Article

STRUCTURAL-PARAMETRIC MODEL OF ELECTROELASTIC ACTUATOR FOR MECHATRONICS DEVICES OF NANOTECHNOLOGY

Authors:
To read the full-text of this research, you can request a copy directly from the author.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

... For control system of the deformation of the electro magneto elastic actuator its structural diagram, transfer function, characteristics are calculated [9][10][11][12][13][14][15][16][17][18]. The structural diagram and matrix transfer function the electro magneto elastic actuator is applied to describe the dynamic and static characteristics of the electro magneto elastic actuator for nanomedical research with regard to its physical parameters and external load [14][15][16][17][18][19][20][21][22][23][24][25][26][27][28]. ...
Article
The structural model of an engine is determined for nanomedicine and nanotechnology. The structural scheme of an engine for nanodisplacement is obtained. The matrix equation is constructed for an engine for nanomedicine and nanotechnology
Article
Background/Aim: With the availability of biosimilars, hospital formulary drug selection among biologics extends beyond clinical and safety considerations when comes to hospital resource management, to factors like human resource allocation and financial sustainability. However, research assessing the time and cost of labor, supplies, and waste disposal of biologics from the standpoint of hospitals remains limited. This study focuses on short-acting granulocyte-colony stimulating factor originators (Granocyte® and Neupogen®) and biosimilar (Nivestim®), comparing them based on mean total handling times per dose and total annual expenses. Materials and Methods: Ten nurses from a Taiwanese cancer center were recruited; they each prepared three doses of each drug. Results: Findings showed that the mean total handling times per dose of Granocyte® and Neupogen® were significantly higher than that of Nivestim®. Handling Nivestim® required the lowest total annual expense. Conclusion: Nivestim® is an advantageous alternative to Granocyte® and Neupogen®, benefiting hospital resource management.
Article
The structural schemes of electroelastic engine micro and nano displacement are determined for applied bionics and biomechanics. The structural scheme of electroelastic engine is constructed by method mathematical physics. The displacement matrix of electroelastic engine micro and nano displacement is determined.
Article
Full-text available
In the work is calculated of the piezoactuator for astrophysics. The structural scheme of the piezoactuator is determined for astrophysics. The matrix equation is constructed for the piezoactuator. The mechanical characteristic is determined. The parameters of the piezoactuator are obtained in nano control systems for astrophysics.
Article
Full-text available
The structural model of a nano drive is determined for biomedical research. The structural scheme of the piezo drive is obtained. The matrix equation is constructed for a nano drive.
Article
For astrophysics equipment and composite telescope the parameters and the characteristics of the nanopiezoactuator are obtained. The functions of the nanopiezoactuator are determined. The mechanical characteristic of the nanopiezoactuator is received.
Article
For the nano piezoactuator with hysteresis in control system its set of equilibrium positions is the segment of line. By applying Yakubovich criterion for system with the nano piezoactuator the condition absolute stability of system is evaluated.
Article
Full-text available
The structural model of the nano piezoengine is determined for applied biomechanics and biosciences. The structural scheme of the nano piezoengine is obtained. For calculation nano systems the structural model and scheme of the nano piezoengine are used, which reflect the conversion of electrical energy into mechanical energy of the control object. The matrix equation is constructed for the nano piezoengine in applied biomechanics and biosciences.
Article
Full-text available
The structural scheme of a piezoactuator is obtained for astrophysics. The matrix equation is constructed for a piezoactuator. The characteristics of a piezoactuator are received for astrophysics.
Article
The mathematical models of a piezoengine are determined for nanomedicine and applied bionics. The structural scheme of a piezoengine is constructed. The matrix equation is obtained for a piezoengine.
Article
Full-text available
In nanosciences research the structural model of an electro elastic engine is constructed. Its structural scheme of is received. For an engine its matrix equation of the deformations are obtained in the decisions of the precision control systems. The parameters of an engine are determined.
Article
The structural model of a piezo engine for composite telescope is constructed. This structural model clearly shows the conversion of electrical energy by a piezo engine into mechanical energy of the control element of a composite telescope. The structural scheme of a piezo engine is determined. For the control systems with a piezo engine its deformations are obtained in the matrix form. This structural model, structural scheme and matrix equation of a piezo engine are applied in calculation the parameters of the control systems for composite telescope.
Article
Full-text available
The generalized parametric structural schematic diagram, the generalized structural-parametric model, and the generalized matrix transfer function of an electromagnetoelastic actuator with output parameters displacements are determined by solving the wave equation with the Laplace transform, using the equation of the electromagnetolasticity in the general form, the boundary conditions on the loaded working surfaces of the actuator, and the strains along the coordinate axes. The parametric structural schematic diagram and the transfer functions of the electromagnetoelastic actuator are obtained for the calculation of the control systems for the nanomechanics. The structural-parametric model of the piezoactuator for the transverse, longitudinal, and shift piezoelectric effects are constructed. The dynamic and static characteristics of the piezoactuator with output parameter displacement are obtained.
