Preprint

Nuclear Respiratory Factor 1 (NRF-1) Controls the Activity Dependent Transcription of the GABA-A Receptor Beta 1 Subunit Gene in Neurons

Authors:
To read the file of this research, you can request a copy directly from the authors.

Abstract

While the exact role of β1 subunit-containing GABA-A receptors (GABARs) in brain function is not well understood, altered expression of the β1 subunit gene (GABRB1) is associated with neurological and neuropsychiatric disorders. In particular, down-regulation of β1 subunit levels is observed in brains of patients with epilepsy, autism, bipolar disorder, and schizophrenia. A pathophysiological feature of these disease states is imbalance in energy metabolism and mitochondrial dysfunction. The transcription factor, nuclear respiratory factor 1 (NRF-1), has been shown to be a key mediator of genes involved in oxidative phosphorylation and mitochondrial biogenesis. Using a variety of molecular approaches (including mobility shift, promoter/reporter assays, and overexpression of dominant negative NRF-1), we now report that NRF-1 regulates transcription of GABRB1 and that its core promoter contains a conserved canonical NRF-1 element responsible for sequence specific binding and transcriptional activation. Our identification of GABRB1 as a new target for NRF-1 in neurons suggests that genes coding for inhibitory neurotransmission may be coupled to cellular metabolism. This is especially meaningful as binding of NRF-1 to its element is sensitive to the kind of epigenetic changes that occur in multiple disorders associated with altered brain inhibition.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Deterioration of adult stem cells accounts for much of aging-associated compromised tissue maintenance. How stem cells maintain metabolic homeostasis remains elusive. Here, we identified a regulatory branch of the mitochondrial unfolded protein response (UPR(mt)), which is mediated by the interplay of SIRT7 and NRF1 and is coupled to cellular energy metabolism and proliferation. SIRT7 inactivation caused reduced quiescence, increased mitochondrial protein folding stress (PFS(mt)), and compromised regenerative capacity of hematopoietic stem cells (HSCs). SIRT7 expression was reduced in aged HSCs, and SIRT7 up-regulation improved the regenerative capacity of aged HSCs. These findings define the deregulation of a UPR(mt)-mediated metabolic checkpoint as a reversible contributing factor for HSC aging. Copyright © 2015, American Association for the Advancement of Science.
Article
Full-text available
Correlative evidence suggests that GABAergic signaling plays an important role in the regulation of activity-dependent hippocampal neurogenesis and emotional behavior in adult mice. However, whether these are causally linked at the molecular level remains elusive. Nuclear factor of activated T cell (NFAT) proteins are activity-dependent transcription factors that respond to environmental stimuli in different cell types, including hippocampal newborn neurons. Here, we identify NFATc4 as a key activity-dependent transcriptional regulator of GABA signaling in hippocampal progenitor cells via an unbiased high-throughput genome-wide study. Next, we demonstrate that GABA A receptor (GABA A R) signaling modulates hippocampal neurogenesis through NFATc4 activity, which in turn regulates GABRA2 and GABRA4 subunit expression via binding to specific promoter responsive elements, as assessed by ChIP and luciferase assays. Furthermore, we show that selective pharmacological enhancement of GABA A R activity promotes hippocampal neurogenesis via the calcineurin/NFATc4 axis. Importantly, the NFATc4-dependent increase in hippocampal neurogenesis after GABA A R stimulation is required for the suppression of the anxiety response in mice. Together, these data provide a novel molecular insight into the regulation of the anxiety response in mice, suggesting that the GABA A R/NFATc4 axis is a druggable target for the therapy of emotional disorders.
