Article

Vagus nerve stimulation causes wake-promotion by affecting neurotransmitters via orexins pathway in traumatic brain injury induced comatose rats.

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Previous studies have demonstrated that vagus nerve stimulation (VNS) can decrease the amounts of daytime sleep and rapid eye movement in epilepsy patients with traumatic brain injury (TBI). Orexins, synthesized in lateral hypothalamus, are important neurotransmitters with sleep/wakefulness cycle, which have great connection with the projection area of vagus nerve in the brain. The aim of this study was to investigate the wake-promoting effects of VNS in comatose rats caused by TBI and its mechanisms with neurotransmitters. Additionally, we attempted to clarify the function of orexins on the awakening effects of VNS. One hundred and twenty Sprague-Dawley rats were randomly assigned to four groups: control group, TBI group, stimulated (TBI+VNS) group, and an antagonist (TBI+SB334867+VNS) group. We established TBI models by free fall drop. In the stimulated group, the TBI induced comatose rats were stimulated by the vagus nerve. In the antagonist group, comatose rats were given SB334867, an orexin receptor 1 antagonist, by intracerebroventricular injection and VNS. Then, the behavior changes were evaluated and the receptors of neurotransmitters in the prefrontal cortex were detected by the western-blot and immunohistochemistry. Results have shown that 8 of 30 rats were awakened in the TBI group, 20 of 30 awakened in the stimulated group and 12 of 30 rats were awakened in the antagonist group. Between the TBI group and the stimulation group, the expression of orexin receptor-1 (OX1R), N Methyl D Aspartate receptor-1 (NMDAR1), 5-hydroxytryptamine 2A receptor (5-HT 2A R), histamine 1 receptor (H1R), norepinephrine α1 receptor (α1-AR) were higher and gamma aminobutyric acid b receptor (GABAbR) was lower in stimulated groups (P < 0.05). However, the expression of OX1R, NMDAR1, 5-HT 2A R, H1R, α1-AR were lower and GABAbR was higher in antagonist group than the stimulated group (P < 0.05). Taken together, these data indicate that VNS has wake-promoting effects. One possible mechanism is that VNS upregulates the expression of excitatory neurotransmitters and decreases the expression of inhibitory neurotransmitters. More importantly, orexins may play a key role in wake-promoting effects of VNS.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... VNS has been used in the preclinical studies listed in Table 4 to improve motor and cognitive impairments [177][178][179] as well as disorders of consciousness [180,181] after TBI, but also in the treatment of cerebral edema [182,183] and to prevent cell death [184]. Animals were usually awake during VNS, except in two studies where researchers intentionally anesthetized animals to investigate the effect of VNS on disorders of consciousness [180,181]. ...
... VNS has been used in the preclinical studies listed in Table 4 to improve motor and cognitive impairments [177][178][179] as well as disorders of consciousness [180,181] after TBI, but also in the treatment of cerebral edema [182,183] and to prevent cell death [184]. Animals were usually awake during VNS, except in two studies where researchers intentionally anesthetized animals to investigate the effect of VNS on disorders of consciousness [180,181]. One study does not state clearly whether animals were anesthetized during the VNS or not [183]. ...
... One study does not state clearly whether animals were anesthetized during the VNS or not [183]. Four studies applied stimuli at an amplitude of 0.5 mA and a frequency of 20 Hz [177,178,182,184], while three other studies used currents between 0.8 and 1 mA with a frequency of 30 Hz [179][180][181]183], all of which chose to stimulate the left vagus nerve at the cervical level. Stimulation was often applied for 30 s in 30 min intervals over a period of up to 2 weeks, starting within 2 [177,182] or 24 h after injury [178,184], while two studies applied the stimulation only once, directly after induction of TBI [180,181]. ...
Article
Full-text available
Background Traumatic brain injury (TBI) is a leading cause of disabilities resulting from cognitive and neurological deficits, as well as psychological disorders. Only recently, preclinical research on electrical stimulation methods as a potential treatment of TBI sequelae has gained more traction. However, the underlying mechanisms of the anticipated improvements induced by these methods are still not fully understood. It remains unclear in which stage after TBI they are best applied to optimize the therapeutic outcome, preferably with persisting effects. Studies with animal models address these questions and investigate beneficial long- and short-term changes mediated by these novel modalities. Methods In this review, we present the state-of-the-art in preclinical research on electrical stimulation methods used to treat TBI sequelae. We analyze publications on the most commonly used electrical stimulation methods, namely transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), deep brain stimulation (DBS) and vagus nerve stimulation (VNS), that aim to treat disabilities caused by TBI. We discuss applied stimulation parameters, such as the amplitude, frequency, and length of stimulation, as well as stimulation time frames, specifically the onset of stimulation, how often stimulation sessions were repeated and the total length of the treatment. These parameters are then analyzed in the context of injury severity, the disability under investigation and the stimulated location, and the resulting therapeutic effects are compared. We provide a comprehensive and critical review and discuss directions for future research. Results and conclusion We find that the parameters used in studies on each of these stimulation methods vary widely, making it difficult to draw direct comparisons between stimulation protocols and therapeutic outcome. Persisting beneficial effects and adverse consequences of electrical simulation are rarely investigated, leaving many questions about their suitability for clinical applications. Nevertheless, we conclude that the stimulation methods discussed here show promising results that could be further supported by additional research in this field.
Article
Full-text available
Purpose The purpose of this study is to evaluate the efficacy and safety of stimulating the vagus nerve in patients with disorders of consciousness (DOCs). Methods A comprehensive systematic review was conducted, encompassing the search of databases such as PubMed, CENTRAL, EMBASE and PEDro from their inception until July 2023. Additionally, manual searches and exploration of grey literature were performed. The literature review was conducted independently by two reviewers for search strategy, selection of studies, data extraction, and judgment of evidence quality according to the American Academy of Cerebral Palsy and Developmental Medicine (AACPDM) Study Quality Scale. Results A total of 1,269 articles were retrieved, and 10 studies met the inclusion criteria. Among these, there were three case reports, five case series, and only two randomized controlled trials (RCTs). Preliminary studies have suggested that stimulation of vagus nerve can enhance the levels of DOCs in both vegetative state/unresponsive wakefulness state (VS/UWS) and minimally conscious state (MCS). However, due to a lack of high-quality RCTs research and evidence-based medical evidence, no definitive conclusion can be drawn regarding the intervention’s effectiveness on consciousness level. Additionally, there were no significant adverse effects observed following stimulation of vagus nerve. Conclusion A definitive conclusion cannot be drawn from this systematic review as there was a limited number of eligible studies and low-quality evidence. The findings of this systematic review can serve as a roadmap for future research on the use of stimulation of vagus nerve to facilitate recovery from DOCs.
