Available via license: CC BY 4.0

Content may be subject to copyright.

Journal of Modern Physics, 2018, 9, 1215-1249

http://www.scirp.org/journal/jmp

ISSN Online: 2153-120X

ISSN Print: 2153-1196

DOI:

10.4236/jmp.2018.96073 May 16, 2018 1215 Journal of Modern Physics

Euclidean Model of Space and Time

Radovan Machotka

Brno University of Technology, Brno, Czech Republic

Abstract

The aim of this

work is to show that the currently widely accepted geometrical

model of space and time based on the works of Einstein and Minkowski is not

unique. The work presents an alternative geometrical model of space and

time, a model which, unlike the current one,

is based solely on Euclidean

geometry. In the new model, the pseudo-

Euclidean spacetime is replaced with

a specific subset of four-dimensional Euclidean space.

The work shows that

four-dimensional Euclidean space allows explanation of known relativistic e

f-

fects that are now explained in pseudo-Euclidean spacetime by Einstein’s Sp

e-

cial Theory of Relativity (STR). It also shows simple geometric-

kinematical

nature of known relativistic phenomena and among others explains why we

cannot travel backward in time.

The new solution is named the Euclidean

Model of Space and Time (EMST).

Keywords

Special Theory of Relativity, Euclidean Space, Four-Dimensional Space, Time

Dilation, Length Contraction

1. Introduction

Albert Einstein introduced his concept of a mutual relationship between space

and time known as Special Theory of Relativity (STR) in his work

Zur Elektro-

dynamik bewegter Körper

(On the Electrodynamics of Moving Bodies) [1]. This

work was focused on solving then existing discrepancies between theories de-

scribing electromagnetic phenomena on one side and classical mechanics on the

other. By its nature the work is physico-mathematical and the issue of geometry

is addressed only marginally. This drawback of the original theory was elimi-

nated a few years later by Hermann Minkowski’s work

Die Grundgleichungen

für die elektromagnetischen Vorgänge in bewegten Körpern

(The Fundamental

Equations for Electromagnetic Processes in Moving Bodies) [2] which was fol-

How to cite this paper:

Machotka, R.

(201

8) Euclidean Model of Space and Time

.

Journal of Modern Physics

,

9

, 1215-1249.

https://doi.org/10.4236/jmp.2018.96073

Received:

March 28, 2018

Accepted:

May 13, 2018

Published:

May 16, 2018

Copyright © 201

8 by author and

Scientific

Research Publishing Inc.

This work is licensed under the Creative

Commons Attribution International

License (CC BY

4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

R. Machotka

DOI:

10.4236/jmp.2018.96073 1216 Journal of Modern Physics

lowed by his lecture from 1908

Raum und Zeit

(Space and Time) [3].

In his work, Minkowski connected space and time into one four-dimensional

continuum, later called spacetime or Minkowski space, and he defined its key

features. He introduced a specific pseudo-Euclidean metric for spacetime which

is called Minkowski metric after the author. It is usually written in the form

2 22 2 2 2

s ct x y z= ∆ −∆ −∆ −∆

(1)

where ∆

x

, ∆

y

, ∆

z

and ∆

t

are coordinate increments and

s

is the so called space-

time interval. This interval plays the same role in Minkowski space as distance

plays in ordinary Euclidean space.

Minkowski based his thoughts on Maxwell’s equations of electrodynamic field

and their intrinsic symmetry, which reveals itself particularly when the equations

are written with time taken as an imaginary quantity. Here the main reason for

the use of imaginary numbers in Minkowski theory and subsequent introduction

of the Minkowski metric can be seen. Using this metric Minkowski showed that

the Lorentz transformation can be understood as a rotation of four-dimensional

spacetime by an imaginary angle [2]. If a well-chosen coordinate system is used,

orientation of two spatial coordinates does not change during the Lorentz trans-

formation (they are invariant) and the transformation affects only one space-like

and one time-like coordinate. E.g. if coordinate system

S'

moves with velocity

u

with respect to coordinate system

S

in the direction of the axis

x

, the transforma-

tion (rotation) affects coordinates

x

and

t

, while

y

and

z

remain invariant1. In

this case the transformation can be written as

2

2

1

x ut

x

u

c

−

′=

−

,

yy

′=

,

zz

′=

,

2

2

2

1

u

tx

c

t

u

c

−

′=

−

(2)

where

x

,

y

,

z

,

t

are coordinates of an arbitrary point in coordinate system

S

and

x'

,

y'

,

z'

and

t'

are coordinates of the same point in coordinate system

S'

.

Minkowski’s geometrical interpretation of Einstein’s STR was great success. It

was quickly adopted as an integral part of the theory and as such, it was not

questioned for years. Moreover, Minkowski metric in generalized form known

as pseudo-Riemannian metric become fundamental part of General Theory of

Relativity. Some doubts regarding geometry of spacetime emerged with quan-

tum mechanics arrival in nineteen thirties, but no real alternative was found.

The problems with Minkowski concept of spacetime accumulated over years

mainly in connection with attempts of quantum gravity theory. The unsatisfac-

tory situation holds till now and it is reflected in many works of contemporary

scientists [4] [5] [6]. In recent years alterations of original Minkowski concept

using Finsler or Cartan geometry are proposed [7] [8], but with no remarkable

success.

For the whole time, Euclidean geometry was overlooked and relegated to aux-

1Symbol

u

will be only used for mutual velocity of coordinate systems, the velocity of other objects

will be marked as

v

.

R. Machotka

DOI:

10.4236/jmp.2018.96073 1217 Journal of Modern Physics

iliary roles, mainly in pedagogical tasks as a visualization tool [9] [10]. The au-

thor is convinced it was great fault.

The aim of this work is to show that Einstein-Minkowski solution known as

STR is not unique. There exists at least one other solution which corresponds to

our observations, which leads to the same mathematical formulas, but which

geometry is quite different. In reality, its geometry is Euclidean!

2. Assumptions and Methods

Let’s assume that physical space is Euclidean,

i.e.

the axioms of Euclidean geo-

metry hold in it. Application of such an assumption on the whole universe may

be difficult, but for our objectives it is sufficient to assume euclidicity of space in

some local scale, that is in some restricted part of the universe sufficiently distant

from mass bodies and their gravitational fields. In such a part of the universe, we

can imagine existence of two inertial coordinate systems with their origins un-

iformly moving each other. We will denote one of these systems as

S

and its axes

x

,

y

,

z

, the other as

S'

with axes

x'

,

y'

,

z'

. The coordinate time of the first system

will be denoted as

t

, the coordinate time of the other as

t'

. For the sake of sim-

plicity, we shall assume that the corresponding axes of both systems are parallel

and the origins

O

and

O

' of the systems coincide each other at time

t

=

t'

= 0.

Motion of system

S

' in respect to

S

holds in the direction of the positive semi axis

x

with the speed

u

.

2.1. Stationary Coordinate System

In further explanation we will assume existence of one outstanding coordinate

system called the stationary coordinate system. In this coordinate system

the

light propagates with the same speed in all directions

. Such a system will be de-

noted as

S

, speed of light as

c

.

We will assume that in other coordinate systems that are moving with respect

to

S

, the above claim is not fulfilled.

2.2. Time Measurement

In correspondence with Einstein, we will assume that time is measured by “ideal

clocks” and all such clocks give exactly the same results, if they are not moving

relative each other. Such ideal clocks could be designed also as so called light

clocks which measure time on the basis of motion of light pulse between two

mirrors. Such a clock clearly demonstrates the slowing-down of time flow as a

consequence of speed growth. The faster the motion of the clock with respect to

S

the longer the light pulse trajectory in one cycle and the duration of the cycle is

thus longer (see Figure 1).

2.3. Distance Measurement

Distances will be determined by means of transit times of light signals. This me-

thod assumes the light signal is emitted from point

A

at time

0

A

t

, reflected in the

R. Machotka

DOI:

10.4236/jmp.2018.96073 1218 Journal of Modern Physics

Figure 1. Light clock. Time of flight of light pulse between two mirrors depends on the state of motion of the clock. On the left—

clock in rest, on the right—clock moving with velocity v to the right.

end point of measured distance (point

B

) and received at the initial point at time

2

A

t

.2 The transit time is measured by an ideal clock which is placed at point

A

.

The relevant formula is

20

2

AA

tt

AB c

−

=

(3)

2.4. Clock Synchronization

In regard to coordinate time, we will assume, in correspondence with Einstein,

that in given coordinate system the time is measured by a set of mutually syn-

chronized clocks. A method described in Einstein’s earlier cited work will be

used for the clocks’ synchronization. The method uses light signals emitted off

clock

A

at time

0

A

t

, reflected at clock

B

at time

1

B

t

and received at clock

A

at

time

2

A

t

.

The method assumes that the speed of light is the same in both directions and

thus the reflection of the signal at

B

occurs in the middle of the time interval

bounded by the signal emission and reception at

A

. The midpoint of the time

interval is given by the formula

20

1

2

AA

A

tt

t−

=

(4)

Mutual synchronization of clocks will be done by setting the clock B in such a

way that

11

BA

tt=

(5)

The left part of Figure 2 shows synchronization of clocks that are at rest with

respect to

S

, the right part shows synchronization of clocks located on a moving

object. The results of both synchronizations are different. In terms of coordinate

time

t

,

i.e.

in terms of a stationary clock, the result of “synchronization in mo-

tion” (the right part of Figure 2) is incorrect.

2

On time values upper index regards to place, lower to event (instant of time).

R. Machotka

DOI:

10.4236/jmp.2018.96073 1219 Journal of Modern Physics

Figure 2. Light synchronization of clocks A and B, at the left: clock at rest, at the right: both clocks in uniform motion to the right

at speed

u

. Light signal speed with respect to the clocks in motion is variable (motion to the right with speed

c

−

u

, motion to the

left with speed

c

+

u

).

