Conference PaperPDF Available

A Bio-inspired Aggregation with Robot Swarm using Real and Simulated Mobile Robots

Authors:

Abstract and Figures

This paper presents an implementation of a bio-inspired aggregation scenario using swarm robots. The aggregation scenario took inspiration from honeybee's thermotactic behaviour in finding an optimal zone in their comb. To realisation of the aggregation scenario, real and simulated robots with different population sizes were used. Mona, which is an open-source and open-hardware platform was deployed to play the honeybee's role in this scenario. A model of Mona was also generated in Stage for simulation of aggregation scenario with large number of robots. The results of aggregation with real-and simulated-robots showed reliable aggregations and a population dependent swarm performance. Moreover, the results demonstrated a direct correlation between the results observed from the real robot and simulation experiments.
Content may be subject to copyright.
A preview of the PDF is not available
... Mona has been modelled in Stage [47] for the study of bioinspired aggregation scenarios [48]. Stage is an open-source software platform that simulates a group of mobile robots in a 2D environment. ...
... A lab exercise was developed based on the bio-inspired BEECLUST aggregation algorithm [49] and experimental setup presented in [48]. The BEECLUST, a state-of-theart swarm aggregation algorithm, was chosen due to its simplicity in implementation and programming. ...
... Figure 13a shows Mona that was equipped with a light sensing module. This module was used in MRAS lab activity and it was used for study on bio-inspired swarm aggregation scenario preseted in [48]. The second module shown in Fig. 13b is ROS communication board [45]. ...
Article
Full-text available
Mobile robots are playing a significant role in Higher Education science and engineering teaching, as they offer a flexible platform to explore and teach a wide-range of topics such as mechanics, electronics and software. Unfortunately the widespread adoption is limited by their high cost and the complexity of user interfaces and programming tools. To overcome these issues, a new affordable, adaptable and easy-to-use robotic platform is proposed. Mona is a low-cost, open-source and open-hardware mobile robot, which has been developed to be compatible with a number of standard programming environments. The robot has been successfully used for both education and research at The University of Manchester, UK.
... Most of these previous works have focused on achieving a specific global swarm behavior based on relatively simple rules executed by the individual robots. Target global behaviors included swarm aggregation [4][5][6][7][8], shape/pattern formation [9][10][11][12][13][14][15][16], cooperation on construction works [17,18], collective transportation [19], structural damage detection [20,21], and navigation [22][23][24][25][26]. To tackle real-world problems, a robotic swarm must be capable of sequentially performing several of these global behaviors. ...
Article
Full-text available
This paper presents a consensus algorithm for artificial swarms of primitive agents, such as robots with limited sensing, processing, and communication capabilities. The presented consensus algorithm provides solutions of collective decision making for a connected network of robots. The decisions are considered abstract choices without difference, thus the algorithm can be “programmed” for a broad range of applications with specific decisions. Each robot in the swarm is considered a probabilistic finite state machine, whose preferences towards a set of discrete states are defined as a probabilistic mass function. Then, the individual preferences are updated via local negotiation with directly connected robots, followed by a convergence improvement process. The presented algorithm is evaluated for the effects of network topology and scalability (i.e., the number of decisions and the size of the swarm) on convergence performance.
Article
Full-text available
Mobile robots are playing a significant role in Higher Education science and engineering teaching, as they offer a flexible platform to explore and teach a wide-range of topics such as mechanics, electronics and software. Unfortunately the widespread adoption is limited by their high cost and the complexity of user interfaces and programming tools. To overcome these issues, a new affordable, adaptable and easy-to-use robotic platform is proposed. Mona is a low-cost, open-source and open-hardware mobile robot, which has been developed to be compatible with a number of standard programming environments. The robot has been successfully used for both education and research at The University of Manchester, UK.
Article
Full-text available
Swarm robotics studies the intelligent collective behaviour emerging from long-term interactions of large number of simple robots. However, maintaining a large number of robots operational for long time periods requires significant battery capacity, which is an issue for small robots. Therefore, re-charging systems such as automated battery-swapping stations have been implemented. These systems require that the robots interrupt, albeit shortly, their activity, which influences the swarm behaviour. In this paper, a low-cost on-the-fly wireless charging system, composed of several charging cells, is proposed for use in swarm robotic research studies. To determine the system’s ability to support perpetual swarm operation, a probabilistic model that takes into account the swarm size, robot behaviour and charging area configuration, is outlined. Based on the model, a prototype system with 12 charging cells and a small mobile robot, Mona, was developed. A series of long-term experiments with different arenas and behavioural configurations indicated the model’s accuracy and demonstrated the system’s ability to support perpetual operation of multi-robotic system.
Article
Full-text available
Swarm intelligence is a relatively new approach to problem solving that takes inspiration from the social behaviors of insects and of other animals. In particular, ants have inspired a number of methods and techniques among which the most studied and the most successful is the general purpose optimization technique known as ant colony optimization. Ant colony optimization (ACO) takes inspiration from the foraging behavior of some ant species. These ants deposit pheromone on the ground in order to mark some favorable path that should be followed by other members of the colony. Ant colony optimization exploits a similar mechanism for solving optimization problems. From the early nineties, when the first ant colony optimization algorithm was proposed, ACO attracted the attention of increasing numbers of researchers and many successful applications are now available. Moreover, a substantial corpus of theoretical results is becoming available that provides useful guidelines to researchers and practitioners in further applications of ACO. The goal of this article is to introduce ant colony optimization and to survey its most notable applications