Article
Full-text available
In the last decades, Synthetic jet actuators have gained much interest among the flow control techniques due to their short response time, high jet velocity and absence of traditional piping, which matches the requirements of reduced size and low weight. A synthetic jet is generated by the diaphragm oscillation (generally driven by a piezoelectric element) in a relatively small cavity, producing periodic cavity pressure variations associated with cavity volume changes. The pressured air exhausts through an orifice, converting diaphragm electrodynamic energy into jet kinetic energy. This review paper considers the development of various Lumped-Element Models (LEMs) as practical tools to design and manufacture the actuators. LEMs can quickly predict device performances such as the frequency response in terms of diaphragm displacement, cavity pressure and jet velocity, as well as the efficiency of energy conversion of input Joule power into useful kinetic power of air jet. The actuator performance is also analyzed by varying typical geometric parameters such as cavity height and orifice diameter and length, through a suited dimensionless form of the governing equations. A comprehensive and detailed physical modeling aimed to evaluate the device efficiency is introduced, shedding light on the different stages involved in the process. Overall, the influence of the coupling degree of the two oscillators, the diaphragm and the Helmholtz frequency, on the device performance is discussed throughout the paper.
Article
Full-text available
In addition to chloride induced corrosion, the other commonly occurring type of rebar corrosion in reinforced concrete structures is that induced by the ingress of atmospheric carbon dioxide into concrete, commonly referred to as ‘carbonation induced corrosion’. This paper presents a new approach for detecting the onset and quantifying the level of carbonation induced rebar corrosion. The approach is based on the changes in the mechanical impedance parameters acquired using the electro-mechanical coupling of a piezoelectric lead zirconate titanate (PZT) ceramic patch bonded to the surface of the rebar. The approach is non-destructive and is demonstrated though accelerated tests on reinforced concrete specimens subjected to controlled carbon dioxide exposure for a period spanning over 230 days. The equivalent stiffness parameter, extracted from the frequency response of the admittance signatures of the PZT patch, is found to increase with penetration of carbon dioxide inside the surface and the consequent carbonation, an observation that is correlated with phenolphthalein staining. After the onset of rebar corrosion, the equivalent stiffness parameter exhibited a reduction in magnitude over time, providing a clear indication of the occurrence of corrosion and the results are correlated with scanning electron microscope images and Raman spectroscopy measurements. The average rate of corrosion is determined using the equivalent mass parameter. The use of PZT ceramic transducers, therefore, provides an alternate and effective technique for diagnosis of carbonation induced rebar corrosion initiation and progression in reinforced concrete structures non-destructively.
Book
Full-text available
The field of mechatronics using piezoelectric and electrostrictive materials is growing rapidly with applications in many areas, including MEMS, adaptive optics, and adaptive structures. Piezoelectric Actuators and Ultrasonic Motors provides in-depth coverage of the theoretical background of piezoelectric and electrostrictive actuators, practical materials, device designs, drive/control techniques, typical applications, and future trends in the field. Industry engineers and academic researchers in this field will find Piezoelectric Actuators and Ultrasonic Motors an invaluable source of pertinent scientific information, practical details, and references. In the classroom, this book may be used for graduate level courses on ceramic actuators.
Article
Full-text available
This paper presents an analytical two-port, lumped-element model of a piezoelectric composite circular plate. In particular, the individual components of a piezoelectric unimorph transducer are modeled as lumped elements of an equivalent electrical circuit using conjugate power variables. The transverse static deflection field as a function of pressure and voltage loading is determined to synthesize the two-port dynamic model. Classical laminated plate theory is used to derive the equations of equilibrium for clamped circular laminated plates containing one or more piezoelectric layers. A closed-form solution is obtained for a unimorph device in which the diameter of the piezoelectric layer is less than that of the shim. Methods to estimate the model parameters are discussed, and model verification via finite-element analyses and experiments is presented. The results indicate that the resulting lumped-element model provides a reasonable prediction (within 3%) of the measured response to voltage loading and the natural frequency, thus enabling design optimization of unimorph piezoelectric transducers.