Article
Full-text available
Orexins, produced in the lateral hypothalamus, are important neuropeptides that participate in the sleep/wake cycle, and their expression coincides with the projection area of the vagus nerve in the brain. Vagus nerve stimulation has been shown to decrease the amounts of daytime sleep and rapid eye movement in epilepsy patients with traumatic brain injury. In the present study, we investigated whether vagus nerve stimulation promotes wakefulness and affects orexin expression. A rat model of traumatic brain injury was established using the free fall drop method. In the stimulated group, rats with traumatic brain injury received vagus nerve stimulation (frequency, 30 Hz; current, 1.0 mA; pulse width, 0.5 ms; total stimulation time, 15 minutes). In the antagonist group, rats with traumatic brain injury were intracerebroventricularly injected with the orexin receptor type 1 (OX1R) antagonist SB334867 and received vagus nerve stimulation. Changes in consciousness were observed after stimulation in each group. Enzyme-linked immunosorbent assay, western blot assay and immunohistochemistry were used to assess the levels of orexin-A and OX1R expression in the prefrontal cortex. In the stimulated group, consciousness was substantially improved, orexin-A protein expression gradually increased within 24 hours after injury and OX1R expression reached a peak at 12 hours, compared with rats subjected to traumatic brain injury only. In the antagonist group, the wake-promoting effect of vagus nerve stimulation was diminished, and orexin-A and OX1R expression were decreased, compared with that of the stimulated group. Taken together, our findings suggest that vagus nerve stimulation promotes the recovery of consciousness in comatose rats after traumatic brain injury. The upregulation of orexin-A and OX1R expression in the prefrontal cortex might be involved in the wake-promoting effects of vagus nerve stimulation.
Article
Full-text available
Electrical stimulation of the median nerve is a noninvasive technique that facilitates awakening from coma. In rats with traumatic brain injury-induced coma, median nerve stimulation markedly enhances prefrontal cortex expression of orexin-A and its receptor, orexin receptor 1. To further understand the mechanism underlying wakefulness mediated by electrical stimulation of the median nerve, we evaluated its effects on the expression of the N-methyl-D-aspartate receptor subunit NR1 in the prefrontal cortex in rat models of traumatic brain injury-induced coma, using immunohistochemistry and western blot assays. In rats with traumatic brain injury, NR1 expression increased with time after injury. Rats that underwent electrical stimulation of the median nerve (30 Hz, 0.5 ms, 1.0 mA for 15 minutes) showed elevated NR1 expression and greater recovery of consciousness than those without stimulation. These effects were reduced by intracerebroventricular injection of the orexin receptor 1 antagonist SB334867. Our results indicate that electrical stimulation of the median nerve promotes recovery from traumatic brain injury-induced coma by increasing prefrontal cortex NR1 expression via an orexin-A-mediated pathway. © 2016, Editorial Board of Neural Regeneration Research. All rights reserved.
Article
Full-text available
The mammalian basal forebrain (BF) has important roles in controlling sleep and wakefulness, but the underlying neural circuit remains poorly understood. We examined the BF circuit by recording and optogenetically perturbing the activity of four genetically defined cell types across sleep-wake cycles and by comprehensively mapping their synaptic connections. Recordings from channelrhodopsin-2 (ChR2)-tagged neurons revealed that three BF cell types, cholinergic, glutamatergic and parvalbumin-positive (PV+) GABAergic neurons, were more active during wakefulness and rapid eye movement (REM) sleep (wake/REM active) than during non-REM (NREM) sleep, and activation of each cell type rapidly induced wakefulness. By contrast, activation of somatostatin-positive (SOM+) GABAergic neurons promoted NREM sleep, although only some of them were NREM active. Synaptically, the wake-promoting neurons were organized hierarchically by glutamatergic→cholinergic→PV+ neuron excitatory connections, and they all received inhibition from SOM+ neurons. Together, these findings reveal the basic organization of the BF circuit for sleep-wake control.
Article
Full-text available
In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.
Article
Full-text available
To investigate the epidemiology of TBI in Chinese inpatients. Civilian inpatients of Chinese military hospitals diagnosed with TBI between 2001-2007 were identified using ICD-9-CM codes. Demographic characteristics, admission time, injury cause, injury severity, length of stay and outcomes were compared between ICD-9-CM diagnosis groups. In total, 203 553 civilian patients with TBI (74.86% male, 25.14% female) were identified from >200 Chinese military hospitals. TBI diagnoses increased by a mean of 4.67% each year. Admission peaked during the third quarter of the year and October annually. The leading causes of TBI were motor vehicle-traffic (51.41%), falls (21.49%) and assaults (15.77%). TBI was categorized by abbreviated injury scale score as mild in 36.64%, serious in 20.13%, severe in 26.81% and critical in 15.68% of inpatients. The mean length of stay was 17.8 ± 24.1 days. Recovery rate was 93.06% and mortality was 4.14%. The epidemiological data may contribute to the development of effective, targeted strategies to prevent TBI.
Article
Full-text available
Recent immunohistochemical studies point to the dorsal motor nucleus of the vagus nerve as the point of departure of initial changes which are related to the gradual pathological developments in the dopaminergic system. In the light of current investigations, it is likely that biochemical changes within the peripheral nervous system may influence the physiology of the dopaminergic system, suggesting a putative role for it in the development of neurodegenerative disorders. By using Fourier transform infrared microspectroscopy, coupled with statistical analysis, we examined the effect of chronic, unilateral electrical vagus nerve stimulation on changes in lipid composition and in protein secondary structure within dopamine-related brain structures in rats. It was found that the chronic vagal nerve stimulation strongly affects the chain length of fatty acids within the ventral tegmental area, nucleus accumbens, substantia nigra, striatum, dorsal motor nucleus of vagus and the motor cortex. In particular, the level of lipid unsaturation was found significantly increasing in the ventral tegmental area, substantia nigra and motor cortex as a result of vagal nerve stimulation. When it comes to changes in protein secondary structure, we could see that the mesolimbic, mesocortical and nigrostriatal dopaminergic pathways are particularly affected by vagus nerve stimulation. This is due to the co-occurrence of statistically significant changes in the content of non-ordered structure components, alpha helices, beta sheets, and the total area of Amide I. Macromolecular changes caused by peripheral vagus nerve stimulation may highlight a potential connection between the gastrointestinal system and the central nervous system in rat during the development of neurodegenerative disorders.