At the end of synchronization in motion, the clocks

A

and

B

will be synchron-

ous in terms of the coordinate system rigidly coupled with the object carrying

both clocks (system

S'

) (

clock_shift clock_reading clock_reading 0

AB B A

′ ′′

=−=

)

and time difference between events

A

1 and

B

1 is equal to zero (

11

0

AB B A

t tt

′ ′′

∆ =−=

).

The events are concurrent.

In terms of stationary system

S

the time

difference of the events

A

1 and

B

1 is

non-zero, it equals

2

11 2

2

1

AB B A

ul

c

t tt

u

c

′

∆ =−=

−

(6a)

i.e.

event

B

1 will occur after event

A

1.

As regards to reading of both clocks, for stationary observer the reading of

clock B will be always smaller than reading of clock A by amount

2

clock_shift clock_reading clock_reading

AB B A

ul

c

′

=−=−

(6b)

Clock shift is in absolute value smaller than time difference of synchronizing

events. It is result of different clocks rate. Clocks

A

and

B

moving with system

S'

are slower than reference clock in stationary system

S

(see time dilation in chap-

ter 4.1).

In the Formulas (6a) and (6b) the length

l'

is the distance between clocks

A

and

B

measured in system

S'

,

i.e.

in the system to which both clocks are at rest.

Violation of clock synchronization process is caused by different speeds of

light on its way to

B

and back. In consequence the relevant transit times are not

equal.

As can be seen the described method of clock synchronization can be used

even in a moving system where the light propagates by different speeds in dif-

R. Machotka

DOI:

10.4236/jmp.2018.96073 1220 Journal of Modern Physics

ferent directions, but the result of such synchronization differ from the result of

synchronization in a stationary system.

2.5. Assumptions and Methods—Summary

All assumptions and methods stated above correspond with assumptions and

methods of Einstein’s STR as he introduced them in his work

Zur Elektrodyna-

mik bewegter Körper

[1]. Einstein even uses the idea of “stationary system” in

the work, he just defines it differently—through the validity of “Newtonian equ-

ations”. In consequence both definitions of a stationary system are equivalent.

The only significant difference lies in the method of distance measurement. In

his work Einstein assumes usage of rigid gauges—rods. As will be shown later

(Chapter 4.6) both measuring methods, the one stated above and the Einstein’s,

are equivalent and choice of the method has no influence on measurement re-

sults.

3. Euclidean Solution

3.1. 4D Space Euclidicity Postulate

The basis for following considerations as same as for the whole Euclidean Model

of Space and Time (EMST) is a formula belonging to the Einstein-Minkowski

solution [3]

2 2 22 2 2 2

c ct x y z

τ

∆ = ∆ −∆ −∆ −∆

(7)

It is a variation of (1) that is valid in the case

22 2 2 2

ct x y z∆ ≥∆ +∆ +∆

(8)

Fulfilling the inequality (8) is demanded in order for ∆

τ

to be a real.

Equation (7) can be interpreted as a relation between an increments of coor-

dinate time

t

and proper time

τ

of a body that has moved uniformly between two

points in time interval ∆

t

, whereas coordinate differences of both points are ∆

x

,

∆

y

, ∆

z

. The given formula is valid for any object regardless if it is in motion or at

rest with respect to chosen coordinate system. The quantity ∆

τ

is an invariant of

the Lorentz transformation as well as

space-time interval

s

(

sc

τ

= ∆

).

The Euclidean formula equivalent of (7) can be acquired by a simple rear-

rangement

22 2 2 2 2 2

ct x y z c

τ

∆ =∆ +∆ +∆ + ∆

(9)

Formulas (7) and (9) are identical from a mathematical point of view but their

geometric interpretation is different. While the Formula (7) defines the Min-

kowski metric

sc

τ

= ∆

in four-dimensional spacetime with three spatial axes

x,

y, z

and one time-like axis

ct

, Formula (9) defines the Euclidean metric

ct∆

in

four-dimensional space with spatial axes

x

,

y

,

z

and

c

τ

.3 In the Euclidean con-

cept the quantity

t

is not one of space dimensions but a measure of remoteness

3Alternate notation

w

of the fourth axis will be also used in this article to highlight its space-like n

a-

ture. In this notation the formula (9) reads

22 2 2 2 2

ct x y z w∆ =∆ +∆ +∆ +∆

.

R. Machotka

DOI:

10.4236/jmp.2018.96073 1221 Journal of Modern Physics

of two points of space,

i.e.

the distance between them.

As will be shown further, four-dimensional Euclidean space (E4) can be used

as a basis of an alternative theory of space and time. On that account this space

will be one of the cornerstones of EMST, its first postulate. 4D space euclidicity

postulate sounds:

“Space is four-dimensional and Euclidean.”

To create a realistic theory which would comply with the mathematical aspect

of Einstein’s STR it is necessary to accept two more assumptions.

3.2. 4D Speed Invariance Postulate

It can be seen from Formula (9) that no object in E4 can be stationary. Every ob-

ject travels a distance

ct∆

during time interval ∆

t

,

i.e.

almost 300,000 km in a

second. This also holds for objects that are seemingly stationary or that move

with distinctly sub-light velocities. Motion of such objects takes place complete-

ly, or in the vast majority, in the fourth dimension, that is along the axis

wc

τ

≡

.

Our (three-dimensional) senses, as well as our (three-dimensional) measuring

equipment, cannot detect motion in the direction of this axis. The only way we

can measure it is using a clock connected to the object. Among others, the For-

mula (9) expresses a known relativistic fact that the larger the change of spatial

coordinates

x, y

and

z

in time interval ∆

t

(or more commonly said the faster the

object is moving) the slower the flow of its proper time

τ

.

Denotations “4D motion”, “4D speed4” etc. will be used in the following text

to distinguish motion in E4 from motion in ordinary three-dimensional space

(E3).

A new postulate as a replacement for Einstein’s speed of light invariance post-

ulate can be formulated with the use of 4D speed. This postulate is directly de-

rived from Formula (9). 4D speed invariance postulate states:

“In a stationary coordinate system all objects move with the same 4D

speed that is equal to the speed of light

c

.”

It should be noted that the postulate refers to the stationary system only,

i.e.

to

the system in which the speed of light is invariable and equal to

c

. This postulate

is an enhanced version of Einstein’s speed of light invariance postulate that

states: “Every ray of light moves in the stationary system with the same speed

c

,

the speed being independent of the condition whether this ray of light is emitted

by a body at rest or in motion” [1].

According to the 4D speed invariance postulate all objects travel the same

distance during time interval ∆

t

. Various cases for objects moving from point 0

at different speeds

v

are displayed in Figure 3.

3.3. Fourth Spatial Dimension Boundedness Postulate

The second assumption necessary for acceptance of E4 space as a basis for the

new model of space and time is the assumption of its limited width, or more

4Relation between ordinary and 4D speed will be described in detail in chapter 7.1.

R. Machotka

DOI:

10.4236/jmp.2018.96073 1222 Journal of Modern Physics

Figure 3. Uniform motion of objects launched from point 0. At the end of time interval

∆

t

, the objects are located on the surface of a four-dimensional hemisphere with radius

r

=

c

∆

t

. It is a hemisphere due to the fact that increments of coordinate

cτ

cannot be

negative. Motion of objects in plane

x

–

cτ

is plotted here. Speed of an object can also be

expressed by an angle

α

:

sin xv

ct c

α

∆

= =

∆

.

accurately limited usable width in the direction of the fourth spatial axis

wc

τ

≡

. Firstly I will clarify the reasons.

Experience teaches us that two object are in collision if these occupy the same

point of space at the same time. In ordinary three-dimensional space it corres-

ponds to an equality of spatial coordinates

x, y, z

and time value

t

. In a

four-dimensional space it would be natural to expect equality of all four spatial

coordinates with coordinate

wc

τ

≡

among them. It can be shown, though, that

in real world the collisions occur entirely independently of the value of

wc

τ

≡

.

Let us have objects

A

and

B

that are both stationary in the system

S

. From ob-

ject

A

light signal

L

was emitted towards object

B

, it was reflected there and has

returned back to

A

. On its way to

B

and back the light signal traveled a distance

of 2||

AB

|| in time

2

AA

AB

tc

∆=

. During this time the object

A

hasn’t changed

its “three-dimensional” position, thus

0

AAA

xyz

∆=∆=∆=

and according to

Formula (9) holds that

22 2 2

AA A

ct c

τ

∆=∆

or

A AA

c ct

τ

∆=∆

.

An increment of the

fourth spatial coordinate

c

∆

τA

of object

A

is equal to time ∆

tAA

multiplied by

speed of light

c

. On the contrary the light signal

L

travels the distance

c

∆

tAA

in

time ∆

tAA

and from Formula (9) it is clear that the increment of its fourth spatial

coordinate equals zero (

c

∆

τL

= 0). If the light signal was emitted from object

A

at

a point with coordinates

xA

,

yA

,

zA

,

cτA

then the instant of return had coordinates

xA

,

yA

,

zA

,

( )

AA

c

ττ

+∆

. On the other hand, for the light signal itself, its proper

time has not flown (∆

τL

= 0), its coordinate

wc

τ

≡

had not changed and after

its return it had its initial coordinates

xA

,

yA

,

zA

,

cτA

. In terms of

four-dimensional space, the light signal has returned to the initial point, but ob-

ject

A

is no longer present here. Thus the collision,

i.e.

the interception of the

light signal by the object

A

, should not take place. Physical reality, though, is

different.

