ArticlePDF Available

Abstract and Figures

With the rapid advancement of robotic research, it becomes increasingly interesting and important to develop biomimetic micro- or nanorobots that translate biological principles into robotic systems. We report the design, construction, and evaluation of a dual–cell membrane–functionalized nanorobot for multipurpose removal of biological threat agents, particularly concurrent targeting and neutralization of pathogenic bacteria and toxins. Specifically, we demonstrated ultrasound-propelled biomimetic nanorobots consisting of gold nanowires cloaked with a hybrid of red blood cell (RBC) membranes and platelet (PL) membranes. Such hybrid cell membranes have a variety of functional proteins associated with human RBCs and PLs, which give the nanorobots a number of attractive biological capabilities, including adhesion and binding to PL-adhering pathogens (e.g., Staphylococcus aureus bacteria) and neutralization of pore-forming toxins (e.g., α-toxin). In addition, the biomimetic nanorobots displayed rapid and efficient prolonged acoustic propulsion in whole blood, with no apparent biofouling, and mimicked the movement of natural motile cells. This propulsion enhanced the binding and detoxification efficiency of the robots against pathogens and toxins. Overall, coupling these diverse biological functions of hybrid cell membranes with the fuel-free propulsion of the nanorobots resulted in a dynamic robotic system for efficient isolation and simultaneous removal of different biological threats, an important step toward the creation of a broad-spectrum detoxification robotic platform.
Content may be subject to copyright.
A preview of the PDF is not available
... They can adapt to different working environments and work together as a swarm. They have been widely used in different fields, such as biomedicine [1][2][3], environmental protection [4,5], micro-nano fluid control [6][7][8], and micro-nano manufacturing [9]. ...
Article
Full-text available
Due to their fascinating solitary and collective behavior, photochemical microrobots have attracted extensive attention from researchers and have obtained a series of outstanding research progress in recent years. However, due to the limitation of using a single light source, the realization of reconfigurable and controllable motion behaviors of the photochemical microrobot is still facing a series of challenges. To release these restrictions, we reported a multi-light-field-coupling-based method for driving the photochemical microrobot or its swarm in a regulatable manner. Here, we first designed a control system for coupling multiple light sources to realize the programmable application of four light sources in different directions. Then a TiO2-based photochemical microrobot was prepared, with its surface electric field distribution under different lighting conditions estimated by modeling-based simulation, where the feasibility of regulating the microrobot’s motion behavior via the proposed setup was verified. Furthermore, our experimental results show that under the action of the compound light fields, we can not only robustly control the motion behavior of a single TiO2 microrobot but also reconfigure its collective behaviors. For example, we realized the free switching of the single TiO2 microrobots’ movement direction, and the controllable diffusion, aggregation, the locomotion and merging of TiO2 microrobot swarms. Our discovery would provide potential means to realize the leap-forward control and application of photochemical microrobots from individuals to swarms, as well as the creation of active materials and intelligent synthetic systems.
Chapter
Some new concepts, new ideas, new materials, new technologies, new detection and characterization technologies, and new biomedical applications about micro‐ and nanorobots have been put forward by scientific researchers. These innovative research work focus on the design of better biosafety micro‐ and nanorobots and intelligent micro‐ and nanorobots, new treatment modes, new biomedical needs, and the construction of a more systematic in vivo and in vitro experimental research system for micro‐ and nanorobots. The construction of intelligent micro‐ and nanorobots is necessarily complex, but it is limited by the material synthesis method. When intelligent micro‐ and nanorobots can achieve self‐perception, real‐time diagnosis, and take the right action, this may be the ultimate goal of biomedical micro‐ and nanorobot research. It requires more sophisticated biochemical sensing technology and more complex material and structural design. Scientists use stem cells as a breakthrough to cure a variety of diseases, such as cartilage loss, Parkinson's disease, and diabetes.