Article
Full-text available
The orexin/hypocretin neuropeptides are produced by a cluster of neurons within the lateral posterior hypothalamus and participate in neuronal regulation by activating their receptors (OX1 and OX2 receptors). The orexin system projects widely through the brain and functions as an interface between multiple regulatory systems including wakefulness, energy balance, stress, reward, and emotion. Recent studies have demonstrated that orexins and glutamate interact at the synaptic level and that orexins facilitate glutamate actions. We tested the hypothesis that orexins modulate glutamate signaling via OX1 receptors by monitoring levels of glutamate in frontal cortex of freely moving mice using enzyme coated biosensors under inhibited OX1 receptor conditions. MK-801, an NMDA receptor antagonist, was administered subcutaneously (0.178 mg/kg) to indirectly disinhibit pyramidal neurons and therefore increase cortical glutamate release. In wild-type mice, pretreatment with the OX1 receptor antagonist GSK-1059865 (10 mg/kg S.C.) which had no effect by itself, significantly attenuated the cortical glutamate release elicited by MK-801. OX1 receptor knockout mice had a blunted glutamate release response to MK-801 and exhibited about half of the glutamate release observed in wild-type mice in agreement with the data obtained with transient blockade of OX1 receptors. These results indicate that pharmacological (transient) or genetic (permanent) inhibition of the OX1 receptor similarly interfere with glutamatergic function in the cortex. Selectively targeting the OX1 receptor with an antagonist may normalize hyperglutamatergic states and thus may represent a novel therapeutic strategy for the treatment of various psychiatric disorders associated with hyperactive states.
Article
Full-text available
Cortical activation and goal-directed behaviors characterize wakefulness. One cortical region especially involved in these phenomena is the medial prefrontal cortex (mPFC), which receives many inputs from cholinergic-containing neurons in brain stem structures implicated in arousal and wakefulness, such as the laterodorsal tegmental nucleus (LDT). Hypocretins/orexins (Hcrt/Ox), whose dysfunction is linked to narcolepsy, maintains arousal and stabilizes sleep-wakefulness states. We aim to determine if Hcrt1/OxA axons (1) innervate LDT neurons projecting to the mPFC, a target that would allow them to sustain arousal and wakefulness, and (2) target preferentially cholinergic versus noncholinergic LDT neurons. The retrograde tracer Fluorogold (FG) was injected in the rat mPFC, and dual immunolabeling of anti-FG and either anti-choline acetyltransferase (ChAT) or anti-Hcrt1/OxA antisera was determined in LDT. Also, actual Hcrt1/OxA targeting of cholinergic LDT neurons was ascertained by dual anti-Hcrt1/OxA and anti-ChAT detection in additional noninjected animals. Many LDT FG-labeled neurons were cholinergic (52.05 ± 3.72%). Hcrt1/OxA immunoprecipitate was observed in cytoplasm and granular vesicles within axons. Some Hcrt1/OxA-containing axons established asymmetric excitatory-type synapses with either unlabeled (46/438) or FG-labeled (7/438) dendrites. One-third of the target neurons were ChAT labeled. Hcrt1/OxA excitatory input to LDT neurons projecting to mPFC probably contributes to the wakefulness-enhancing actions of Hcrt/Ox impaired in narcoleptics.
Article
Full-text available
Our study aimed to evaluate the existence and entity of changes in sleep structure following vagus nerve stimulation in patients with refractory epilepsy. A polysomnographic study was performed on the nocturnal sleep of 10 subjects with refractory epilepsy. Subjects were recorded both in baseline conditions and after chronic vagus nerve stimulation. Sleep parameters of the entire night were evaluated. Mean power value of slow-wave activity was computed in the first non-rapid eye movement sleep cycle. A sleep-wake diary evaluated quantity of both nocturnal and daytime sleep, while visual-analog scales assessed quality of sleep and wake. The differences between the 2 conditions underwent parametric and nonparametric statistical evaluation. Vagus nerve stimulation produced a significant reduction in REM sleep (in all subjects with vagus nerve stimulus intensity greater than 1.5 milliampere, but not in the only patient with a stimulus intensity less than 1.5 milliampere), along with an increase in the number of awakenings, percentage of wake after sleep onset, and stage 1 sleep. Data from a sleep-wake questionnaire show a decrease in both nocturnal sleep and daytime naps and an increased daytime alertness, while the quality of wakefulness is globally improved. Spectral analysis shows an enhancement of delta power during non-rapid eye movement sleep. Our data demonstrate major effects of vagus nerve stimulation on both daytime alertness (which is improved) and nocturnal rapid eye movement sleep (which is reduced). These effects could be interpreted as the result of a destabilizing action of vagus nerve stimulation on neural structures regulating sleep-wake and rapid eye movement/non-rapid eye movement sleep cycles. Lower intensity vagus nerve stimulation seems only to improve alertness; higher intensity vagus nerve stimulation seems able to exert an adjunctive rapid eye movement sleep-attenuating effect.
Article
Full-text available
Hypocretin/orexin is produced exclusively in the dorsal and lateral hypothalamus but its projection is widespread within the brain and plays important roles. In this paper, we review the independent discoveries of the hypocretin/orexin peptides, the neuroanatomy of this system, and the link to the sleep disorder narcolepsy that has led to the idea that this system plays a crucial role in the regulation of sleep and wakefulness.
Article
Our previous studies have shown that median nerve electrical stimulation (MNS) causes wake-promotion by activating the orexins system in traumatic brain injury (TBI) induced comatose rats. To better understand the mechanism of MNS induced wake promotion, the purpose of this experiment was to investigate the expression of γ-aminobutyric acid b receptor (GABAbR) in the prefrontal cortex after MNS in comatose rats, as well as the relationship between GABAbR and the orexins system. One hundred and twenty Sprague Dawley rats were divided into four groups: control group, TBI group, stimulated group and an antagonist group. We established TBI models by free fall drop. In the stimulated group, the TBI induced comatose rats were stimulated by the median nerve. In the antagonist group, comatose rats were given SB334867, an orexin receptor 1 antagonist, by intracerebroventricular injection and MNS. Then, the behavior changes were evaluated and the expression of GABAbR was detected by the western-blot and immunohistochemistry at 6 h, 12 h and 24 h. Results showed that 5 of 30 rats were awakened in the TBI group, 22 of 30 awakened in the stimulated group and 13 of 30 rats were awakened in the antagonist group. The expression of GABAbR in the prefrontal cortex in different groups was as follows: control group < stimulated group < antagonist group < TBI group (P < 0.05). Taken together, these data indicated that MNS has wake-promoting effects in comatose rats caused by TBI. One possible mechanism is that MNS might decrease the expression of GABAbR via the orexins pathway.
Article
Patients lying in a vegetative state present severe impairments of consciousness [1] caused by lesions in the cortex, the brainstem, the thalamus and the white matter [2]. There is agreement that this condition may involve disconnections in long-range cortico–cortical and thalamo-cortical pathways [3]. Hence, in the vegetative state cortical activity is ‘deafferented’ from subcortical modulation and/or principally disrupted between fronto-parietal regions. Some patients in a vegetative state recover while others persistently remain in such a state. The neural signature of spontaneous recovery is linked to increased thalamo-cortical activity and improved fronto-parietal functional connectivity [3]. The likelihood of consciousness recovery depends on the extent of brain damage and patients’ etiology, but after one year of unresponsive behavior, chances become low [1]. There is thus a need to explore novel ways of repairing lost consciousness. Here we report beneficial effects of vagus nerve stimulation on consciousness level of a single patient in a vegetative state, including improved behavioral responsiveness and enhanced brain connectivity patterns. Corazzol et al. show that stimulation of the vagus nerve can restore consciousness in a vegetative patient.