Another example is shown in Figure 4. It shows two objects that went for-

ward from points

A

and

B

one against each other at the same time

tA = tB

. The

two objects move with different speeds. In case we plot their trajectories in plane

R. Machotka

DOI:

10.4236/jmp.2018.96073 1223 Journal of Modern Physics

Figure 4. Plot of collision of two objects, at the top: in plane

x

–

cτ

, at the bot-

tom: in case of existence of barriers.

x – cτ

we will see that they intersect at point

C

. However this point will not be

the place of their collision because they will not be present there simultaneously.

4D distances ||

AC

|| =

c

∆

tAC

and ||

BC

|| =

c

∆

tBC

are different which means that al-

so the times ∆

tAC

and ∆

tBC

are different. In fact the two objects collide at point

D

which corresponds to two separate points

D1

and

D2

in plane

x – cτ

. 4D dis-

tances ||

AD

2|| =

c

∆

tAD

and ||

BD

1|| =

c

∆

tBD

are equal in this case, which means

that both objects will occupy point

D

at the same time.

In order to explain such a strange feature of space, following assumption has

to be adopted, fourth spatial dimension boundedness postulate:

“Material objects are in the fourth spatial dimension limited to narrow

allotted region. This region is common for all material objects and does not

provide enough room for their mutual passing.”

This means, that the space and (elementary) particles of matter are

four-dimensional but some forces or barriers keep them in a narrow strip of the

space. The dedicated strip is very narrow, so the particles are unable to pass each

other in the fourth dimension without mutual interaction. Only three remaining

spatial dimensions are applicable. For the sake of completeness we should add

that, due to the concentration of all matter particles in a narrow strip of

four-dimensional space, all composite objects have one dimension significantly

smaller than the others. Thus, even though composed of four-dimensional par-

ticles, these objects exhibit only three-dimensional properties.

There certainly exists some physical explanation for the above mentioned be-

havior of particles but it is unknown to the author at this time. For further ex-

planation, such behavior of particles in 4D space will be thought as basic fact,

and as such it is not to be discussed or investigated any further. Instead, we will

focus on finding of appropriate geometrical model of particles motion.

3.4. Geometric Interpretation of 4D Motion

Let us create geometrical model of motion of matter particles in space E4. Basis

for our considerations will be three aforementioned postulates complemented by

five assumptions that can be considered natural:

R. Machotka

DOI:

10.4236/jmp.2018.96073 1224 Journal of Modern Physics

1) It holds direct proportion between particle’s 4D path increment and coor-

dinate time ∆

t

increment expressed by Formula (9).

2) 4D speed of any particle is constant in time and is equal to

c

.

3) Allotted region of space E4, where all particles are situated, is too narrow in

the direction of fourth spatial dimension

wc

τ

≡

to observe this dimension in

macroscopic experiments.

4) 4D trajectory of any particle is continuous,

i.e.

without gaps or jumps.

5) Particles obey laws of conservation of energy, momentum and mass.

Direct consequence of assumption 5 is:

6) Direction of a particle’s 4D motion is changing only when it is in the inte-

raction with force field, with other particle or with boundary of E4 space region.

In other cases, the trajectory is straight.

Let us describe 4D motion of a particle in uniform subluminal motion. For

such motion holds:

7) Projection of the particle’s 4D speed onto our ordinary three dimensional

space (E3) is ordinary (3D) speed

v

which is constant in time and less than

c

.

8) Projection of the particle’s 4D trajectory onto E3 is a straight line.

Using statements 1, 2 and 7 it can be stated:

9) 4D velocity component in direction of

wc

τ

≡

is non-zero and its absolute

value is constant in time.

In combination with statements 3 and 4 we acquire:

10) Due the fact that allotted region is narrow in direction of

wc

τ

≡

, the par-

ticle is experiencing oscillating motion. The sign of velocity component in this

direction is changing in time.

And finally from statements 6 and 10:

11) Direction of 4D motion is changing only on the boundaries of E4, the

change is abrupt a it affects only sign of the 4D velocity component in the direc-

tion of

wc

τ

≡

.

The above findings mean that 4D trajectory of uniformly moving particle

− is restricted to the allotted region of E4,

− is situated in a plane given by the direction of particle’s 3D motion and pa-

rallel with axis

wc

τ

≡

,

− is composed of straight, mutually connected lines,

− its vertices rest on the barriers bounding allotted region of E4,

− its straight lines form equal angle

α

with the axis

wc

τ

≡

, the angle is given

by speed

v

of the particle (

sin v

c

α

=

).

Such form of motion is shown on the lower part of Figure 4.

Definition:

Let us have a space E4 containing two distinct three-dimensional hyperplanes

perpendicular to the axis

wc

τ

≡

. These hyperplanes will be called “barriers”,

their distance labeled

w

(

max min

ww w= −

). Subset of E4 bounded by both bar-

riers will be called space E4-B (letter B for “bounded”).

Ones again, let us gather geometrical model of motion of a particle in uniform

R. Machotka

DOI:

10.4236/jmp.2018.96073 1225 Journal of Modern Physics

motion.

We have space E4-B in which particles of matter are moving by speed of light.

Trajectory of each particle is continuous and is composed of straight lines. Each

line forms an angle

α

with axis

wc

τ

≡

proportional to the speed

v

of the par-

ticle. Motion of the particles in the direction of three spatial coordinates (

x

,

y

,

z

)

is considered as unrestricted, while in the fourth dimension

wc

τ

≡

is limited

by existence of two barriers perpendicular to the fourth spatial axis

wc

τ

≡

. All

particles of matter are located between these barriers that constitute fixed boun-

daries of their motion in the fourth dimension. The distance

w

of the barriers

is constant, independent of the type of the particles, time and position in space.

As an inevitable consequence of laws of momentum, energy and mass conserva-

tion, collisions of particles with the barriers are ideally elastic, particles maintain

their kinetic energy (

i.e.

both speed and mass), 3D direction of motion and an-

gles of incidence to the barriers are equal to angles of reflection. Motion of par-

ticles in the fourth dimension has oscillatory nature. This oscillatory motion is

performed by individual elementary particles, not by objects as a whole.

Described geometrical model could also hold particles in arbitrary accelerated

motion. It is sufficient to drop some demands on particle’s trajectory as a result,

the 3D motion of particle is now no more uniform. 4D trajectory will now be

composed of lines which are no necessary straight, lay in one plane nor form

constant angle with

wc

τ

≡

.

3.5. Fourth Spatial Coordinate

In further explanation I shall distinguish between the value of coordinate

wc

τ

≡

and the actual position of an elementary particle within E4-B. The later

will be marked as

wB

. While coordinate

wB

is changing in a narrow range be-

tween

w

min and

w

max in a cyclic manner, coordinate

wc

τ

≡

grows with every

cycle by value of 2(

w

max −

w

min) (Figure 5). We have no means of measuring

coordinate

wB

directly but by using a clock we can measure increments of

wc

τ

≡

.

Both variants of fourth spatial coordinate

wB

and

wc

τ

≡

have their theoret-

ical importance. On one side coordinate

wB

gives the position of elementary par-

ticles in the space between barriers, on the other side coordinate

wc

τ

≡

con-

nects motion of particles with time. In terms of further explanation, there is an

important fact that quantity

wc

τ

≡

is not cyclic and thus it is suitable for plot-

ting of diagrams of object’s motion. Such a diagram does not correspond to the

real motion of particles in 4D space but it is much more descriptive than a plot

of a trajectory with numberless reflections from the barriers. A comparison of

the “real” motion between the barriers with a plot of “fictitious” motion in plane

x – cτ

can be seen on Figure 4 and Figure 5.

A diagram with axes

x

and

wc

τ

≡

is an analogy of the commonly known

Minkowski diagram. The main difference between them is that the coordinate

time

t

is not one of the coordinates in the

x – cτ

diagram but a length of a tra-

jectory. The

x – cτ

diagram also allows the display of the proper time

τ

which is

not possible in the Minkowski diagram.

R. Machotka

DOI:

10.4236/jmp.2018.96073 1226 Journal of Modern Physics

Figure 5. Two variants of plots of a particle motion in 4D space—bold: “real” motion

between the barriers, dashed: “fictitious” motion in plane

x

–

cτ

.

3.6. Geometric Interpretation of Time

We have described important features of E4-B space as well as nature of the mo-

tion in it. Now, let us turn our attention to the proper time. Proper time can be

defined as an increment in coordinate

wc

τ

≡

divided by speed

c

.

On the other hand, the proper time does not have to be understood solely as a

distance divided by speed; there also exists an alternate view. As a natural meas-

ure of time flow, the number of reflections of selected elementary particle from

the barriers can be chosen. The faster the particle is reflecting, the faster the time

is passing. Matter itself measures its time—each particle of matter is a ticking

clock. There is a direct proportion between the number of reflections of a par-

ticle

n

and a length of the corresponding time interval ∆

τ

. The proportion is

given by formula

( )

max min

c n w w nw

τ

∆= − =

(10)

4. Geometric Basis of Relativistic Phenomena

In the previous chapter we have introduced E4-B space as a replacement for

pseudo-Euclidean spacetime used in Einstein’s STR. In this chapter we shall

demonstrate the geometric basis of the Lorentz transformation and known rela-

tivistic phenomena of time dilation and length contraction.

4.1. Time Dilation

As stated in the previous chapter the particles oscillate in a narrow strip of E4

space confined by a couple of parallel barriers. According to the 4D speed inva-

riance postulate the particles move with 4D speed

c

in a stationary system

S

.