Chapter
This chapter describes that through the efforts of scientists for nearly a decade, biomedical micro‐and nanorobots have made substantial theoretical research progress in ophthalmic diseases, orthopedic diseases, gastrointestinal diseases, neurological diseases, bacterial infections, blood poisoning, biological sensing, etc. In the challenge of micro‐and nanorobot technology applied to orthopedic disease treatment, the exploration of new materials is the primary task to support the technology. Synthetic multifunctional materials with excellent biosafety, loading capacity, driving, sensing performance, and imaging ability are the goals of researchers. Gastrointestinal diseases are common diseases of the digestive system. Acid‐driven drug‐loaded microrobots in the treatment of gastrointestinal diseases have achieved good results in in vivo experiments. Bacterial infections in different parts of the human body will cause some different symptoms, and will seriously threaten human health. The formation of bacterial biofilm is one of the important reasons for bacterial drug resistance.
Chapter
Based on the biological safety considerations for biomedical micro‐ and nanorobots, the substrates of biomedical micro‐ and nanorobots in the past two decades have mostly been DNA, flexible organic polymer materials, mesoporous silica particles, and so on, while the combination of nuts and screws should still belong to the micromation of steel macrorobots. Metal micro‐ and nanomaterials are one of the main substrates for preparing biomedical micro‐ and nanorobots. Inorganic nanoparticles have unique photothermal, electromagnetic, and other properties, so they have become excellent substrates for micro‐ and nanorobots. The inorganic material most commonly used as the substrate of micro‐ and nanorobots is mesoporous silica. This chapter describes the related research of biomedical micro‐ and nanorobots that can be used in the internal environment, which are constructed by three kinds of widely used driving systems: magnetic field, light, and ultrasonic field.
Article
Full-text available
Biomimicry has been utilized in many branches of science and engineering to develop devices for enhanced and better performances. The application of nanotechnology has made life easier in modern times. It has offered a way to manipulate matter and systems at the atomic level. As a result, miniaturization of numerous devices has been possible. Of late, the integration of biomimicry with nanotechnology has shown promising results in the field of medicine, robotics, sensors, photonics, etc. Biomimicry in nanotechnology has provided eco-friendly and green solutions to the energy problem and in textiles. This is a new research area that needs to be explored more thoroughly. This review illustrates the progress and innovations made in the field of nanotechnology with the integration of biomimicry.
Article
Bovine mastitis produced by Staphylococcus aureus (S. aureus) causes major problems in milk production due to the staphylococcal enterotoxins produced by this bacterium. These enterotoxins are stable and cannot be eradicated easily by common hygienic procedures once they are formed in dairy products. Here, magnetic microrobots (MagRobots) are developed based on paramagnetic hybrid microstructures loaded with IgG from rabbit serum that can bind and isolate S. aureus from milk in a concentration of 3.42 104 CFU g-1 (allowable minimum level established by the United States Food and Drug Administration, FDA). Protein A, which is present on the cell wall of S. aureus, selectively binds IgG from rabbit serum and loads the bacteria onto the surface of the MagRobots. The selective isolation of S. aureus is confirmed using a mixed suspension of S. aureus and Escherichia coli (E. coli). Moreover, this fuel-free system based on magnetic robots does not affect the natural milk microbiota or add any toxic compound resulting from fuel catalysis. This system can be used to isolate and transport efficiently S. aureus and discriminate it from nontarget bacteria for subsequent identification. Finally, this system can be scaled up for industrial use in food production.