Article
Purpose of review: This article evaluates whether specific drugs are able to facilitate motor recovery after stroke or improve the level of consciousness, cognitive, or behavioral symptoms after traumatic brain injury. Recent findings: After stroke, serotonin reuptake inhibitors can enhance restitution of motor functions in depressed as well as in nondepressed patients. Erythropoietin and progesterone administered within hours after moderate to severe traumatic brain injury failed to improve the outcome. A single dose of zolpidem can transiently improve the level of consciousness in patients with vegetative state or minimally conscious state. Summary: Because of the lack of large randomized controlled trials, evidence is still limited. Currently, most convincing evidence exists for fluoxetine for facilitation of motor recovery early after stroke and for amantadine for acceleration of functional recovery after severe traumatic brain injury. Methylphenidate and acetylcholinesterase inhibitors might enhance cognitive functions after traumatic brain injury. Sufficiently powered studies and the identification of predictors of beneficial drug effects are still needed.
Article
Selective serotonin reuptake inhibitor (SSRI) use is ubiquitous because they are widely prescribed for a number of disorders in addition to depression. Depression increases the risk of coronary heart disease (CHD). Hence, treating depression with SSRIs could reduce CHD risk. However, the effects of long term antidepressant treatment on CHD risk, as well as other aspects of health, remain poorly understood. Thus, we undertook an investigation of multisystem effects of SSRI treatment with a physiologically relevant dose in middle-aged adult female cynomolgus monkeys, a primate species shown to be a useful model of both depression and coronary and carotid artery atherosclerosis. Sertraline had no effect on depressive behavior, reduced anxious behavior, increased affiliation, reduced aggression, changed serotonin neurotransmission and volumes of neural areas critical to mood disorders, and exacerbated coronary and carotid atherosclerosis. These data suggest that a conservative approach to prescribing SSRIs for cardiovascular or other disorders for long periods may be warranted, and that further study is critical given the widespread use of these medications.
Article
Modern lifestyles prolong daily activities into the nighttime, disrupting circadian rhythms, which may cause sleep disturbances. Sleep disturbances have been implicated in the dysregulation of blood glucose levels and reported to increase the risk of type 2 diabetes (T2D) and diabetic complications. Sleep disorders are treated using anti-insomnia drugs that target ionotropic and G protein-coupled receptors (GPCRs), including γ-aminobutyric acid (GABA) agonists, melatonin agonists, and orexin receptor antagonists. A deeper understanding of the effects of these medications on glucose metabolism and their underlying mechanisms of action is crucial for the treatment of diabetic patients with sleep disorders. In this review we focus on the beneficial impact of sleep on glucose metabolism and suggest a possible strategy for therapeutic intervention against sleep-related metabolic disorders.
Article
The aim of this study was to investigate the sleep-promoting effect of combined γ-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP) on sleep quality and quantity in vertebrate models. Pentobarbital-induced sleep test and electroencephalogram (EEG) analysis were applied to investigate sleep latency, duration, total sleeping time and sleep quality of two amino acids and GABA/5-HTP mixture. In addition, real-time PCR and HPLC analysis were applied to analyze the signaling pathway. The GABA/5-HTP mixture significantly regulated the sleep latency, duration (p<0.005), and also increased the sleep quality than single administration of the amino acids (p<0.000). Long-term administration increased the transcript levels of GABAA receptor (1.37-fold, p<0.000) and also increased the GABA content compared with the control group 12h after administration (1.43-fold, p<0.000). Our available evidence suggests that the GABA/5-HTP mixture modulates both GABAergic and serotonergic signaling. Moreover, the sleep architecture can be controlled by the regulation of GABAA receptor and GABA content with 5-HTP.
Article
Objective: This systematic review evaluates the effectiveness of sensory stimulation to improve arousal and alertness of people in a coma or persistent vegetative state after traumatic brain injury (TBI). Method: Databases searched included Medline, PsycINFO, CINAHL, OTseeker, and the Cochrane Database of Systematic Reviews. The search was limited to outcomes studies published in English in peer-reviewed journals between 2008 and 2013. Results: Included studies provide strong evidence that multimodal sensory stimulation improves arousal and enhances clinical outcomes for people in a coma or persistent vegetative state after TBI. Moderate evidence was also provided for auditory stimulation, limited evidence was provided for complex stimuli, and insufficient evidence was provided for median nerve stimulation. Conclusion: Interventions should be tailored to client tolerance and premorbid preferences. Bimodal or multimodal stimulation should begin early, be frequent, and be sustained until more complex activity is possible.
Article
Background: Electrographic status epilepticus in slow sleep or continuous spike and waves during slow-wave sleep is an epileptic encephalopathy characterized by seizures, neurocognitive regression, and significant activation of epileptiform discharges during nonrapid eye movement sleep. There is no consensus on the diagnostic criteria and evidence-based optimal treatment algorithm for children with electrographic status epilepticus in slow sleep. that was successfully treated with vagus nerve stimulation. Patient description: We describe a 12-year-old girl with drug-resistant electrographic status epilepticus in slow wave sleep. Her clinical presentation, presurgical evaluation, decision-making, and course after vagus nerve stimulator implantation are described in detail. Findings: After vagus nerve stimulator implantation, the girl remained seizure free for more than a year, resolved the electrographic status epilepticus in slow sleep pattern on electroencephalography, and exhibited significant cognitive improvement. Conclusion: This report may foster consideration of vagus nerve stimulation as a treatment modality for electrographic status epilepticus in slow sleep.
Article
Cortical electroencephalographic activity arises from corticothalamocortical interactions, modulated by wake-promoting monoaminergic and cholinergic input. These wake-promoting systems are regulated by hypothalamic hypocretin/orexins, while GABAergic sleep-promoting nuclei are found in the preoptic area, brainstem and lateral hypothalamus. Although pontine acetylcholine is critical for REM sleep, hypothalamic melanin-concentrating hormone/GABAergic cells may "gate" REM sleep. Daily sleep-wake rhythms arise from interactions between a hypothalamic circadian pacemaker and a sleep homeostat whose anatomical locus has yet to be conclusively defined. Control of sleep and wakefulness involves multiple systems, each of which presents vulnerability to sleep/wake dysfunction that may predispose to physical and/or neuropsychiatric disorders.
