Computationally, when we solve for the stationary probabilities for a countable-state Markov chain, the transition probability matrix of the Markov chain has to be truncated, in some way, into a finite matrix. Different augmentation methods might be valid such that the stationary probability distribution for the truncated Markov chain approaches that for the countable Markov chain as the
... [Show full abstract] truncation size gets large. In this paper, we prove that the censored (watched) Markov chain provides the best approximation in the sense that, for a given truncation size, the sum of errors is the minimum and show, by examples, that the method of augmenting the last column only is not always the best.