02/veles-macedonia-fake-news/ [Last accessed: 23 April 2018].
Sundar, S (2008) The MAIN Model: A Heuristic Approach to Understanding Technology Effects on Credibility,
pp. 73-100 in M. J. Metzger and A. J. Flanagin (Eds) Digital Media, Youth, and Credibility. Cambridge:
The MIT Press.
Tandoc E., Ling R., Westlund O., Duffy A., Goh D. and Wei L. (2017) Audiences’ acts of authentication in the age
of fake news: a conceptual framework. New Media and Society: Online First.
Weeks B. (2015) Emotions, Partisanship, and Misperceptions: How Anger and Anxiety Moderate the Effect of
Partisan Bias on Susceptibility to Political Misinformation. Journal of Communication 65(4): 699-719.
Woolley S. and Howard N. (2017) Computational Propaganda Worldwide: Executive summary. Available at:
http://comprop.oii.ox.ac.uk/wp-content/uploads/sites/89/2017/06/Casestudies-ExecutiveSummary.pdf
[Last accessed: 23 April 2018].
Media@LSEWorkingPaperSeries
TheMedia@LSEWorkingPaperSerieswill:
Presenthighqualityresearchandwriting(includingresearchin‐progress)toawideaudienceofacademics,policy‐
makersandcommercial/mediaorganisations.
Settheagendainthebroadfieldofmediaandcommunicationstudies.
Stimulateandinformdebateandpolicy.AllpaperswillbepublishedelectronicallyasPDFfiles,subjecttoreview
andapprovalbytheEditorsandwillbegivenanISSN.
Anadvantageoftheseriesisaquickturnaroundbetweensubmissionandpublication.Authorsretaincopyright,
andpublicationheredoesnotprecludethesubsequentdevelopmentofthepaperforpublicationelsewhere.
TheEditoroftheseriesisBartCammaerts.TheDeputyEditorsareNickAnsteadandRichardStupart.Theeditorial
boardismadeupofotherLSEacademicsandfriendsofMedia@LSEwithawiderangeofinterestsininformation
andcommunicationtechnologies,themediaandcommunicationsfromavarietyofdisciplinaryperspectives
(includingeconomics,geography,law,politics,sociology,politicsandinformationsystems,cultural,genderand
developmentstudies).
Notesforcontributors:
Contributorsareencouragedtosubmitpapersthataddressthesocial,political,economicandculturalcontextofthemedia
andcommunication,includingtheirforms,institutions,audiencesandexperiences,andtheirglobal,national,regionaland
localdevelopment.Papersaddressinganyofthethemesmentionedbelowarewelcome,butotherthemesrelatedtomedia
andcommunicationarealsoacceptable:
CommunicationandDifference
GlobalisationandComparativeStudies
Innovation,GovernanceandPolicy
Democracy,PoliticsandJournalismEthics
MediationandResistance
MediaandIdentity
MediaandNewMediaLiteracies
TheCulturalEconomy
ContributionsarewelcomedfromacademicsandPhDstudents.IntheAutumnTermwealsoinviteselectedMaster’s
studentsfromtheprecedingyeartosubmittheirdissertationswhichwillbehostedinaseparatepartofthissiteas
‘dissertations’ratherthanasWorkingPapers.Contributorsshouldbearinmindwhentheyarepreparingtheirpaperthat
itwillbereadonline.
Papersshouldconformtothefollowingformat:
6,000‐10,000words(excludingbibliography,includingfootnotes)
150‐200wordabstract
Headingsandsub‐headingsareencouraged
TheHarvardsystemofreferencingshouldbeused
PapersshouldbepreparedasaWordfile
Graphs,picturesandtablesshouldbeincludedasappropriateinthesamefileasthepaper
ThepapershouldbesentbyemailtoBartCammaerts(b.cammaerts@lse.ac.uk),theeditoroftheMedia@LSEWorking
PaperSeries
ISSN:1474‐1938/1946