Article
The vagus nerve (VN), the “great wondering protector” of the body, comprises an intricate neuro-endocrine-immune network that maintains homeostasis. With reciprocal neural connections to multiple brain regions, the VN serves as a control center that integrates interoceptive information and responds with appropriate adaptive modulatory feedbacks. While most VN fibers are unmyelinated C-fibers from the visceral organs, myelinated A- and B-fiber play an important role in somatic sensory, motor, and parasympathetic innervation. VN fibers are primarily cholinergic but other noncholinergic nonadrenergic neurotransmitters are also involved. VN has four vagal nuclei that provide critical controls to the cardiovascular, respiratory, and alimentary systems. Latest studies revealed that VN is also involved in inflammation, mood, and pain regulation, all of which can be potentially modulated by vagus nerve stimulation (VNS). With a broad vagal neural network, VNS may exert a neuromodulatory effect to activate certain innate “protective” pathways for restoring health.
Article
A coma is a serious complication, which can occur following traumatic brain injury (TBI), for which no effective treatment has been established. Previous studies have suggested that neural electrical stimulation, including median nerve stimulation (MNS), may be an effective method for treating patients in a coma, and orexin‑A, an excitatory hypothalamic neuropeptide, may be involved in wakefulness. However, the exact mechanisms underlying this involvement remain to be elucidated. The present study aimed to examine the arousal‑promoting role of MNS in rats in a TBI‑induced coma and to investigate the potential mechanisms involved. A total of 90 rats were divided into three groups, comprising a control group, sham‑stimulated (TBI) group and a stimulated (TBI + MNS) group. MNS was performed on the animals, which were in a TBI‑induced comatose state. Changes in the behavior of the rats were observed following MNS. Subsequently, hypothalamic tissues were extracted from the rats 6, 12 and 24 h following TBI or MNS, respectively. The expression levels of orexin‑A and orexin receptor‑1 (OX1R) in the hypothalamus were examined using immunohistochemistry, western blotting and an enzyme‑linked immunosorbent assay. The results demonstrated that 21 rats subjected to TBI‑induced coma exhibited a restored righting reflex and response to pain stimuli following MNS. In addition, ignificant differences in the expression levels of orexin‑A and OXIR were observed among the three groups and among the time‑points. Orexin‑A and OX1R were upregulated following MNS. The rats in the stimulated group reacted to the MNS and exhibited a re‑awakening response. The results of the present study indicated that MNS may be a therapeutic option for TBI‑induced coma. The mechanism may be associated with increasing expression levels of the excitatory hypothalamic neuropeptide, orexin-A, and its receptor, OX1R, in the hypothalamic region.
Article
Specific neurons in the lateral hypothalamus produce the orexin neuropeptides (orexin-A and orexin-B). The orexin-peptides are transported to areas of the brain regulating sleep-wake cycles, controlling food intake or modulating emotional states such as panic or anxiety. The orexin system, consisting of the two orexin-neuropeptides and two G-protein-coupled receptors (the orexin-1 and the orexin-2 receptor) is as well involved in reward and addictive behaviors. The review reflects on the most recent activities in the field of orexin research. Copyright © 2015 Elsevier Ltd. All rights reserved.
Article
Rapid eye movement sleep (REMS) serves house-keeping function of the brain and its loss affects several pathophysiological processes. Relative levels of neurotransmitters including orexin A (Orx-A) in various parts of the brain in health and diseases are among the key factors for modulation of behaviors, including REMS. The level of neurotransmitter in an area in the brain directly depends on number of projecting neurons and their firing rates. The locus coeruleus (LC), the site of REM-OFF neurons, receives densest, while the pedunculo-pontine area (PPT), the site of REM-ON neurons receives lesser projections from the Orx-ergic neurons. Further, the Orx-ergic neurons are active during waking and silent during REMS and NREMS. Therefore, the level of Orx-A in discrete regions of the brain is likely to be different during normal and altered states, which in turn is likely to be responsible for altered behaviors in health and diseases, including in relation to REMS. Therefore, in the present study, we estimated Orx-A level in LC, cortex, posterior hypothalamus (PH), hippocampus, and PPT after 96h REMSD, in post-deprivation recovered rats and in control rats. This is the first report of estimation of Orx-A in different brain regions after prolonged REMSD. It was observed that after REMSD the Orx-A level increased significantly in LC, cortex and PH which returned to normal level after recovery; however, the level did not change in the hippocampus and PPT. The Orx-A induced modulation of REMS could be secondary to increased waking. Copyright © 2015. Published by Elsevier Ireland Ltd.
Article
Abstract Activation of the orexin (OX)-ergic neurons in the perifornical (PeF) area has been reported to induce waking and reduce rapid eye movement sleep (REMS). The activities of OX-ergic neurons are maximum during active waking and they progressively reduce during non-REMS (NREMS) and REMS. Apparently, the locus coeruleus (LC) neurons also behave in a comparable manner as that of the OX-ergic neurons particularly in relation to waking and REMS. Further, as PeF OX-ergic neurons send dense projections to LC, we argued that the former could drive the LC neurons to modulate waking and REMS. Studies in freely moving normally behaving animals where simultaneously neuro-chemo-anatomo-physio-behavioral information could be deciphered would significantly strengthen our understanding on the regulation of REMS. Therefore, in this study in freely behaving chronically prepared rats we stimulated the PeF neurons without or with simultaneous blocking of specific subtypes of OX-ergic receptors in the LC while electrophysiological recording characterizing sleep-waking was continued. Single dose of glutamate stimulation as well as sustained mild electrical stimulation of PeF (both bilateral) significantly increased waking and reduced REMS as compared to baseline. Simultaneous application of OX-receptor1 (OX1R) antagonist bilaterally into the LC prevented PeF stimulation induced REMS suppression. Also, the effect of electrical stimulation of the PeF was long lasting as compared to that of the glutamate stimulation. Further, sustained electrical stimulation significantly decreased both REMS duration as well as REMS frequency, while glutamate stimulation decreased REMS duration only.
Article
Vagal nerve stimulation (VNS) is an alternative therapy for epilepsy and treatment refractory depression. Here we examine VNS as a potential therapy for the treatment of schizophrenia in the methylozoxymethanol acetate (MAM) rodent model of the disease. We have previously demonstrated that hyperactivity within ventral regions of the hippocampus (vHipp) drives the dopamine system dysregulation in this model. Moreover, by targeting the vHipp directly, we can reverse aberrant dopamine system function and associated behaviors in the MAM model. Although the central effects of VNS have not been completely delineated, positron emission topographic measurements of cerebral blood flow in humans have consistently reported that VNS stimulation induces bilateral decreases in hippocampal activity. Based on our previous observations, we performed in vivo extracellular electrophysiological recordings in MAM- and saline-treated rats to evaluate the effect of chronic (2 week) VNS treatment on the activity of putative vHipp pyramidal neurons, as well as downstream dopamine neuron activity in the ventral tegmental area. Here we demonstrate that chronic VNS was able to reverse both vHipp hyperactivity and aberrant mesolimbic dopamine neuron function in the MAM model of schizophrenia. Additionally, VNS reversed a behavioral correlate of the positive symptoms of schizophrenia. Because current therapies for schizophrenia are far from adequate, with a large number of patients discontinuing treatment due to low efficacy or intolerable side effects, it is important to explore alternative nonpharmacological treatments. These data provide the first preclinical evidence that VNS may be a possible alternative therapeutic approach for the treatment of schizophrenia.