Such motion of particles is in principle identical with the motion of light in a so

called light clock. We have two parallel reflective surfaces and a particle moving

with the speed of light between them. The rate of the flow of time is given by

number of reflections of the particle from the reflective surfaces. The faster the

motion of such a clock in

S

is, the longer the path of the particle between reflec-

R. Machotka

DOI:

10.4236/jmp.2018.96073 1227 Journal of Modern Physics

tions and the slower the oscillation. The 4D path

c

∆

t

of a particle drifting to-

gether with such a clock at speed

v

is given by

22 22 2 2

ct vt c

τ

∆= ∆+ ∆

(Figure

6). Hence

2

2

1v

tc

τ

∆=∆ −

(11)

The formula shows that the time interval ∆

τ

measured by a “particle clock” in

motion will be smaller than the corresponding ∆

τ

interval measured by a refer-

ence “particle clock” at rest.

The above effect affects all particles of a moving object

i.e.

every particle of the

object behaves as a light clock. There is no difference between behavior of the

matter and light in this respect.

Time behaves the same as a particle clock or light clock. This results from the

direct proportion between ∆

τ

and the number of oscillations of a particle (see

the end of previous chapter). If motion of an object is slowing down oscillations

of all its elementary particles, it signifies time itself is slowing down. Thus all

clocks on a moving object are slowed down in their operation, no matter their

construction.

4.2. Transformation of Light Wavefront

Now we shall look at the transformation of space. A geometric model of the ref-

lection of light from an inner surface of an ellipsoid or sphere will be used for

this purpose. Such a pair of bodies was chosen because a moving ellipsoid and a

stationary sphere are equivalent bodies in terms of STR—they differ only due the

length contraction in the direction of the body’s motion.

Let us have a flattened rotational ellipsoid e' moving in stationary system

S

with velocity

u

(Figure 7). Semi axis in the direction of motion shall be denoted

as

d

, semi axis in the transverse direction as

b

. The two semi axes satisfy the

condition

2

2

1u

db c

= −

. The shortening of semi axis

d

is chosen in such a way

that it corresponds to the Lorentz-FitzGerald contraction. It can be verified using

Figure 6. Particle clock. Left: stationary clock, right: clock moving with velocity

v

.

R. Machotka

DOI:

10.4236/jmp.2018.96073 1228 Journal of Modern Physics

Figure 7. A view of light reflection in a moving flattened ellipsoid e

'

as seen in a statio-

nary system

S

. Light emitted simultaneously from point

F

−1 successively reflects from the

ellipsoid: the first reflection occurs at point

A

, then the points of reflection gradually

move to the right—towards point

C

and further to point

B

. The reflected light reaches

point

F

1 from all directions simultaneously. The geometric set of all points of reflection is

a prolonged ellipsoid e with foci

F

−1 and

F

1.

the Lorentz transformation that in the view of system

S'

connected with the el-

lipsoid, it appears as a stationary sphere k with radius

b

.

Let us assume, that in the center of a moving ellipsoid (point

F−

1) there is a

flash of light at an arbitrary time

t

. The light spreads in all directions, strikes the

inner mirror-like surface of the ellipsoid and reflects. The light propagates with

speed

c

in respect to

S

and the ellipsoid itself is moving as well. The question is

which points of

S

are points of light reflection and where the reflected light is

heading.

It can be proved that points of light reflection from e' form a prolonged rota-

tional ellipsoid e with semi axes

a

(in the direction of motion) and

b

(in trans-

verse direction). The semi axis

b

is identical to that of a flattened ellipsoid e'. The

following formulas hold for the semi axis

a

and eccentricity

e

:

2

2

1

b

a

u

c

=

−

,

22

2

2

1

ub

c

e ab

u

c

= −=

−

Point

F

−1 is one of the foci of the ellipsoid e. According to a known property of

conic sections the reflected light will be directed to the other focus

F

1 while its

trajectory will be equal to 2

a

regardless of the place of reflection. Assuming the

speed of light doesn’t change due to the reflection (which corresponds with the

4D speed invariance postulate) all of the reflected light will reach focus

F1

simul-

R. Machotka

DOI:

10.4236/jmp.2018.96073 1229 Journal of Modern Physics

taneously. The transit time will be

2

2

2

22

1

b

ae

c

tcu

u

c

∆= = =

−

(12)

The formula shows that the transit time is also the time in which center of the

flattened ellipsoid e' relocates from focus

F

−1 to focus

F

1 (distance of the foci is

2

e

). That has consequences of great importance.

If an observer in system

S

sees the light being emitted and received in different

points of space (points

F

−1 and

F

1) and if he is aware that reflections of light off

ellipsoid e' take place successively, an observer, located in center of e' and mov-

ing with it, sees the situation differently. He witnessed the light being sent in all

directions simultaneously and returning from all directions to the initial point!

From his point of view, it holds

11

FF

−

≡

. Furthermore, if he assumes the speed

of light is independent of the direction,

i.e.

const.c=

, he inevitably reaches a

conclusion that the reflection of light took place on a spherical surface and point

11

FF

−

≡

is in its center.

The radius of the sphere can be determined by the observer from the transit

time. It holds

2r ct

′

= ∆

where ∆

t'

is time interval measured in moving system

S'

. This is measured using a clock moving with the system. According to (11) it

applies:

2

2

1u

tt

c

τ

′

∆=∆=∆ −

(13)

If ∆

t

from Formula (12) is substituted we obtain

2

2

2

2

2

2

1

1

b

ub

c

tc

c

u

c

′

∆= − =

−

(14)

and thus

2

2b

rc

c

=

or

r = b

(Figure 8).

The geometrical model described here leads to the same results as the Lorentz

transformation (call to mind the choice of parameters of the flattened ellipsoid

above). The moving flattened ellipsoid e' has transformed into a stationary

sphere k due to change of reference systems. The model is all-Euclidean (con-

trary to the Einstein-Minkowski solution),

i.e.

all used formulas were derived

using the property of Euclidean space.

4.3. Geometric Basis of Lorentz Transformation

Using this model, let’s try to understand a geometric basis of the Lorentz trans-

formation.

Firstly we have to notice that only one dimension of a body is changing during

the transformation. The changed dimension is the one in the direction of the

x

axis,

i.e.

in the direction of motion. The remaining spatial coordinates

y

and

z

, as

R. Machotka

DOI:

10.4236/jmp.2018.96073 1230 Journal of Modern Physics

Figure 8. Reflection of light in a moving flattened ellipsoid e′ as seen from system

S

′

moving with the ellipsoid. The observer is not aware that in his system the speed of light

is not constant and thus interprets synchronous return of light to initial point

11

FF

−

≡

as proof that the reflective surface has shape of sphere k with its center at point

11

FF

−

≡

.

well as proper time

τ

, is not changing. These coordinates perpendicular to the

direction of the motion are invariants of the transformation. Therefore, the Lo-

rentz transformation can be written in a modified form

2

2

1

x ut

x

u

c

−

′=

−

,

yy

′=

,

zz

′=

,

cc

ττ

′=

(15)

The discussion whether the formula for coordinate time

2

2

2

1

u

tx

c

t

u

c

−

′=

−

(16)

is a linear combination of formulas stated above or a separate fifth equation shall

be left for later (chapter 6.3).

It remains to explain how it is possible that the length of a moving object in

Euclidean space is changing. The answer is composed of two parts.

One reason is the different view on the simultaneity of non-coincidental

events. Events simultaneous in terms of system

S

are not necessarily simultane-

ous in terms of another system (see the method of synchronization of

non-coincidental clocks, chapter 2.4). It is easy to show that a flattened ellipsoid

changes its appearance in conjunction with a change of simultaneity definition

(Figure 9).

1) In the first case, we will determine simultaneity by means of stationary

clocks. The procedure could be as follows—in a pre-selected time

t

we mark the

position of the leading (

B

) and trailing (

A

) point of the ellipsoid on the

x

axis of

R. Machotka

DOI:

10.4236/jmp.2018.96073 1231 Journal of Modern Physics

Figure 9. Determination of length of moving ellipsoid. At the instant of coincidence of

points

AA

′

≡

the other terminal point of the ellipsoid can be either in point

B'

—if si-

multaneity is defined using coordinate time of stationary system

S

—or in point

B

—if si-

multaneity is defined using coordinate time of moving system

S'

.

stationary system

S

. The difference in

x

coordinates gives us its length in the di-

rection of motion. We can see that the ellipsoid is flattened,

i.e.

its length is

smaller than the transverse dimension.

2) In the second case, we use reflections of light from the ellipsoidal surface

for simultaneity definition. The reflections are simultaneous in terms of system

S'

(reflections of light can be used for synchronization of a non-coincidental

clock in

S'

). In case we mark position of the beginning and the end of the ellip-

soid on the

x

axis in the moment of the light reflection, we can see that the ellip-

soid is prolonged,

i.e.

its length is larger than the transverse dimension.

The reason for such contradictory results is the fact that in terms of

S

the light

reflects on the trailing point (

A

) of the ellipsoid sooner than on the leading one

(

B

).

It has to be pointed out that both methods of ellipsoid length determination

are correct. In both cases, we have marked positions of both terminal points of

the ellipsoid simultaneously. In the first case the simultaneity was in respect to

system

S

, in the second in respect to system

S'

.

It is explained in the above text that, due to the method of synchronization

used, the flattened ellipsoid in motion looks as if it were a prolonged one. But

the text does not explain, however, why the ellipsoid appears to be a sphere to an

observer in

S'

.

Thus we get to the second part of the answer. This is related to the speed of

light in a moving system. As stated in 2) the reflections from the surface of a

prolonged ellipsoid are simultaneous in terms of

S'

. This can only be explained

as the front of the light wave in

S'

propagates in the direction of axis

x

faster than

in other directions. To be more accurate—in a moving system the front of the

R. Machotka

DOI:

10.4236/jmp.2018.96073 1232 Journal of Modern Physics

light wave has the form of a prolonged ellipsoid with a larger semi axis

oriented in the direction of the system motion. The center of such ellipsoid is

moving along with the system

S'

. The speed of light in the direction of motion

can be determined by combination of Formulas (13) and (12)

22

22

2

11

x

a ct c

ctuu

tcc

∆

= = =

′

∆∆− −

(17)

as well as the speed of light in the perpendicular direction

2

y

b

cc

t

= =

′

∆

(18)

The ratio of both velocities is

2

2

1: 1 u

c

−

. Notice that

cx

is larger than the 1

speed of light in a stationary system. This is caused by clock deceleration in a

moving system.