Article
Full-text available
Design and analysis of piezoelectric actuators having over 20% effective strain using an exponential strain amplification mechanism are presented in this paper. Piezoelectric ceramic material, such as lead zirconate titanate (PZT), has large stress and bandwidth, but its extremely small strain, i.e., only 0.1%, has been a major bottleneck for broad applications. This paper presents a new strain amplification design, called a “nested rhombus” multilayer mechanism, that increases strain exponentially through its hierarchical cellular structure. This allows for over 20% effective strain. In order to design the whole actuator structure, not only the compliance of piezoelectric material but also the compliance of the amplification structures needs to be taken into account. This paper addresses how the output force and displacement are attenuated by the compliance involved in the strain amplification mechanism through kinematic and static analysis. An insightful lumped parameter model is proposed to quantify the performance degradation and facilitate design tradeoffs. A prototype-nested PZT cellular actuator that weighs only 15 g has produced 21% effective strain (2.5 mm displacement from 12-mm actuator length and 30 mm width) and 1.7 N blocking force. ©2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. DOI: 10.1109/TMECH.2009.2034973
Article
Decision wave equation, structural - parametric model and block diagram of electro magneto elastic actuators are obtained, its transfer functions are bult. Effects of geometric and physical parameters of electro magneto elastic actuators and external load on its dynamic characteristics are determined. For calculation of communications systems with piezoactuators the block diagram and the transfer functions of piezoactuators are obtained.
Article
Structural-parametric models, parametric structural schematic diagrams and transfer functions of electromagnetoelastic actuators are determined. A generalized parametric structural schematic diagram of the electromagnetoelastic actuator is constructed. Effects of geometric and physical parameters of actuators and external load on its dynamic characteristics are determined. For calculations the mechatronic systems with piezoactuators for nano- and microdisplacement the parametric structural schematic diagrams and the transfer functions of piezoactuators are obtained.
Chapter
We developed a structural-parametric models, obtained solution for the wave equation of electroelastic actuators and constructed their transfer functions. Effects of geometric and physical parameters of electroelastic actuators and external loading on their dynamic characteristics determined. For calculation of automatic control systems for nanometric movements with electroelastic actuators, we obtained the parametric structural schematic diagrams and the transfer functions of piezoactuators. Static and dynamic characteristics of piezoactuators determined.
Article
Optimal control of a multilayer piezo submicromanipulator with a longitudinal piezo effect is considered. Control functions are presented. The equation of the switching line in the control of the multilayer piezo actuator is derived.
Article
The objective of this paper is to describe the mathematical modelling and numerical testing of the static behaviour and natural frequency of a flexure hinge transducer. The actuator is constructed of two parallel beams mounted by stiff links with an offset to a piezoceramic rod. A monolithic hinge lever mechanism is applied by cutting constricted hinges at the links to generate and magnify the in-plane displacement created by the application of a voltage to the piezorod. This mechanism enables the piezoelectric transducers to amplify displacement efficiently. A non-linear analytical model of the actuator is developed on the basis of Hamilton’s principle and solved with use of the perturbation method. During the numerical analysis, the static deflection and internal axial force generated by the electric field application are determined by changing actuator properties such as the distance between the beams and the rod as well as the stiffness of the constricted hinges. It is shown that for the flextensional actuator with a very high flexibility of constricted hinges, the generated transverse displacement is limited by the maximum electric field as the characteristic property for each piezoceramic material. In the dynamic analysis, the fundamental vibration frequency and the adequate modes are studied in relation to the piezoelectric force. The natural vibration frequency, affected by the piezoelectric force, also depends on the stiffness of the beam supports, the matched beam and rod materials, the ratio of the cross section of the rod to the beam and the direction of the electric field.
Article
The transfer functions of multilayer nano- and microdisplacement piezotransducers are obtained under the conditions of longitudinal and transverse piezo-optic effects. The absolute stability conditions are derived for the strain control systems of multilayer nano- and microdisplacement piezotransducers. Some compensating devices ensuring the stability of strain control systems of multilayer piezotransducers are chosen.
Article
The use of nano- and micro-scale piezomotors in precision electromechanical systems is considered. The deformation of the piezoconverter corresponding to its stress state is investigated.
Article
The solution of matrix equations in electroelasticity problems permits the formulation of a generalized structural-parametric model of a multilayer electroacoustic motor and determination of the influence of the motor’s geometric and physical parameters and external load on its dynamic characteristics. Transfer functions are derived for nano- and micro-scale multilayer electroacoustic motors.
Article
Block diagrams of a multilayer piezoelectric motor based on the longitudinal piezoelectric effect with account for the electromotive counterforce are designed. Transfer functions of the piezoelectric motor with regard to its geometric and physical parameters, electromotive counterforce, and external load are obtained.