Article
Traumatic brain injury (TBI) has high morbidity and mortality in both civilian and military populations. Blast and other mechanisms of TBI damage the brain by causing neurons to disconnect and atrophy. Such traumatic axonal injury can lead to persistent vegetative and minimally conscious states (VS and MCS), for which limited treatment options exist, including physical, occupational, speech, and cognitive therapies. More than 60 000 patients have received vagus nerve stimulation (VNS) for epilepsy and depression. In addition to decreased seizure frequency and severity, patients report enhanced mood, reduced daytime sleepiness independent of seizure control, increased slow wave sleep, and improved cognition, memory, and quality of life. Early stimulation of the vagus nerve accelerates the rate and extent of behavioral and cognitive recovery after fluid percussion brain injury in rats. We recently obtained Food and Drug Administration (FDA) approval for a pilot prospective randomized crossover trial to demonstrate objective improvement in clinical outcome by placement of a vagus nerve stimulator in patients who are recovering from severe TBI. Our hypothesis is that stimulation of the vagus nerve results in increased cerebral blood flow and metabolism in the forebrain, thalamus, and reticular formation, which promotes arousal and improved consciousness, thereby improving outcome after TBI resulting in MCS or VS. If this study demonstrates that VNS can safely and positively impact outcome, then a larger randomized prospective crossover trial will be proposed.
Article
Background: Recent clinical studies have shown that the dorsal motor nucleus of the vagus nerve is one of the brain areas that are the earliest affected by α-synuclein and Lewy body pathology in Parkinson's disease. This observation raises the question: how the vagus nerve dysfunction affects the dopamine system in the brain? Methods: The rats underwent surgical implantation of the microchip (MC) in the abdominal region of the vagus. In this study, we examined the effect of chronic, unilateral electrical stimulation of the left nerve vagus, of two different types: low-frequency (MCL) and physiological stimulation (MCPh) on the dopamine and serotonin metabolism determined by high-pressure chromatography with electrochemical detection in rat brain structures. Results: MCL electrical stimulation of the left nerve vagus in contrast to MCPh stimulation, produced a significant inhibition of dopamine system in rat brain structures. Ex vivo biochemical experiments clearly suggest that MCL opposite to MCPh impaired the function of dopamine system similarly to vagotomy. Conclusion: We suggest a close relationship between the peripheral vagus nerve impairment and the inhibition of dopamine system in the brain structures. This is the first report of such relationship which may suggest that mental changes (pro-depressive) could occur in the first stage of Parkinson's disease far ahead of motor impairment.
Article
Sleep and wakefulness are regulated in the brainstem and hypothalamus. Classical brain dissecting or stimulating studies have proposed the concept of an ascending reticular activating system, presently known as the wakefulness center, located in the caudal midbrain/rostral pontine (mesopontine) areas, comprising the serotonergic, noradrenergic and cholinergic neural populations. These neural groups, in association with the histaminergic and orexinergic neurons in the hypothalamus, activate the cerebral the cortex through the thalamus or basal forebrain. This activating (waking) system is controlled by the slow wave sleep (SWS) generating system in the preoptic area, which receives inhibitory signals from the waking center. The mesopontine area is also involved in the regulation of rapid eye movement (REM) sleep. Reciprocal interactions between the cholinergic/glutamatergic excitatory systems and the aminergic/GABAergic inhibitory systems are crucial for the regulation of REM sleep. In the REM activating system, mutual excitatory interactions between cholinergic and glutamatergic neurons serve to maintain the state of REM sleep. The REM activating system in the mesopontine area receives GABAergic inhibitory signals from several neural groups in the periaqueductal gray and the medulla. Thus, sleep and wakefulness are controlled by the interplay of various neural populations located in several areas in the central nervous system.
Article
The arousal peptides, orexins, play an important role in regulating the function of the prefrontal cortex (PFC). Although orexins have been shown to increase the excitability of deep-layer neurons in the medial prefrontal cortex (mPFC), little is known about their effect on layer 2/3, the main intracortical processing layer. In this study, we investigated the effect of orexin-A on pyramidal neurons in layer 2/3 of the mPFC using whole-cell recordings in rat brain slices. We observed that orexin-A reversibly depolarized layer 2/3 pyramidal neurons through a postsynaptic action. This depolarization was concentration-dependent and mediated via orexin receptor 1. In voltage-clamp recordings, the orexin-A-induced current was reduced by the replacement of internal K(+) with Cs(+), removal of external Na(+), or an application of flufenamic acid (an inhibitor of nonselective cation channels). A blocker of Na(+)/Ca(2+) exchangers (SN-6) did not influence the excitatory effect of orexin-A. Moreover, the current induced by orexin-A reversed near E(k) when the external solution contained low levels of Na(+). When recording with Cs(+)-containing pipettes in normal external solution, the reversal potential of the current was approximately -25 mV. These data suggest an involvement of both K(+) channels and nonselective cation channels in the effect of orexin-A. The direct excitatory action of orexin-A on layer 2/3 mPFC neurons may contribute to the modulation of PFC activity, and play a role in cognitive arousal.
Article
Recent studies of Parkinson's disease indicate that dorsal motor nucleus of nerve vagus is one of the earliest brain areas affected by alpha-synuclein and Lewy bodies pathology. The influence of electrical stimulation of vagus nerve on elemental composition of dopamine related brain structures in rats is investigated. Synchrotron radiation based X-ray fluorescence was applied to the elemental micro-imaging and quantification in thin tissue sections. It was found that elements such as P, S, Cl, K, Ca, Fe, Cu, Zn, Se, Br and Rb are present in motor cortex, corpus striatum, nucleus accumbens, substantia nigra, ventral tectal area, and dorsal motor nucleus of vagus. The topographic analysis shows that macro-elements like P, S, Cl and K are highly concentrated within the fiber bundles of corpus striatum. In contrast the levels of trace elements like Fe and Zn are the lowest in these structures. It was found that statistically significant differences between the animals with electrical stimulation of vagus nerve and the control are observed in the left side of corpus striatum for P (p = 0.04), S (p = 0.02), Cl (p = 0.05), K (p = 0.02), Fe (p = 0.04) and Zn (p = 0.02). The mass fractions of these elements are increased in the group for which the electrical stimulation of vagus nerve was performed. Moreover, the contents of Ca (p = 0.02), Zn (p = 0.07) and Rb (p = 0.04) in substantia nigra of right hemisphere are found to be significantly lower in the group with stimulation of vagus nerve than in the control rats.
