Exosomes are vesicles of endocytic origin released by many cells. These vesicles can mediate communication between cells, facilitating processes such as antigen presentation. Here, we show that exosomes from a mouse and a human mast cell line (MC/9 and HMC-1, respectively), as well as primary bone marrow-derived mouse mast cells, contain RNA. Microarray assessments revealed the presence of mRNA from approximately 1300 genes, many of which are not present in the cytoplasm of the donor cell. In vitro translation proved that the exosome mRNAs were functional. Quality control RNA analysis of total RNA derived from exosomes also revealed presence of small RNAs, including microRNAs. The RNA from mast cell exosomes is transferable to other mouse and human mast cells. After transfer of mouse exosomal RNA to human mast cells, new mouse proteins were found in the recipient cells, indicating that transferred exosomal mRNA can be translated after entering another cell. In summary, we show that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location. We propose that this RNA is called " exosomal shuttle RNA " (esRNA). Exosomes are small (50–90 nm) membrane vesicles of endocytic origin that are released into the extracellular environment on fusion of multivesicular bodies (MVB) with the plasma membrane 1. Many cells have the capacity to release exosomes, including reticulo-cytes 2 , dendritic cells 3 , B cells 4 , T cells 5 , mast cells 6 , epithelial cells 7 and tumour cells 8. The functions of exosomes are not completely understood, although it has been shown that exosomes can participate in the signalling events contributing to antigen presentation to T cells 4 and the development of tolerance 9. Several mechanisms have been hypothesized describing the interactions of exosomes and recipient cells. Exosomes can bind to cells through recep-tor–ligand interactions, similar to cell–cell communication mediating , for example, antigen presentation 4. Alternatively, exosomes could putatively attach or fuse with the target-cell membrane, delivering exosomal surface proteins and perhaps cytoplasm to the recipient cell 10,11. Finally, exosomes may also be internalized by the recipient cells by mechanisms such as endocytosis 12. Exosomes were isolated from a mast-cell line (MC/9), primary bone marrow-derived mast cells (BMMC) and a human mast-cell line (HMC-1) through a series of microfiltration and ultracentrifugation steps modified from what has been previously described 4. To confirm that the structures studied indeed are exosomes, they were examined by electron microscopy (Fig. 1a), flow cytometric analysis (FACS; Fig. 1b), and proteomic analysis (see Supplementary Information, Table S1). The electron micrographs of the exosomes revealed rounded structures with a size of approximately 50–80 nm, similar to previously described exo-somes 4,13–15. The identity of the studied vesicles was further confirmed as exosomes by FACS analysis (Fig. 1b), which show the presence of the surface protein CD63 — a commonly used marker of exosomes. Finally, extensive protein analysis of the MC/9 exosomes was performed on multiple samples using LC-MS/MS technology. A total of 271 proteins were identified (see Supplementary Information, Table S1) from three preparations of the isolated vesicles, of which 47 proteins were present in all three samples. More importantly, a large number of the proteins found in the preparations were the same as proteins previously identified in exosomes produced by other cells (that is, exosomes derived from intestinal epithelial cells, urine, dendritic cells, microglia, melanoma, T-cells and B-cells). In particular, 60% of the 47 proteins found in all samples of mast-cell exosomes have been previously found in other types of exosomes. Moreover, 39% of the 271 total proteins found in the analysed exosome samples have also been previously found in other types of exosomes. Thus, the electron microscopy, the FACS, and the detailed protein analyses each provided significant evidence in favour of the identification of the isolated vesicles as exosomes. The presence of nucleic acids was examined in exosomes derived from MC/9, BMMC and HMC-1 cells to define a potential mechanism by which exosomes may mediate cell–cell communication. These assessments showed that isolated exosomes contain no DNA (see Supplementary Information, Fig. S1). However, substantial amounts of RNA were detected by agarose gel electrophoresis, spectrophotometry