Article
Biohybrid micro/nanobots have emerged as an innovative resource to be employed in the biomedical field due to their biocompatible and biodegradable properties. These are tiny nanomaterial-based integrated structures engineered in a way that they can move autonomously and perform the programmed tasks efficiently even at hard-to-reach organ/tissues/cellular sites. The biohybrid micro/nanobots can either be cell/bacterial/enzyme-based or may mimic the properties of an active molecule. It holds the potential to change the landscape in various areas of biomedical including early diagnosis of disease, therapeutics, imaging, or precision surgery. The propulsion mechanism of the biohybrid micro/nanobots can be both fuel-based and fuel-free, but the most effective and easiest way to propel these micro/nanobots is via enzymes. Micro/nanobots possess the feature to adsorb/functionalize chemicals or drugs at their surfaces thus offering the scope of delivering drugs at the targeted locations. They also have shown immense potential in intracellular sensing of biomolecules and molecular events. Moreover, with recent progress in the material development and processing is required for enhanced activity and robustness the fabrication is done via various advanced techniques to avoid self-degradation and cause cellular toxicity during autonomous movement in biological medium. In this review, various approaches of design, architecture, and performance of such micro/nanobots have been illustrated along with their potential applications in controlled cargo release, therapeutics, intracellular sensing, and bioimaging. Furthermore, it is also foregrounding their advancement offering an insight into their future scopes, opportunities, and challenges involved in advanced biomedical applications.
Article
Full-text available
Actuation is essential for artificial machines to interact with their surrounding environment and to accomplish the functions for which they are designed. Over the past few decades, there has been considerable progress in developing new actuation technologies. However, controlled motion still represents a considerable bottleneck for many applications and hampers the development of advanced robots, especially at small length scales. Nature has solved this problem using molecular motors that, through living cells, are assembled into multiscale ensembles with integrated control systems. These systems can scale force production from piconewtons up to kilonewtons. By leveraging the performance of living cells and tissues and directly interfacing them with artificial components, it should be possible to exploit the intricacy and metabolic efficiency of biological actuation within artificial machines. We provide a survey of important advances in this biohybrid actuation paradigm.
Article
Full-text available
Magnetic microrobots and nanorobots can be remotely controlled to propel in complex biological fluids with high precision by using magnetic fields. Their potential for controlled navigation in hard-to-reach cavities of the human body makes them promising miniaturized robotic tools to diagnose and treat diseases in a minimally invasive manner. However, critical issues, such as motion tracking, biocompatibility, biodegradation, and diagnostic/therapeutic effects, need to be resolved to allow preclinical in vivo development and clinical trials. We report biohybrid magnetic robots endowed with multifunctional capabilities by integrating desired structural and functional attributes from a biological matrix and an engineered coating. Helical microswimmers were fabricated from Spirulina microalgae via a facile dip-coating process in magnetite (Fe3O4) suspensions, superparamagnetic, and equipped with robust navigation capability in various biofluids. The innate properties of the microalgae allowed in vivo fluorescence imaging and remote diagnostic sensing without the need for any surface modification. Furthermore, in vivo magnetic resonance imaging tracked a swarm of microswimmers inside rodent stomachs, a deep organ where fluorescence-based imaging ceased to work because of its penetration limitation. Meanwhile, the microswimmers were able to degrade and exhibited selective cytotoxicity to cancer cell lines, subject to the thickness of the Fe3O4 coating, which could be tailored via the dip-coating process. The biohybrid microrobots reported herein represent a microrobotic platform that could be further developed for in vivo imaging–guided therapy and a proof of concept for the engineering of multifunctional microrobotic and nanorobotic devices.
Article
Full-text available
Micro- and nanoscale robots that can effectively convert diverse energy sources into movement and force represent a rapidly emerging and fascinating robotics research area. Recent advances in the design, fabrication, and operation of micro/nanorobots have greatly enhanced their power, function, and versatility. The new capabilities of these tiny untethered machines indicate immense potential for a variety of biomedical applications. This article reviews recent progress and future perspectives of micro/nanorobots in biomedicine, with a special focus on their potential advantages and applications for directed drug delivery, precision surgery, medical diagnosis, and detoxification. Future success of this technology, to be realized through close collaboration between robotics, medical, and nanotechnology experts, should have a major impact on disease diagnosis, treatment, and prevention.