Article
Piezoelectric actuators have been used successfully to enable locomotion in aerial and ambulatory microrobotic platforms. However, the use of piezoelectric actuators presents two major challenges for power electronic design: generating high-voltage drive signals in systems typically powered by low-voltage energy sources, and recovering unused energy from the actuators. Due to these challenges, conventional drive circuits become too bulky or inefficient in low mass applications. This work describes electrical characteristics and drive requirements of low mass piezoelectric actuators, the design and optimization of suitable drive circuit topologies, aspects of the physical instantiation of these topologies, including the fabrication of extremely lightweight magnetic components, and a custom, ultra low power integrated circuit that implements control functionality for the drive circuits. The principles and building blocks presented here enable efficient high-voltage drive circuits that can satisfy the stringent weight and power requirements of microrobotic applications.
Article
We design the static and dynamic characteristics of a piezoelectric nanomicrotransducer intended for use in nanotechnology and microelectronic hardware, devise its parametric structural schematic diagram, and determine the influence of its physical and geometric parameters on its static and dynamic characteristics.
Article
We study the compression diagrams and elastic compliances of composite piezoelectric transducers. We find the typical points on the compression diagram which correspond to the mechanical stress of clearance cutting and smoothing the microroughnesses and to the ultimate compression strength with crack formation on the edges of piezoelectric crystal plates. We construct mechanical and adjusting characteristics of piezoelectric transducers and determine their static and dynamic characteristics.
Article
We construct a generalized structural-parametric model of a multilayer electroelastic solid and determine how the geometric and physical parameters of the transducer and the external load affect its static and dynamical characteristics. We obtain the transfer functions of a multilayer electroelastic solid for an electromechanical actuator of nano- and microdisplacements.
Article
The stability conditions for a system controlling the deformation of an electromagnetoelastic transducer under deterministic and random actions are discussed. Manufacturing high-precision electromechanical drives based on electromagnetoelasticity are offering challenges under the scope of nanotechnology, nanobiology, power engineering, microelectronics, and adaptive optics. High precision drives are operated within operating loads ensuring elastic strains of the executive electromagnetoelastic transducer. A system designed for the control of micro and nanoscale strains of an electromagnetoelastic transducer. The absolute stability conditions for a system with hysteresis nonlinearity are analytically described by using Yakubovic's absolute stability criterion. The absolute stability conditions obtained for a system can be used for stability estimation and the calculation of the characteristics of the control system.
Article
The use of the solution to the wave equation to construct a generalized structural parametric model of an electromagnetoelastic transducer to determine the effect of its geometry and physical parameters is discussed. High-precision electromechanical drives are operated under working loads ensuring elastic strains of the executive device. Piezoelectric transducers are characterized by high piezoelectric moduli and they are frequently used to produce nanoscale displacements. The solution of the wave equation supplemented with the corresponding electromagnetoelasticity equation and boundary conditions on the transducer's two working surfaces allows to construct a structural parametric model of an electromagnetoelastic transducer. The transfer functions of a piezoelectric transducer are derived from its generalized structural parametric model and are obtained as the ratio of the Laplace transform of the transducer face displacement to the Laplace transform of the input electric parameter.
Article
The electromechanical deformation and energy transformation by nano- and micro-scale piezomotors in longitudinal and transverse piezo effects are considered. Analytical formulas are obtained for the conversion coefficient and efficiency of the piezomotors.
Article
A study was conducted to prepare a structural parametric model of a pie piezoelectric nanodisplacement transducer. The structural parametric model was prepared to investigate the potential application of the piezoelectric transducer in the equipment of nanotechnology, microbiology, microelectronics, astronomy, for high-precision superposition, compensation, and wavefront correction. It was found that the piezoelectric transducer operates on the basis of the inverse piezoelectric effect, in which a displacement is due to the deformation of the piezoelectric element, caused by the application of an external electric voltage. The wave equations also needed to solved, to construct a structural parametric model of the voltage-controlled piezoelectric transducer.
Parametric structural diagram of a piezoelectric converter
  • S M Afonin
S. M. Afonin, Parametric structural diagram of a piezoelectric converter, Mechanics of Solids 37(6) (2002), 85-91.
Deformation, fracture, and mechanical characteristics of a compound piezoelectric transducer
  • S M Afonin
S. M. Afonin, Deformation, fracture, and mechanical characteristics of a compound piezoelectric transducer, Mechanics of Solids 38(6) (2003), 78-82.
Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics
  • S M Afonin
S. M. Afonin, Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics, International Journal of Physics 5(1) (2017), 9-15. DOI: https://doi.org/10.12691/ijp-5-1-27
Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano-and microdisplacement
  • S M Afonin
S. M. Afonin, Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano-and microdisplacement, International Journal of Mathematical Analysis and Applications 3(4) (2016), 31-38.