Thus the light in a moving system behaves differently than in a stationary sys-

tem. Let’s assume that an observer in system

S'

is not aware of the dependency of

speed of light on the direction of its propagation. Due to the assumption of inva-

riable value of

c

he will consider the simultaneity of reflections from the body to

be a proof of its spherical shape. Such a claim will be supported by the fact that

the light reflects back to the point of its emission.

The second part of the mystery of transformation of a flattened ellipsoid into a

sphere is thus connected to the non-constant speed of light in a moving system.

If we look at the parameters of ellipsoid e, we will see that the ratio of its longer

semi axis to the semi axis in perpendicular direction is

2

2

1: 1 u

c

−

which is

equal to the ratio of the speed of light in direction of the longer semi axis and the

speed in a perpendicular direction. Both effects fully compensate each other and

they are thus undetectable by any measurement in

S'

. So nothing prevents an

observer in

S’

from accepting the assumption that the speed of light is constant

in all directions.

From a mathematical point of view the transition between the prolonged el-

lipsoid and a sphere is solved by changing the length scale of axis

x

. The unit of

length on axis

x'

will be chosen

2

2

1

1u

c

−

times larger than on axis

x

. This new

unit of axis

x'

assures that the speed of light in

S'

is direction independent and

the prolonged ellipsoid e transforms in sphere k. From a geometrical point of

view space undergoes an affine transformation.

Note: The statement given above that in a moving system the light doesn’t

propagate with the same velocity in all directions is related to the usage of time

t’

from the moving system and simultaneous usage of length scale of axis from a

stationary system. In the case of usage of corresponding quantities (times and

scales) the effect disappears. So it is undetectable in physical experiments.

R. Machotka

DOI:

10.4236/jmp.2018.96073 1233 Journal of Modern Physics

4.4. Transformation of Motion of Mass Objects

So far we have demonstrated that using the light an observer in

S'

cannot detect

that the lengths and the entire space are affine deformed in his coordinate sys-

tem. In other words, he cannot detect that the body from which the light reflects

is not a sphere but an ellipsoid. It remains to be shown that affine deformation

of a moving system cannot be detected by other types of measurements as well.

Let us investigate length measurements based on measurements of transit

times of mass objects moving with speeds smaller than that of light. These ob-

jects will behave the same way as light (with an exception of the speed of propa-

gation)—their motion will be uniform and their reflections ideally elastic. We

can imagine them as idealized tennis balls.

Our current model of sphere/ellipsoid has to be expanded by adding a fourth

dimension

wc

τ

≡

. The reason is simple: so far we have modeled propagation of

light. Light moves at speed

c

and proper time doesn’t flow for it. Now we will

explore slower motions and the

cτ

coordinate will acquire non-zero values.

Three-dimensional bodies—a sphere and ellipsoid—will be replaced by their

four-dimensional variants. However, these will differ relatively little from their

three-dimensional relatives. E.g. a four-dimensional flattened ellipsoid has four

semi axes from which the one oriented in the direction of motion is the shortest;

the remaining three are equal each other. Thus to describe the ellipsoid, it is

enough to know the length of its two semi axes—the semi axis

d

in the direction

of motion and the semi axis

b

in perpendicular direction. These quantities are

the same as those used to describe the three-dimensional variant of this ellipsoid.

We retain unchanged labeling also for the quantities of a prolonged ellipsoid

(semi axes

a

and

b

) and a sphere (radius

r

).

We cannot imagine given bodies as a whole. Regarding further explanation, it

is not a major drawback though. It suffices to neglect one of the dimensions of

the four-dimensional ellipsoid and it becomes an ordinary three-dimensional el-

lipsoid; if we omit two dimensions, we get a two-dimensional section of the el-

lipsoid.

Such a section will suffice for further explanation, because we will study uni-

form motions only. Applied to moving bodies such as a sphere or ellipsoid, the

plane of the section will always be chosen in such a way that it includes the cen-

ter of the body and the direction of its motion—the axis

x

. As a result of rota-

tional symmetry all sections of this type are similar—

i.e.

the shape of the section

is independent of the choice of its second dimension; it could be either

y

,

z

,

cτ

or

any other direction perpendicular to the direction of motion.

Let us conduct an experiment: Tennis balls were launched from a point that

does not move with respect to S. Each one of them moves in a different direction

and different speed. In the direction of motion of each ball a solid reflective pan-

el is positioned perpendicularly to this direction, so the ball is reflected back to

the launch point.

The distances of reflective panels from the launch point are set so that all balls

R. Machotka

DOI:

10.4236/jmp.2018.96073 1234 Journal of Modern Physics

return to the launch point at the same time. Let us suppose that in free space the

balls move uniformly and reflections do not alter their kinetic energy and thus

their speed. Now it is certain that reflections of all balls happen simultaneously,

i.e.

times of flight there and back are equal. Using the 4D speed invariance post-

ulate we determine that equal transit time ∆

t

means that the 4D paths of all balls

must be equal as well. In the moment of reflection all balls are located on the

surface of the four-dimensional hemisphere with radius

2

t

rc

∆

=

(see Figure

3).

Note: Mentioned hemisphere is of course a mere fiction as well as coordinate

wc

τ

≡

. As a consequence of reflections from the barriers the motion of balls

won’t be straight and the hemisphere will transform into a narrow object

squeezed between the barriers limiting motion in the fourth dimension. Incre-

ments of coordinates

x

,

y

,

z

and

wc

τ

≡

as well as the 4D paths of any objects

will not be affected by this transformation though.

Now let us place an unchanged device with the experiment so that it is in rest

in moving system

S'

. In terms of

S

it will be shortened in the direction of its mo-

tion (in correspondence with Lorentz transformations). The ratio of the new and

original length will be

2

2

1 :1

u

c

−

.

If we repeat the experiment described above, an observer in

S'

will see it iden-

tically as an observer in

S

had before. All reflections will be simultaneous in re-

spect to

S'

as well as return of balls to the launch point. The observer will be able

to verify simultaneity of reflections by means of clocks placed at the reflective

panels and synchronized using the light. He will not detect any deviation.

The observer in

S

, though, will see the course of the experiment differently.

From his point of view, the points of launch and reception of balls will not be the

same. Also times of reflections of balls will differ. On the other hand, he will not

question the fact that all balls were launched simultaneously and they also return

simultaneously. Using the 4D speed invariance postulate he will determine that

all balls travel the same 4D distance. Because they were launched from one point

and after reflection returned to another one, he will easily determine that all points

of reflection must be located on the surface of a prolonged four-dimensional el-

lipsoid. The points of launch and reception of balls are the foci of this ellipsoid

(or semi ellipsoid, if increments of coordinate

wc

τ

≡

on the way to the reflec-

tive panels will be regarded as positive and on the way back as negative).

Parameters of the ellipsoid can be determined from the balls’ travel time. For a

longer semi axis applies

2a ct= ∆

, for eccentricity

2e ut= ∆

. Given values can

be compared to parameters of the prolonged ellipsoid e created by reflections of

light—see Formula (12). They are identical!

4.5. Analogy between Motion of Mass Objects and Motion of Light

We have found that results of experiments modeling motion of light and balls do

not differ. What is the implication?

R. Machotka

DOI:

10.4236/jmp.2018.96073 1235 Journal of Modern Physics

Just the same way we have described motion of light in the sphere/ellipsoid

model by means of three interchangeable bodies—flattened ellipsoid, prolonged

ellipsoid and sphere, we can describe motion of balls. The only difference is

usage of a four-dimensional variant of the bodies. We have a moving flattened

ellipsoid with semi axes

2

2

1u

db c

= −

and

b

representing a moving device with

the experiment, sphere of radius

r = b

moving with

S'

representing a set of ref-

lection points of balls as they appear to an observer in

S'

, and a prolonged ellip-

soid with semi axes

2

2

1

b

a

u

c

=

−

and

b

representing a set of reflection points as

they appear to an observer in

S

.

Correspondence of all parameters of given bodies has a simple explanation, it

is result of equivalence of both types of motion. Whether we use the light mov-

ing with speed c or tennis balls moving considerably slower, the 4D path is al-

ways the same

4

2

D

d a ct= = ∆

. The only thing it changes is its projection to the

three-dimensional space.

If we plot motion of a light beam and a ball in corresponding cross-sections of

a four-dimensional ellipsoid we get two variants of the same picture (Figure 10).

The only difference is one axis label.

Figure 10. Trajectory of beams of light inside an ellipsoid (at the top) and trajectory of a

ball launched along the x-axis (at the bottom). The plots differ only in the plane in which

the motion takes place. Plot of a trajectory of a ball launched in random direction and

speed would differ only in the plane of motion.

R. Machotka

DOI:

10.4236/jmp.2018.96073 1236 Journal of Modern Physics

Partial conclusion: Results of length measurements based on measurements

of moving objects’ (photons, balls, ...) transit times transforms in compliance

with Lorentz transformation. They do not depend on the speed of the objects

used for length measurement. If the simultaneity of light reception in the

sphere/ellipsoid model led us to the change of the axis

x'

length scale, results of

all other length measurements based on objects motion will lead us the same

way.

4.6. Contraction of Rigid Rods

Only one hope remains for determination of real undeformed dimensions of a

moving body. That is measurement by means of rigid measuring rods. With

their help, is it possible to reveal that what seems to be a sphere, is a flatten el-

lipsoid in reality?