Article
Histaminergic neurons solely originate from the tuberomammillary nucleus (TMN) in the posterior hypothalamus and send widespread projections to the whole brain. Experiments in rats show that histamine release in the central nervous system is positively correlated with wakefulness and the histamine released is 4 times higher during wake episodes than during sleep episodes. Endogeneous prostaglandin E2 and orexin activate histaminergic neurons in the TMN to release histamine and promote wakefulness. Conversely, prostaglandin D2 and adenosine inhibit histamine release by increasing GABA release in the TMN to induce sleep. This paper reviews the effects and mechanisms of action of the histaminergic system on sleep-wake regulation, and briefly discusses the possibility of developing novel sedative-hypnotics and wakefulness-promoting drugs related to the histaminergic system.
Article
Hyperammonemia is a recognized side effect of treatment with the antiepileptic drug (AED) valproate (VPA). Encephalopathic complications have also been observed in some patients receiving VPA therapy. The relation between VPA-induced hyperammonemia and encephalopathy is not clear, however. A model of ammonium (NH4+)-induced coma was used to investigate the contribution of VPA and to assess the efficacy of citrulline (a urea cycle intermediate) on hyperammonemia and encephalopathy. In groups of 6-12 rats, administration of VPA (2.5 mmol/kg) was associated with (a) a decrease in the dose of NH4+ that produces coma in 50% of the animals (CD5) from 6.1 to 3.6 mmol/kg, and (b) significant increases in blood ammonia concentrations in NH(4+)-treated animals. In addition, clear evidence also showed that in the presence of VPA, a lesser concentration of ammonia produced coma. Citrulline treatment (5.0 mmol/kg) was associated with (a) an increase in the CD50 value of NH(4+)-treated animals from 6.1 to 8.6 mmol/kg, (b) a statistically significant decrease in ammonia concentration at all doses examined, (c) complete protection from encephalopathic effects of NH4+ at citrulline concentrations three- to tenfold greater than basal levels; and (d) a 24% increase in the CD50 value and a statistically significant decrease in ammonia concentration of VPA/NH(4+)-treated animals. These findings indicate that VPA has a dual effect on encephalopathy and that citrulline should benefit those patients treated with VPA who experience adverse encephalopathic effects.
Article
Mast cells are best known for their participation in allergic reactions. However, a number of recent studies suggest that mast cells are subject to nervous control. In the gut mucosa, mast cells are intimately associated with nerves, and the psychologically conditioned release of RMCP II (a mucosal mast cell-derived mediator) has been reported. These data suggest the potential for CNS regulation of intestinal mucosal mast cells. In this study, we stimulated the cervical vagi and found an increased histamine content in mucosal mast cells, without apparent degranulation. Furthermore, these changes could be prevented by subdiaphragmatic vagotomy. These data support the potential for intestinal mucosal mast cell regulation by the central nervous system and suggest modulation of mast cells without degranulation.
Article
Given that vagal afferents project to brainstem regions that promote alertness, the authors tested the hypothesis that vagus nerve stimulation (VNS) would improve daytime sleepiness in patients with epilepsy. Sixteen subjects with medically refractory seizures underwent polysomnography and multiple sleep latency tests (MSLT) and completed the Epworth Sleepiness Scale (ESS), a measure of subjective daytime sleepiness, before and after 3 months of VNS. Most subjects (>80%) were maintained on constant doses of antiepileptic medications. In the 15 subjects who completed baseline and treatment MSLT, the mean sleep latency (MSL) improved from 6.4 +/- 4.1 minutes to 9.8 +/- 5.8 minutes (+/- SD; p = 0.033), indicating reduced daytime sleepiness. All subjects with stimulus intensities of < or =1.5 mA showed improved MSL. In the 16 subjects who completed baseline and treatment ESS, the mean ESS score decreased from 7.2 +/- 4.4 to 5.6 +/- 4.5 points (p = 0.049). Improvements in MSLT and ESS were not correlated with reduction in seizure frequency. Sleep-onset REM periods occurred more frequently in treatment naps as compared to baseline naps (p < 0.008; Cochran-Mantel-Haenszel test). The amount of REM sleep or other sleep stages recorded on overnight polysomnography did not change with VNS treatment. Treatment with VNS at low stimulus intensities improves daytime sleepiness, even in subjects without reductions in seizure frequency. Daytime REM sleep is enhanced with VNS. These findings support the role of VNS in activating cholinergic and other brain regions that promote alertness.
Article
Maintenance of energy homeostasis requires the coordination of systems that regulate feeding, body temperature, autonomic and endocrine functions with those that govern an appropriate state of arousal (wakefulness). Historically, the hypothalamus has been recognized to play a critical role in maintaining energy homeostasis by integrating these factors and coordinating metabolic, neuroendocrine and behavioral responses and arousal states. Recent studies have suggested that orexin-containing neurons in the lateral hypothalamic area (LHA) constitute an important central pathway that promotes adaptive behavioral and arousal responses to metabolic and environmental signals. Orexins, also called hypocretins, are neuropeptides originally identified as endogenous ligands for two orphan G-protein-coupled receptors termed orexin receptors -1 and -2. Orexin-A and -B are expressed by a specific population of neurons in the LHA. These neurons project to numerous brain regions, with monoaminergic and cholinergic nuclei of the hypothalamus, midbrain, and pons receiving particularly strong innervations. The orexinergic system is anatomically well-placed to coordinate the metabolic, motivational, motor, autonomic, and arousal processes necessary to elicit environmentally appropriate behaviors. Recent studies on orexin suggest that the orexinergic system plays a significant role in feeding and sleep-wakefulness regulation, possibly by coordinating the complex behavioral and physiological responses of these complementary homeostatic functions. Orexin neurons may provide an integrative link between peripheral metabolism and central regulation of behaviors required for an adaptive response to homeostatic challenges.
Article
Vagus nerve stimulation (VNS) is an important option for the treatment of drug-resistant epilepsy. Through delivery of a battery-supplied intermittent current, VNS protects against seizure development in a manner that correlates experimentally with electrophysiological modifications. However, the mechanism by which VNS inhibits seizures in humans remains unclear. The impairment of gamma-aminobutyric acid (GABA)-mediated neuronal inhibition associated with epilepsy has suggested that GABA(A) receptors might contribute to the therapeutic efficacy of VNS. We have now applied single photon emission computed tomography (SPECT) with the benzodiazepine receptor inverse agonist [123I]iomazenil to examine cortical GABA(A) receptor density (GRD) before and 1 year after implantation of a VNS device in 10 subjects with drug-resistant partial epilepsy. VNS therapeutic responses resulted significantly correlated with the normalization of GRD. Moreover, a comparable control group, scheduled for a possible VNS implant, failed to show significant GRD variations after 1 year of a stable anti-epileptic treatment. These results suggest that VNS may modulate the cortical excitability of brain areas associated with epileptogenesis and that GABA(A) receptor plasticity contributes to this effect.