Article
Full-text available
The gamma-aminobutyric acid (GABA) type A receptor (GABAAR) contains the recognition sites for a variety of agents used in the treatment of brain disorders, including anxiety and epilepsy. A better understanding of how receptor expression is regulated in individual neurons may provide novel opportunities for therapeutic intervention. Towards this goal we have studied transcription of a GABAAR subunit gene (GABRB1) whose activity is autologously regulated by GABA via a 10 base pair initiator-like element (beta1-INR). By screening a human cDNA brain library with a yeast one-hybrid assay, the Polycomblike (PCL) gene product PHD finger protein transcript b (PHF1b) was identified as a beta1-INR associated protein. Promoter/reporter assays in primary rat cortical cells demonstrate that PHF1b is an activator at GABRB1, and chromatin immunoprecipitation assays reveal that presence of PHF1 at endogenous Gabrb1 is regulated by GABAAR activation. PCL is a member of the Polycomb group required for correct spatial expression of homeotic genes in Drosophila. We now show that PHF1b recognition of beta1-INR is dependent on a plant homeodomain, an adjacent helix-loop-helix, and short glycine rich motif. In neurons, it co-immunoprecipitates with SUZ12, a key component of the Polycomb Repressive Complex 2 (PRC2) that regulates a number of important cellular processes, including gene silencing via histone H3 lysine 27 trimethylation (H3K27me3). The observation that chronic exposure to GABA reduces PHF1 binding and H3K27 monomethylation, which is associated with transcriptional activation, strongly suggests that PHF1b may be a molecular transducer of GABAAR function and thus GABA-mediated neurotransmission in the central nervous system.
Article
Full-text available
Epilepsy is a devastating disease affecting more than 1% of the population. Yet, if one considers the neurobiological substrates of this disease, what is revealed is an array of phenomenon that exemplify the remarkable capacity for the brain to change its basic structure and function, that is, neural plasticity. Some of these alterations are transient and merely impressive for their extent, or for their robust nature across animal models and human epilepsy. Others are notable for their persistence, often enduring for months or years. As an example, the dentate gyrus, and specifically the principal cell of the dentate gyrus, the granule cell, is highlighted. This area of the brain and this particular cell type, for reasons that are currently unclear, hold an uncanny capacity to change after seizures. For those interested in plasticity, it is suggested that perhaps the best examples for studying plasticity lie in the field of epilepsy.
Article
Full-text available
Fragile X mental retardation protein (FMRP) is an RNA-binding protein that targets ∼5% of all mRNAs expressed in the brain. Previous work by our laboratory demonstrated significantly lower protein levels for FMRP in lateral cerebella of subjects with schizophrenia, bipolar disorder and major depression when compared with controls. Absence of FMRP expression in animal models of fragile X syndrome (FXS) has been shown to reduce expression of gamma-aminobutyric acid A (GABAA) receptor mRNAs. Previous work by our laboratory has found reduced expression of FMRP, as well as multiple GABAA and GABAB receptor subunits in subjects with autism. Less is known about levels for GABAA subunit protein expression in brains of subjects with schizophrenia and mood disorders. In the current study, we have expanded our previous studies to examine the protein and mRNA expression of two novel GABAA receptors, theta (GABRθ) and rho 2 (GABRρ2) as well as FMRP, and metabotropic glutamate receptor 5 (mGluR5) in lateral cerebella of subjects with schizophrenia, bipolar disorder, major depression and healthy controls, and in superior frontal cortex (Brodmann Area 9 (BA9)) of subjects with schizophrenia, bipolar disorder and healthy controls. We observed multiple statistically significant mRNA and protein changes in levels of GABRθ, GABRρ2, mGluR5 and FMRP molecules including concordant reductions in mRNA and proteins for GABRθ and mGluR5 in lateral cerebella of subjects with schizophrenia; for increased mRNA and protein for GABRρ2 in lateral cerebella of subjects with bipolar disorder; and for reduced mRNA and protein for mGluR5 in BA9 of subjects with bipolar disorder. There were no significant effects of confounds on any of the results.
Article
Full-text available
The formation, maintenance and reorganization of synapses are critical for brain development and the responses of neuronal circuits to environmental challenges. Here we describe a novel role for peroxisome proliferator-activated receptor γ co-activator 1α, a master regulator of mitochondrial biogenesis, in the formation and maintenance of dendritic spines in hippocampal neurons. In cultured hippocampal neurons, proliferator-activated receptor γ co-activator 1α overexpression increases dendritic spines and enhances the molecular differentiation of synapses, whereas knockdown of proliferator-activated receptor γ co-activator 1α inhibits spinogenesis and synaptogenesis. Proliferator-activated receptor γ co-activator 1α knockdown also reduces the density of dendritic spines in hippocampal dentate granule neurons in vivo. We further show that brain-derived neurotrophic factor stimulates proliferator-activated receptor γ co-activator-1α-dependent mitochondrial biogenesis by activating extracellular signal-regulated kinases and cyclic AMP response element-binding protein. Proliferator-activated receptor γ co-activator-1α knockdown inhibits brain-derived neurotrophic factor-induced dendritic spine formation without affecting expression and activation of the brain-derived neurotrophic factor receptor tyrosine receptor kinase B. Our findings suggest that proliferator-activated receptor γ co-activator-1α and mitochondrial biogenesis have important roles in the formation and maintenance of hippocampal dendritic spines and synapses.