Article
Full-text available
Aggregation is one of the most fundamental behaviors and has been studied in swarm robotic researches for more than two decades. Studies in biology have revealed that the environment is a preeminent factor, especially in cue-based aggregation. This can be defined as aggregation at a particular location which is a heat or a light source acting as a cue indicating an optimal zone. In swarm robotics, studies on cue-based aggregation mainly focused on different methods of aggregation and different parameters such as population size. Although of utmost importance, environmental effects on aggregation performance have not been studied systematically. In this paper, we study the effects of different environmental factors: size, texture and number of cues in a static setting, and moving cues in a dynamic setting using real robots. We used the aggregation time and size of the aggregate as the two metrics with which to measure aggregation performance. We performed real robot experiments with different population sizes and evaluated the performance of aggregation using the defined metrics. We also proposed a probabilistic aggregation model and predicted the aggregation performance accurately in most of the settings. The results of the experiments show that environmental conditions affect the aggregation performance considerably and have to be studied in depth.
Conference Paper
Full-text available
In this paper, we compare different aggregation strategies for cue-based aggregation with a mobile robot swarm.We used a sound source as the cue in the environment and performed real robot and simulation based experiments. We compared the performance of two proposed aggregation algorithms we called as the vector averaging and naıve with the state-of-the-art cue-based aggregation strategy BEECLUST. We showed that the proposed strategies outperform BEECLUST method.We also illustrated the feasibility of the method in the presence of noise. The results showed that the vector averaging algorithm is more robust to noise when compared to the naıve method.
Article
Full-text available
Robotic swarms that take inspiration from nature are becoming a fascinating topic for multi-robot researchers. The aim is to control a large number of simple robots in order to solve common complex tasks. Due to the hardware complexities and cost of robot platforms, current research in swarm robotics is mostly performed by simulation software. The simulation of large numbers of these robots in robotic swarm applications is extremely complex and often inaccurate due to the poor modelling of external conditions. In this paper, we present the design of a low-cost, open-platform, autonomous micro-robot (Colias) for robotic swarm applications. Colias employs a circular platform with a diameter of 4 cm. It has a maximum speed of 35 cm/s which enables it to be used in swarm scenarios very quickly over large arenas. Long-range infrared modules with an adjustable output power allow the robot to communicate with its direct neighbours at a range of 0.5 cm to 2 m. Colias has been designed as a complete platform with supporting software development tools for robotics education and research. It has been tested in both individual and swarm scenarios, and the observed results demonstrate its feasibility for use as a micro-sized mobile robot and as a low-cost platform for robot swarm applications.
Article
Full-text available
The research progress of swarm robotics is reviewed in details. The swarm robotics inspired from nature is a combination of swarm intelligence and robotics, which shows a great potential in several aspects. First of all, the cooperation of nature swarm and swarm intelligence are briefly introduced, and the special features of the swarm robotics are summarized compared to a single robot and other multi-individual systems. Then the modeling methods for swarm robotics are described, followed by a list of several widely used swarm robotics entity projects and simulation platforms. Finally, as a main part of this paper, the current research on the swarm robotic algorithms are presented in detail, including cooperative control mechanisms in swarm robotics for flocking, navigating and searching applications.
Article
Full-text available
Aggregation in swarm robotics is referred to as the gathering of spatially distributed robots into a single aggregate. Aggregation can be classified as cue-based or self-organized. In cue-based aggregation, there is a cue in the environment that points to the aggregation area, whereas in self-organized aggregation no cue is present. In this paper, we proposed a novel fuzzy-based method for cue-based aggregation based on the state-of-the-art BEECLUST algorithm. In particular, we proposed three different methods: naïve, that uses a deterministic decision-making mechanism; vector-averaging, using a vectorial summation of all perceived inputs; and fuzzy, that uses a fuzzy logic controller. We used different experiment settings: one-source and two-source environments with static and dynamic conditions to compare all the methods. We observed that the fuzzy method outperformed all the other methods and it is the most robust method against noise.
Article
In this paper, we present a new bio-inspired vision system embedded for micro-robots. The vision system takes inspiration from locusts in detecting fast approaching objects. Neurophysiological research suggested that locusts use a wide-field visual neuron called lobula giant movement detector (LGMD) to respond to imminent collisions. In this work, we present the implementation of the selected neuron model by a low-cost ARM processor as part of a composite vision module. As the first embedded LGMD vision module fits to a micro-robot, the developed system performs all image acquisition and processing independently. The vision module is placed on top of a microrobot to initiate obstacle avoidance behaviour autonomously. Both simulation and real-world experiments were carried out to test the reliability and robustness of the vision system. The results of the experiments with different scenarios demonstrated the potential of the bio-inspired vision system as a low-cost embedded module for autonomous robots.