We must reply: no. The shape and dimensions of rigid bodies are given by

forces acting between individual particles of mass. These particles are not in di-

rect contact and thus action at a distance is responsible. Strong and weak nuclear

interactions act in the atomic nuclei, electromagnetic force between nuclei and

electrons shells as well as between adjacent atoms, and all is complemented by

gravitational force. All these interactions are, according to modern theories, me-

diated by exchange of mass particles (mesons, leptons, photons, gravitons).

These particles are in permanent motion and their interactions keep the dimen-

sions of rigid bodies unchanged.

How would the distance of two adjoining ions in a crystal lattice be affected by

motion of the whole body? Will it remain unchanged? On the basis of the tennis

balls experiment we must say no. The particles mediating interactions are only

“tennis balls”, in their nature,

i.e.

objects moving there and back with any speed

less or equal to the speed of light. Thus during the motion of objects in

S

the

distances between adjoining ions (atoms, molecules, nucleons, ...) are shortened.

Such shortening will have the same ratio in which the sphere moving in

S

had to

be shortened, so that it still appeared to be a sphere in view of

S'

. Shortening of

distances between ions in a crystal lattice will inevitably lead to the shortening of

the whole body. This shortening occurs only in the direction of the motion and

the shortening is real. A similar explanation of length contraction was sug-

gested by Lorentz in his work

Electromagnetic phenomena in a

system moving

with any velocity smaller than that of light

[11].

It remains to add the obvious—the same reason will cause that all bodies, not

just measuring rods, will be deformed the same way. The phenomenon also af-

fects liquids and gases which will change their volume.

5. Equivalence of Coordinate Systems

Let’s review conclusions concerning deformation of bodies and coordinate sys-

tems:

1) By means of observations in a moving system we cannot detect shortening

R. Machotka

DOI:

10.4236/jmp.2018.96073 1237 Journal of Modern Physics

of bodies which are stationary in this system. The bodies and measuring rods are

equally shortened which gives an impression that nothing is shortened.

2) As a result of length deformation of all measuring devices in moving coor-

dinate system

S’

a different length unit is used on axis

x’

than on the remaining

axes. Thus the coordinate system

S’

is affine deformed relative to the system

S

.

Affine deformation affects not only lengths but also angles which is why the de-

formation doesn’t reveal itself by any measurement inside the moving system. It

can be detected only if we compare results of measurements in two systems that

are moving each other.

3) Use of an affine deformed coordinate system prevents us from detection of

the directional dependence of speed the light propagates with. Variations in the

speed are fully compensated by deformations of rigid rods (compare Michel-

son-Morley experiment) as well as the coordinate system itself. The speed of

light in a moving system appears to be identical in all directions and it is equal to

the speed of light in a stationary system.

The above implies that no observation inside a moving system can detect its

motion. Neither speed, direction nor any other sign of motion can be detected.

This theoretical fact is supported by results of countless experiments and it stood

at the birth of Einstein’s STR. Thus in the real world the stationary coordinate

system cannot be distinguished from the others.

5.1. Relativistic Effects as a Result of Partial Geometric-Kinematic

Phenomena

Relativistic geometric effects (Lorentz transformation, length contraction, time

dilation, ...) are products of composite action of five fractional, relatively inde-

pendent phenomena:

1) Galileo transformation. This is a transformation between two coordinate

systems in Euclidean space. It solves transition from the stationary to a moving

coordinate system without considering relativistic effects. Its equations are

x x ut

′= −

,

yy

′=

,

zz

′=

,

tt

′=

(19)

2) Time dilation. The dilation of time causes a slowing down of clocks in a

moving system. The cause for this slowing was explained in chapter 4.1.

3) Rigid bodies contraction. As a result of this phenomenon a real shortening

of bodies in the direction of their motion takes place. The degree of this effect

depends on their speed in respect to the stationary system

S

. The shortening is in

the ratio

2

2

1 :1

u

c

−

and its cause is described in the chapter 4.6.

4) Different understanding of simultaneity of events. As a result of a different

outcome of clock synchronization in a moving system and in the stationary sys-

tem the results of length measurements differ in these two systems. If clocks

from a moving system are used all bodies seem longer in the direction of their

motion than in case of use of clocks from the stationary system. Prolongation is

in the ratio

2

2

1: 1 u

c

−

.

R. Machotka

DOI:

10.4236/jmp.2018.96073 1238 Journal of Modern Physics

5) Affine deformation of moving coordinate systems. A change in the scale of

axis

x'

causes an apparent shortening of bodies in the direction of their motion

in the ratio

2

2

1 :1

u

c

−

.

The partial phenomena described above are of a geometric or geome-

tric-kinematic nature. This nature is known for all of these phenomena for a

long time, but it is not widely accepted in the case of two of them. This concerns

items 2) and 3).

In particular situations not all of these phenomena have to participate. E.g. in

the Lorentz transformation only phenomena 1), 2), 4) and 5) take effect, whereas

the explanation why the length of a body, in terms of a coordinate system rigidly

coupled with it, does not change after acceleration is caused by the interaction of

phenomena 3), 4) and 5).

5.2. Relativity of Relativistic Effects

As is known, all relativistic effects are relative,

i.e.

they occur as a result of a rela-

tive motion of one system against another. Their significant feature is this: in the

case of an interchange of the reference and observed system the nature of ob-

served phenomena does not change. E.g. if clock

A

in motion in

S

is slower than

clock

0

stationary in this system it must identically apply that clock 0 in motion

in

S’

will be slower than clock

A

stationary in this system. Einstein’s STR has

postulated this relativity of phenomena; for the Euclidean model it is necessary

to prove it.

Let us have a clock

0

located at the initial point (

x

0 = 0) of a stationary system

S

and a pair of clocks

A

(

x'

A

= 0) and

B

(

x'

B

=

b'

) in a moving system

S'

. System

S'

moves in the direction of the positive semi axis

x

with speed

u

so that at first

clock

B

and then clock

A

will pass the stationary clock 0 (Figure 11). In the ex-

periment we shall try to compare coordinate time of the moving system

S'

(ma-

terialized by clocks

A

and

B

) with the time measured by stationary clock 0. In

further explanation I will judge time differences and simultaneity of events from

the viewpoint of stationary system

S

.

Clocks

A

and

B

are stationary in the system

S'

and they are mutually synchro-

nized in this system as well (

clock_shift 0

AB

′=

). Shift of the clocks from the

viewpoint of system

S

should be according to (6b)

2

clock_shift

AB

ub

c

′

= −

(the

reading of clock

B

is smaller than the reading of clock

A

).

In the instant of the passing of clock

A

by clock

0

(event “0

A

”) the time on

both clocks is equal to zero

0

0

clock_reading 0

A

=

,

0

clock_reading 0

A

A

=

. The

time of clock

B

is smaller than the time of clock

A

,

i.e.

02

clock_reading

B

A

ub

c

′

= −

.

Once before, clock

B

passed clock

0

(event “

0B”

). Clock

0

, stationary in

S

showed at that time less by

2

2

1u

b

bc

uu

′−

=

, clock

A

and

B

stationary in

S’

R. Machotka

DOI:

10.4236/jmp.2018.96073 1239 Journal of Modern Physics

Figure 11. Motion of clocks A and B along with the system

S'

. Left: instant of mutual

passing of clocks B and 0, right: instant of mutual passing of clocks A and 0.

showed less by

2

2

1u

bc

u

′−

(they are slower).

Thus clock 0 showed time

2

2

0

0

1

clock_reading

B

u

bc

u

′−

= −

, clock

A

time

2

2

0

1

clock_reading

A

B

u

bc

u

′−

= −

and clock

B

time

2

2

02

1

clock_reading

B

B

u

bc

ub b

uu

c

′−

′′

=−− =−

.

R. Machotka

DOI:

10.4236/jmp.2018.96073 1240 Journal of Modern Physics

Quantities

0

clock_reading

A

A

and

0

clock_reading

B

B

denote times on clock

A

and

B

in the instants of their pass by clock 0.

Time

2

2

00

00

1

clock_reading clock_reading

AB

u

bc

tu

′−

∆= − =

has elapsed be-

tween the two events (first and second passing of clock) in the time scale of clock

0

(system

S

), whereas in the time scale of mutually synchronized clocks

A

and

B

(system

S'

) time

00

clock_reading clock_reading

AB

AB

b

tu

′

′

∆= − =

has elapsed.

Time measured in the stationary system

S

is thus smaller than time measured

in the moving system

S'

. Any observer moving with system

S'

observes that

clocks in the stationary system

S

are slower than his own clock. This finding

corresponds with reality as well as with Einstein’s STR.

The relativity of other phenomena can be similarly proved. It turns out that in

terms of relativity all results of EMST are identical with results of STR!

5.3. Equivalence of Inertial Coordinate Systems

Even though the previous explanation was based on an existence of a “stationary

coordinate system” that differs from all other coordinate systems in at least three

aspects—the speed of light is independent of the direction of its propagation,

coordinate time flows faster than proper time of all moving objects, the length

scale of all axes is the same—we have to state now that such a coordinate system

is undistinguishable from other (inertial) coordinate systems. As a result of an

interaction of the five partial geometric-kinematic phenomena described above,

all systems look the same and no physical experiment can determine whether the

given system is moving or not. Thus we can state: Every inertial system be-

haves like a stationary system.

This fact can be considered as an equivalent of Einstein’s relativity postulate

which states “All inertial coordinate systems are equivalent as far as the laws of

physics are concerned”.

In the Euclidean model of space and time this fact is a result of the 4D speed

invariance postulate. Since we know that all inertial systems are equivalent we

can derive a new, more general statement from the 4D speed invariance post-

ulate that excludes the demand on system’s stationarity:

“In any inertial coordinate system all objects are moving with 4D speed

that is equal to the speed of light

c

.”