Article
The preparation and operation of free swimming functionalized sperm micromotors (FSFSMs) as intelligent self-guided biomotors with intrinsic chemotactic motile behavior are reported. The natural sperm biomotors are functionalized with a wide variety of synthetic nanoscale payloads, such as CdSe/ZnS quantum dots, doxorubicin hydrochloride drug coated iron-oxide nanoparticles, and fluorescein isothiocyanate-modified Pt nanoparticles via endocytosis. The FSFSMs display efficient self-propulsion in various biological and environmental media with controllable swarming behavior upon exposure to a chemical attractant. As a new class of environmentally responsive smart biomotors, the control of the FSFSM speed is achieved by varying the solution osmolarity that leads to different flagellar lengths. High drug loading capacity and responsive release kinetics are obtained with such sperm biomotors. The transport of synthetic cargo can be guided by the intrinsic chemotaxis of the FSFSMs. The chemotactic characteristics, speed control mechanism, and responsive payload release of the FSFSMs are investigated. Such use of free swimming functionalized sperm cells as intelligent microscale biomotors offers considerable potential for diverse biomedical and environmental applications.
Article
Self-propelled micromotors have previously shown to enhance pollutant removal compared to non-motile nano-micro particles. However, these systems are expensive, difficult to scale-up and require surfactant for efficient work. Efficient and inexpensive micromotors are desirable for their practical applications in water treatment technologies. We describe cobalt-ferrite based micromotors (CFO micromotors) fabricated by a facile and scalable synthesis, that produce hydroxyl radicals via Fenton-like reaction and take advantage of oxygen gas generated during this reaction for self-propulsion. Once the reaction is complete, the CFO micromotors can be easily separated and collected due to their magnetic nature. The CFO micromotors are demonstrated for highly efficient advanced oxidative removal of tetracycline antibiotic from the water. Furthermore, the effects of different concentrations of micromotors and hydrogen peroxide on the antibiotic degradation were studied, as well as the generation of the highly reactive hydroxyl radicals responsible for the oxidation reaction.
Article
One emerging and exciting topic in robotics research is the design of micro-/nanoscale robots for biomedical operations. Unlike industrial robots that are developed primarily to automate routine and dangerous tasks, biomedical nanorobots are designed for complex, physiologically relevant environments, and tasks that involve unanticipated biological events. Here, a biologically interfaced nanorobot is reported, made of magnetic helical nanomotors cloaked with the plasma membrane of human platelets. The resulting biomimetic nanorobots possess a biological membrane coating consisting of diverse functional proteins associated with human platelets. Compared to uncoated nanomotors which experience severe biofouling effects and hence hindered propulsion in whole blood, the platelet-membrane-cloaked nanomotors disguise as human platelets and display efficient propulsion in blood over long time periods. The biointerfaced nanorobots display platelet-mimicking properties, including adhesion and binding to toxins and platelet-adhering pathogens, such as Shiga toxin and Staphylococcus aureus bacteria. The locomotion capacity and platelet-mimicking biological function of the biomimetic nanomotors offer efficient binding and isolation of these biological threats. The dynamic biointerfacing platform enabled by platelet-membrane cloaked nanorobots thus holds considerable promise for diverse biomedical and biodefense applications.
Article
We present a simple, intuitive algorithm for visualizing time-varying flow fields that can reveal complex flow structures with minimal user intervention. We apply this technique to a variety of biological systems, including the swimming currents of invertebrates and the collective motion of swarms of insects. We compare our results to more experimentally-difficult and mathematically-sophisticated techniques for identifying patterns in fluid flows, and suggest that our tool represents an essential "middle ground" allowing experimentalists to easily determine whether a system exhibits interesting flow patterns and coherent structures without resorting to more intensive techniques. In addition to being informative, the visualizations generated by our tool are often striking and elegant, illustrating coherent structures directly from videos without the need for computational overlays. Our tool is available as fully-documented open-source code available for MATLAB, Python, or ImageJ at www.flowtrace.org.