Article
Episodic vagus nerve stimulation (VNS) induces phrenic long-term facilitation (LTF, a persistent augmentation of phrenic nerve activity after the stimulation ends), sensitive to the serotonin 5-HT(1,2,5,6,7) receptor antagonist methysergide and similar to that elicited by episodic hypoxia or carotid sinus nerve stimulation. This study examined the effect of ketanserin (5-HT(2) antagonist) or clozapine (5-HT(2,6,7) antagonist) on VNS-induced LTF in anesthetized, vagotomized, paralyzed and ventilated rats to determine which receptor subtype(s) is involved. Three episodes of 5 min VNS (50 Hz, 0.1 ms, approximately 500 microA) with 5 min intervals elicited phrenic LTF in control (amplitude: 38% above baseline at 60 min post-VNS) and ketanserin (2 mg x kg(-1), i.p.) pre-treated rats (45%), but not clozapine (3 mg x kg(-1)) rats (8%). These data suggest that unlike hypoxia-induced LTF (5-HT(2) receptor-dependent), VNS-induced LTF requires non-5-HT(2) serotonin receptors, perhaps 5-HT(6) and/or 5-HT(7) subtype(s).
Article
The serotonergic dorsal raphe (DR) neurons play an important role in sleep-wakefulness regulation. Orexinergic neurons in the lateral hypothalamus densely project to the brainstem sites including the DR. To test the effects of orexins on the serotonergic DR neurons, we applied orexin A (0.1 mM) by pressure to these neurons in unanesthetized and urethane anesthetized rats. Orexin A caused excitation in 10 of 15 neurons under unanesthetized condition. The excitation was characterized by slow onset (0-18 s), long lasting duration (15-150 s) and state-dependency. Orexin A applied during REM sleep or slow wave sleep induced significant excitation while during wakefulness, the similar amount of orexin A did not increase the firing rate any more. In the anesthetized animals, orexin A induced excitation in four of eight neurons. The excitation had slow onset and was long lasting. These results suggest that orexinergic neurons exert excitatory influence on the serotonergic DR neurons to maintain tonic activity of them, thereby participating in regulation of sleep-wakefulness cycles and other functions.
Article
Cholinergic arousal system plays an important role in the maintenance of consciousness. The authors investigated whether the intrabasalis injection of orexin-A or orexin-B and the electrically stimulated pedunculopontine tegmentum nuclei (PPTg: the origin of cholinergic ascending pathways) may alter acetylcholine efflux and electroencephalographic activity in the somatosensory cortex in relation to the orexinergic system in isoflurane-anesthetized rats. Either orexin-A (10, 30, or 100 pmol) or orexin-B (10, 30, or 100 pmol) (n = 6 each) was injected into the basal forebrain while the electroencephalogram was measured during 1.0 minimum alveolar concentration (1.2%) isoflurane anesthesia. Injection of Ringer's solution was used as a control. The PPTg was electrically stimulated twice with the following conditions: 1-s stimulus train (0.2 ms, 100 Hz, 400 microA) per min for 20 min. Twenty minutes before the second PPTg stimulation, Ringer's solution or 20 microg SB334867, an orexin-1 receptor antagonist (n = 5 each) was injected into the basal forebrain. Injection of orexin-A (30 and 100 pmol) and orexin-B (100 pmol) significantly increased the acetylcholine efflux in the somatosensory cortex (P < 0.05). Injection of orexin-A (10, 30, 100 pmol) and orexin-B (30, 100 pmol) changed the burst and suppression patterns to arousal electroencephalogram. Compared with orexin-B, injection of a lower dose of orexin-A induced increase in the acetylcholine efflux and arousal electroencephalogram. SB334867 significantly attenuated the increases in the acetylcholine efflux and electroencephalographic activation evoked by PPTg stimulation. The authors demonstrated that orexin-A was more potent than orexin-B in producing alteration of cholinergic basal forebrain neuronal activity and that the cortical activation induced by the PPTg stimulation against isoflurane anesthesia may be mediated through the orexin-1 receptors in the basal forebrain.
Article
Acute spontaneous subdural hematomas of arterial origin without any traumatic history or vascular anomaly are rarely reported. Here, we report our series of 6 patients with acute spontaneous subdural hematoma. All patients with acute spontaneous subdural hematoma were surgically treated at our hospital between January 1994 and December 2003. Each patient's constitution, medical history, clinical findings, intraoperative findings, complications, and outcomes were reviewed. The patients were 5 men and 1 woman with a mean age of 53.0 years (range 32-82). Two of the 6 patients had histories of head injury with onset more than 10 years earlier. Other medical histories included hepatitis C, dementia, alcoholism, and hypertension in one patient each. Initial symptoms were rapidly progressive disturbance of consciousness in 5 patients. Surgical operation was performed in all patients, and the bleeding points were identified as ruptures of cortical arteries located near the sylvian fissure. One patient completely recovered, one had a moderate deficit, two had severe deficits, one fell into a vegetative state, and one died (mortality was 16.7%). In many cases, the patients suddenly fell into a serious disturbance of consciousness at the onset, and the outcomes were poor. We emphasize that a very early operation is required for a good outcome.
Article
We previously showed the enhancement of survival of retinal ganglion cells (RGCs) by electrical stimulation (ES) of the optic nerve (ON) stump in adult rats. To elucidate the mechanisms underlying the survival enhancement, we determined whether the neuroprotective effect of ES is affected by the following parameters: stimulation time, frequency of current pulses and starting of ES. ES for 10min immediately after ON transection was not effective in increasing the number of surviving RGCs 7 days after the transection, but that for 30min was effective. ES at 20Hz was the most effective, when applied just after axotomy. When the starting of ES to the ON was shifted either 3h after or 4h before the axotomy, the neuroprotective effect of ES was not observed. These results suggest that the electrical activation of RGCs and/or the transected ON interfere with early events after axotomy that leads to RGC death.
Electrical stimulation of the vagus nerve enhances cognitive and motor recovery following moderate fluid percussion injury in the rat
  • D C Smith
  • A A Modglin
  • R W Roosevelt
  • S L Neese
  • R A Jensen
  • R A Browning
  • R W Clough
Smith DC, Modglin AA, Roosevelt RW, Neese SL, Jensen RA, Browning RA and Clough RW. Electrical stimulation of the vagus nerve enhances cognitive and motor recovery following moderate fluid percussion injury in the rat. J Neurotrauma 2005; 22: 1485-1502.