5.4. Note to Coordinate Systems

In four-dimensional space all objects are traveling at the speed of light, but the

same cannot be allowed for coordinate systems. First—such coordinate systems

cannot be inertial (as a result of oscillation in the fourth dimension), second—

time would not flow in them (as a result of traveling by the speed of light).

Physical coordinate system is always connected with a particular physical ob-

ject. All parts of this object are in the state of 4D motion but this motion is not

R. Machotka

DOI:

10.4236/jmp.2018.96073 1241 Journal of Modern Physics

significant for coordinate system definition. Only the object’s position and its

state of motion in ordinary three-dimensional space are significant. This posi-

tion and state of motion are a projection of 4D position and 4D motion into

three-dimensional space. In reality the projection is done by simply omitting the

fourth dimension. In this work coordinate systems are always connected with

the projection of a chosen object into three-dimensional space and do not move

in the fourth dimension.

6. Space and Time

6.1. Number of Dimensions

This work assumes an existence of four-dimensional Euclidean space E4-R which

replaces the four-dimensional pseudo-Euclidean spacetime of Einstein-Minkowski

solution. In the Euclidean solution, it is necessary to decide whether to consider

time as an independent quantity,

i.e.

a fifth dimension of “Euclidean spacetime”

or merely as a function of spatial coordinates. If we specify position of an object

in E4 by its spatial coordinates

x, y, z

and

wc

τ

≡

, the coordinate time remains

still unknown. E.g. if all four coordinates of two objects are identical we are still

unable to decide whether these two objects are in collision or not (see point

C

on

Figure 4). The situation will not improve even if we replace the

cτ

coordinate

with coordinate

w

. It would seem that coordinate time

t

cannot be determined

from spatial coordinates and thus it is an independent quantity—it is a fifth di-

mension of our world.

On the other hand the Formula (9) relates an increment of coordinate time ∆

t

to the change of spatial coordinates

x, y, z

and

wc

τ

≡

. However, the formula

can be applied to uniform translatory motion only. Nevertheless, its validity can

be extended to a motion not maintaining direction nor velocity by simply divid-

ing such a motion into infinitesimally small parts in which the motion is uni-

form. Then, the increment of time is

22 2 2 2 2 2

ct x y z c

δ δ δ δ δτ

=+ ++

(20)

Through integration of this formula over the motion’s trajectory we can de-

termine the time interval separating end of the motion from its beginning. This

interval is, of course, directly proportional to the length of 4D trajectory.

In case of a change of the reference coordinate system (Lorentz boost) the in-

crements of time

δt

transform in correspondence with Formula (20). In the new

coordinate system the coordinate increments in axes

x

,

y

and

z

will be generally

different, while the increments in

cτ

axis will not change.

Let us assume that two objects were located at point

A

in time

t

0,

i.e.

they were

in coincidence, which is expressed by equality of coordinates

x, y, z

. Then they

moved along different trajectories and in time

t1

they met again at point

B

. The

necessary condition of a second encounter is equality of lengths of their 4D tra-

jectories marked by the end points

A

and

B

,

( ) ( )

2

44

1

DD

d AB d AB=

.

If the situation described above is expressed in another coordinate system

which moves with respect to the original one, the coordinates of points

A

and

B

R. Machotka

DOI:

10.4236/jmp.2018.96073 1242 Journal of Modern Physics

will change, as well as the coordinate increments and 4D paths of both motions.

However, even after the transformation, the equality

( ) ( )

2

44

1

DD

d AB d AB

′′

=

will

apply,

i.e.

both trajectories transform in such a way that the lengths will be equal

again. This is true, of course, only in the case that both trajectories share their

initial and end points.

The possibility of determination of increments of coordinate time by formulas

(9) and (20) is not only restricted to real motions. It can be also used for imagi-

nary motions. The only two conditions are the unambiguous definition of the

motion’s trajectory and the fact that such a motion can be accomplished. The

latter condition is expressed by inequality Formula (8) and can be interpreted as

a requirement that speed of the motion cannot exceed the speed of light

c

.

As a conclusion we can state that in all such cases where a time-like relation

between the events exists,

i.e.

in cases in which it is possible to accomplish a mo-

tion originating in one event and ending in the other, the increment of coordi-

nate time is a function of the motion’s trajectory. In other words, it is a function

of the object’s coordinates change over the time. In such cases where the time

relation between events doesn’t exist any functional relation between coordinate

time and coordinates is non-existent as well. Mechanical usage of Formula (9)

leads to the necessity of introduction of an imaginary proper time. Such a quan-

tity, however, has no physical meaning and so such an approach has to be re-

jected.

6.2. Definition of Space

From the above consideration we can see apparent theoretical difficulty in defi-

nition of space and objects in it as a physical reality without any connection to

the past. Such an approach would necessitate introduction of a fifth independent

coordinate—coordinate time, while according to other considerations this coor-

dinate cannot be independent. Thus in terms of presented Euclidean theory of

space and time it is necessary to define space as a set of objects that has traveled

to their current positions by unknown, but quite specific, trajectories. Existence

of such trajectories is necessary for time location of those objects as well as

events which the objects are participants. The formulas (9) and (20) allow no

more than determination of time increments from some given event in the ob-

ject’s history. So for an evaluation of equality of coordinate times of two objects

which are in the same point of space it is necessary to accept an important as-

sumption, —these two objects have met at least once in their past. This assump-

tion can be ensured in the only possible way—all the trajectories have a common

initial point,

i.e.

once in the past all the objects simultaneously emerged from

one common origin.

6.3. Relativistic Transformation of Space

Relativistic transformation of four-dimensional Euclidean space needs to be

primarily understood as a transformation of trajectories. If a trajectory is speci-

R. Machotka

DOI:

10.4236/jmp.2018.96073 1243 Journal of Modern Physics

fied in system

S

e.g. in a form of a sequence of trajectory vertex points given by

their coordinates in E4, partial increments of time ∆

ti

can be determined using

Formula (9) and the overall duration of the motion ∆

t

as their sum. Transforma-

tion of the trajectory vertex coordinates to the system

S'

is given by four equa-

tions of a modified Lorentz transformation (15), while duration of the motion

∆

t'

can be determined by the same procedure as in the system

S

. So the Formula

(16) is redundant and can be proved that it is a linear combination of formulas

(15) and (9). Given explanation assumes that the origins of systems

S

and

S'

are

identical in time

t = t'

= 0 and they are coincident with one terminal point of the

trajectory. Then

t

= ∆

t

and

t'

= ∆

t'

. A convenient choice of coordinate systems

can fulfil the assumption.

A different situation arises in the case of transformation of events that are not

connected by any trajectory and such a trajectory cannot even be constructed

additionally. In this case the Formula (9) cannot be used and thus we are left

with Formulas (15) and (16) for the transformation,

i.e.

Lorentz transformation

expanded to five equations. Transformed quantities are

x

,

y

,

z

,

cτ

and

t

. It is ne-

cessary to say that in reality the coordinate

wc

τ

≡

is unknown, but it does not

pose a problem as the transformation can be done without it. The value of

wc

τ

≡

remains unchanged during the transformation and has no effect on the

transformation of remaining coordinates.

7. Velocity, Inertia, Energy

7.1. Velocity of Motion

Expanding the concept of motion to the fourth spatial dimension leads to the

necessity of expanding velocity notation as well. We shall go forth from a nota-

tion of velocity vector in ordinary three-dimensional space. That is denoted

v

(or

u

if it refers to the mutual velocity of two coordinate systems). In the case of 4D

velocity we choose notation

v

4

D

(notation

u

4

D

has no sense since coordinate sys-

tems can move only in three dimensions—see chapter 5.4). For size of a vector,

i.e.

for scalar quantity, we will use notation

v, u, v4D

. Velocity can be decomposed

into individual components

vx, vy, vz, vw

in the direction of coordinate axes. In

Euclidean space simple formulas apply

222

xyz

v vvv= ++

(21)

2222

4D xyz w

v vvvv c= +++ =

(22)

The equality of

v4D

and

c

is a result of the 4D speed invariance postulate.

Meaning of components

vx, vy, vz

is clear, component

vw

is new and it ex-

presses speed of motion in the fourth dimension. Its value is given by formula

2

2

1

w

cv

vc

tc

τ

∆

= = −

∆

(23)

Quantity ∆

τ

here denotes the moving body’s proper time. It generally flows

slower than time ∆

t

of used coordinate system and so

w

vc≤

. With increasing

R. Machotka

DOI:

10.4236/jmp.2018.96073 1244 Journal of Modern Physics

“3D” speed

v

, the component

vw

will naturally decrease.

In further explanations we will study motion in the plane

x – cτ

thus

vy = vz

=

0,

v = vx

(see Figure 12).

Speed is commonly defined by formula

x

vt

∆

=∆

(24)

i.e.

as a trajectory divided by time. Given formula holds for uniform motion in

the direction of axis

x

and it is depicted for various velocities in Figure 3. The

figure clearly shows why the speed defined by Formula (24) cannot be larger

than the speed of light

c

. The cause is the fact that ∆

x

and ∆

t

are not two inde-

pendent quantities but a cathetus and hypotenuse in a right-angled triangle. For

obvious geometric reasons the cathetus can never be longer than the hypotenuse.

The same is expressed by Formula (22). The question arises whether definition

of speed using Formula (24) is appropriate.

Let us introduce an alternative definition of speed by replacing coordinate

time

t

by proper time

τ

i

x

v

τ

∆

=∆

(25)

This type of speed will be denoted as “indicated speed”5 in further text. Rela-

tion of indicated speed to “classic speed” is

2

2

1

i

v

v

v

c

=

−

(26)

Figure 12. Geometric representation of classic and indicated speed in plane

x

−

cτ

.