Article
Antivirulence vaccination is a promising strategy for addressing bacterial infection that focuses on removing the harmful toxins produced by bacteria. However, a major challenge for creating vaccines against biological toxins is that the vaccine potency is often limited by lack of antigenic breadth, as most formulations have focused on single antigens, while most bacteria secrete a plethora of toxins. Here, a facile approach for generating multiantigenic nanotoxoids for use as vaccines against pathogenic bacteria by leveraging the natural affinity of virulence factors for cellular membranes is reported. Specifically, multiple virulent toxins from bacterial protein secretions are concurrently and naturally entrapped using a membrane-coated nanosponge construct. The resulting multivalent nanotoxoids are capable of delivering virulence factors together, are safe both in vitro and in vivo, and can elicit functional immunity capable of combating live bacterial infections in a mouse model. Despite containing the same bacterial antigens, the reported nanotoxoid formulation consistently outperforms a denatured protein preparation in all of the metrics studied, which underscores the utility of biomimetic nanoparticle-based neutralization and delivery. Overall this strategy helps to address major hurdles in the design of antivirulence vaccines, enabling increased antigenic breadth while maintaining safety.
Article
Water contamination is one of the most persistent problems in public health. The resistance of some pathogens to conventional disinfectants can require the combination of multiple disinfectants or increased disinfectant dosages which may produce harmful by-products. Here, we describe an efficient disinfection and removal method of Escherichia coli (E. coli) from contaminated water by using water self-propelled Janus microbots decorated with silver nanoparticles (AgNPs). The spherical Janus microbot’s structure consists of a magnesium (Mg) microparticle as a template that also functions as propulsion source by producing hydrogen bubbles while in contact with water, an inner iron (Fe) magnetic layer for their remote guidance and collection, and an outer AgNP coated gold (Au) layer for bacteria adhesion and bactericidal properties. The active motion of microbots improves the chances of the contact of microbot surface AgNPs with the bacteria, which provokes the selective Ag+ release in bacteria cytoplasma, and the microbot self-propulsion increase the diffusion of the released Ag+ ions. In addition, the AgNPs-coated Au cap of the microbots has dual capabilities, capturing bacteria and then killing them. Thus, we have demonstrated that AgNPs-coated Janus microbots are capable of efficiently killing more than 80% of E. coli compared to colloidal AgNPs that killed less than 35% of E. coli in 15 minutes in contaminated water solutions. After bacteria capture and extermination, the magnetic properties of the cap allow microbots to be collected from water with the captured dead bacteria, leaving water with no biological contaminants. The presented biocompatible Janus microbots offer an encouraging method for rapid disinfection of water.
Article
Cell-membrane-coated nanoparticles have recently been studied extensively for their biological compatibility, retention of cellular properties, and adaptability to a variety of therapeutic and imaging applications. This class of nanoparticles, which has been fabricated with a variety of cell membrane coatings, including those derived from red blood cells (RBCs), platelets, white blood cells, cancer cells, and bacteria, exhibit properties that are characteristic of the source cell. In this study, a new type of biological coating is created by fusing membrane material from two different cells, providing a facile method for further enhancing nanoparticle functionality. As a proof of concept, the development of dual-membrane-coated nanoparticles from the fused RBC membrane and platelet membrane is demonstrated. The resulting particles, termed RBC-platelet hybrid membrane-coated nanoparticles ([RBC-P]NPs), are thoroughly characterized, and it is shown that they carry properties of both source cells. Further, the [RBC-P]NP platform exhibits long circulation and suitability for further in vivo exploration. The reported strategy opens the door for the creation of biocompatible, custom-tailored biomimetic nanoparticles with varying hybrid functionalities, which may be used to overcome the limitations of current nanoparticle-based therapeutic and imaging platforms.