5This speed

should be shown by indicators on a spaceship in interstellar space so that the crew would

know what distance would be covered in a day and thus how long the travel to the destination would

take.

R. Machotka

DOI:

10.4236/jmp.2018.96073 1245 Journal of Modern Physics

i.e.

indicated speed is generally larger. For

v =

0 is

vi

= 0, for

v = c

is

vi

= ∞6

.

Analogous to the classic speeds we now introduce four-dimensional notations

for indicated speeds and their coordinate components. Thus formulas

222

,,,i ix iy iz

v vvv

= ++

(27)

22 22

,4 , , , ,i D ix iy iz iw

v vvvv= +++

(28)

correspond to Formulas (21) and (22).

The 4D speed invariance postulate does not apply for indicated speeds. On the

contrary, it holds

,iw

vc=

,

i.e.

“indicated speed in the fourth dimension” is con-

stant and does not change during relativistic transformation. It also holds that

vi,y

and

vi,z

do not change in the case of Lorentz boost in the direction of

x

axis.

7.2. Inertia and Energy

Now we will demonstrate how our understanding of inertia and energy will

change should we accept the idea of four-dimensional Euclidean space in com-

bination with indicated speeds.

Let us start from classic relativistic formulas for inertia and energy. It is

known that a four-vector of inertia consists of three components of inertia

px py,

pz

and from the total energy of body

E

. It holds

0

2

2

1

x

x

mv

p

v

c

=

−

,

0

2

2

1

y

y

mv

p

v

c

=

−

,

0

2

2

1

z

z

mv

p

v

c

=

−

,

2

0

2

2

1

mc

E

v

c

=

−

(29)

and also the formula

2 22 22 22 24

0xyz

E pc pc pc mc−−−=

(30)

Here

2

00

E mc=

is the so-called rest energy of the body. This is, as well as rest

mass

m

0, an invariant of the Lorentz transformation.

Components of four-vector transform similarly to coordinates of spacetime,

i.e.

:

2

2

1

x

x

uE

pcc

p

u

c

−

′=

−

,

yy

pp

′=

,

zz

pp

′=

,

2

2

1

x

Eu

p

Ecc

cu

c

−

′=

−

(31)

Given formulas are an analogy of the partial formulas of Lorentz transforma-

tion (2).

Formula (30) can be transformed to the Euclidean form the same way we have

transformed Formula (7) to the form (9). We get

2 22 22 22 24

0x yz

E pc pc pc mc=+++

(32)

Now let us substitute values from (29) to (32) and after some modifications we

have

6

It’s interesting that the quantity of indicated speed v has no upper limit which corresponds to the

original pre-relativistic understanding of speed.

R. Machotka

DOI:

10.4236/jmp.2018.96073 1246 Journal of Modern Physics

222

2 22 2

02

2

1

xyz

vvv

E mc c

v

c

++

= +

−

The velocities can be substituted using (21) and (26) which results in

( )

2 22 2 2

0i

E mc v c= +

Since the velocity in brackets can be written as

( )

22 22

,, ,,ix iy iz iw

vvvv+++

it is

from (28) obvious that the final formula reads

0 ,4iD

E m cv=

(33)

Similarly we can obtain formulas for components of inertia

0,x ix

p mv

=

,

0,y iy

p mv=

,

0,

z iz

p mv

=

, and there is no reason not to add the fourth component

0,w iw

p mv=

. For components of inertia it obviously applies

222

0

xyz i

p pppmv

= ++=

(34)

and analogically

2222

4 0 ,4D x y z w iD

p ppppmv= +++ =

(35)

It is interesting that a 4D velocity defined this way is, with the exception of

units, equal to the total energy

4D

E

pc

=

(36)

while the inertia in the fourth dimension is equal to the rest energy

0

0w

E

p mc

c

= =

(37)

The stated findings are interesting for several reasons:

1) Inertia and energy can be represented as quantities (vectors and scalars) in

Euclidean four-dimensional space (see Figure 13).

Figure 13. Relation between inertia and energy.

R. Machotka

DOI:

10.4236/jmp.2018.96073 1247 Journal of Modern Physics

2) Inertia and energy are of the same origin. If a 4D inertia vector is given, all

other quantities are determined as well. Inertia, by its nature, is a four-dimensional

vector. Its fourth spatial component, however, is in classic “three-dimensional”

physics interpreted as a separate scalar quantity—rest energy

E

0. Total energy

E

is the norm of a 4D inertia vector while kinetic energy is difference of total and

rest energy:

Ek = E – E

0 (see Figure 13).

3) Introduction of indicated velocities leads to a significant simplification of

formulas for energy and inertia. It can be seen that both quantities are directly

proportional to the indicated velocity. It worth comparing the famous but

slightly illogical formula for the total energy of a body

E = mc

2 with Formula

(33). The new formula states nothing else than that energy of a body is a product

of its rest mass multiplied by its indicated velocity. The quantity

c

in the formula

has to be understood as no more than a constant adjusting unit.

4) Employment of indicated velocities in formulas for energy and inertia

changes our view on body mass. The formulas do not assume the body’s mass

increase when the body is accelerating. So-called relativistic mass increase is

evidently caused by the use of an inconvenient time frame for description of the

dynamical properties of objects. If the coordinate time

t

is replaced with the ob-

ject’s proper time

τ

the reason for such mass increase vanishes.

8. Conclusions

Let us summarize the main features of EMST:

1) EMST is built on a type of a space that is quite familiar to us. Euclidean

space is the only space which, based on our own life experience, we surely know

exists.

2) Expansion of the number of spatial dimensions of Euclidean space from

three to four contradicts our life experience; however the model itself gives ex-

planations why all objects and the observable world as whole are three-dimensional.

3) The proposed model of space and time credibly explains cause of relativistic

transformations of space and time. Everything is explained as a result of interac-

tion of five partial, easily understandable geometric-kinematic effects.

4) The proposed model replaces two postulates of Einstein’s special theory of

relativity with three other. Because the former postulates can be derived from

the new, the mathematical expression of both theories is identical. This identity

is however not valid for the geometrical interpretation of both theories. One of

the postulates of EMST is euclidicity of 4D space which is in sharp contradiction

with geometrical interpretation of STR. This contradiction is principal and in-

evitable.

5) The nature of time is explained as a direct consequence of motion of bodies

in space. Because an object’s coordinate time is proportional to the length of its

trajectory it is obvious that, regardless of motion type, the time is always grow-

ing and never decreasing. The flow of time cannot be reversed.

6) The model assumes existence of a stationary coordinate system with some

outstanding features (isotropy of speed of light, fastest time flow, equality of

R. Machotka

DOI:

10.4236/jmp.2018.96073 1248 Journal of Modern Physics

length scales of axes) but simultaneously states that such a system cannot be dis-

tinguished from other inertial systems by any type of observation. As a result, all

coordinate systems have (seemingly) all the above stated outstanding features.

7) The model explains why the speed of light is identical in all systems and

why it is ultimate speed which cannot be overcome. It also offers a different de-

finition of velocity which seems to be very convenient for expressing inertia and

energy of a moving object. The model illustrates common physical nature of in-

ertia and energy.

8) The model also implies that the universe emerged from a single point. The

requirement of a common initial point for trajectories of all objects is necessary

for definition of simultaneity.

Important Remark at the Closure

EMST gives an alternate description of the physical space we are living in. It de-

scribes space and time quite differently compared to the commonly accepted

model of STR. So the question arises which description is correct and which is

wrong. Although the mathematical expression of both models is equivalent we

cannot hope that they are merely two different descriptions of the same reality.

They are not!

Conflict of Interests

The author declares that there is no conflict of interests regarding the publica-

tion of this paper.

References

[1] Einstein, A. (1905)

Ann Phys-Berlin

, 17, 891-921. [English translation: (1920) On

Electrodynamic of Moving Bodies. In:

The Principle of Relativity

, Calcutta Univer-

sity Press, 1-34]

[2] Minkowski, H. (1907) Die Grundgleichungen für die elektromagnetischen

Vorgänge in bewegten Körpern.

Nachrichten von der Gesellschaft der Wissen-

schaften zu Göttingen, Mathematisch-Physikalische Klasse

, 53-111. [English trans-

lation: (1920) The Fundamental Equations for Electromagnetic Processes in Moving

Bodies. In:

The Principle of Relativity

, Calcutta University Press, 1-69]

[3] Minkowski, H. (1909)

Phys Z

, 10, 104-111. [English translation: (1920) Space and

Time. In:

The Principle of Relativity

, Calcutta University Press, 70-88]

[4] Hawking, S. and Penrose, R. (1996)

Scientific American

, 275, 60-65.

https://doi.org/10.1038/scientificamerican0796-60

[5] Hawking, S. (2014)

The European Physical Journal H

, 39, 413-503.

https://doi.org/10.1140/epjh/e2014-50013-6

[6] Sonego, S. (1995)

Physics Letters A

, 208, l-7.

https://doi.org/10.1016/0375-9601(95)00743-M

[7] Tavokol, R. (2009)

International Journal of Modern Physics A

, 24, 1678-1685.

https://doi.org/10.1142/S0217751X09045224

[8] Hohmann, M. (2013)

Physical Review D

, 87, 124034.

https://doi.org/10.1103/PhysRevD.87.124034

R. Machotka

DOI:

10.4236/jmp.2018.96073 1249 Journal of Modern Physics

[9] Brill, D. and Jacobson, T. (2006)

General Relativity and Gravitation

, 38, 643-651.

https://doi.org/10.1007/s10714-006-0254-9

[10] Jonsson, R. (2001)

General Relativity and Gravitation

, 33, 1207-1235.

https://doi.org/10.1023/A:1012037418513

[11] Lorentz, H.A. (1904)

Proceedings of the Royal Netherlands Academy of Arts and

Sciences

, 6, 809-831.