Article
Full-text available
The Encyclopedia of DNA Elements (ENCODE) consortium aims to identify all functional elements in the human genome including transcripts, transcriptional regulatory regions, along with their chromatin states and DNA methylation patterns. The ENCODE project generates data utilizing a variety of techniques that can enrich for regulatory regions, such as chromatin immunoprecipitation (ChIP), micrococcal nuclease (MNase) digestion and DNase I digestion, followed by deeply sequencing the resulting DNA. As part of the ENCODE project, we have developed a Web-accessible repository accessible at http://factorbook.org. In Wiki format, factorbook is a transcription factor (TF)-centric repository of all ENCODE ChIP-seq datasets on TF-binding regions, as well as the rich analysis results of these data. In the first release, factorbook contains 457 ChIP-seq datasets on 119 TFs in a number of human cell lines, the average profiles of histone modifications and nucleosome positioning around the TF-binding regions, sequence motifs enriched in the regions and the distance and orientation preferences between motif sites.
Article
Full-text available
Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) has become the dominant technique for mapping transcription factor (TF) binding regions genome-wide. We performed an integrative analysis centered around 457 ChIP-seq data sets on 119 human TFs generated by the ENCODE Consortium. We identified highly enriched sequence motifs in most data sets, revealing new motifs and validating known ones. The motif sites (TF binding sites) are highly conserved evolutionarily and show distinct footprints upon DNase I digestion. We frequently detected secondary motifs in addition to the canonical motifs of the TFs, indicating tethered binding and cobinding between multiple TFs. We observed significant position and orientation preferences between many cobinding TFs. Genes specifically expressed in a cell line are often associated with a greater occurrence of nearby TF binding in that cell line. We observed cell-line-specific secondary motifs that mediate the binding of the histone deacetylase HDAC2 and the enhancer-binding protein EP300. TF binding sites are located in GC-rich, nucleosome-depleted, and DNase I sensitive regions, flanked by well-positioned nucleosomes, and many of these features show cell type specificity. The GC-richness may be beneficial for regulating TF binding because, when unoccupied by a TF, these regions are occupied by nucleosomes in vivo. We present the results of our analysis in a TF-centric web repository Factorbook (http://factorbook.org) and will continually update this repository as more ENCODE data are generated.
Article
Full-text available
Transcription factors bind in a combinatorial fashion to specify the on-and-off states of genes; the ensemble of these binding events forms a regulatory network, constituting the wiring diagram for a cell. To examine the principles of the human transcriptional regulatory network, we determined the genomic binding information of 119 transcription-related factors in over 450 distinct experiments. We found the combinatorial, co-association of transcription factors to be highly context specific: distinct combinations of factors bind at specific genomic locations. In particular, there are significant differences in the binding proximal and distal to genes. We organized all the transcription factor binding into a hierarchy and integrated it with other genomic information (for example, microRNA regulation), forming a dense meta-network. Factors at different levels have different properties; for instance, top-level transcription factors more strongly influence expression and middle-level ones co-regulate targets to mitigate information-flow bottlenecks. Moreover, these co-regulations give rise to many enriched network motifs (for example, noise-buffering feed-forward loops). Finally, more connected network components are under stronger selection and exhibit a greater degree of allele-specific activity (that is, differential binding to the two parental alleles). The regulatory information obtained in this study will be crucial for interpreting personal genome sequences and understanding basic principles of human biology and disease.
Article
Full-text available
Gamma-aminobutyric acid A (GABAA) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the expression of four GABAA receptor subunits and observed significant reductions in GABRA1, GABRA2, GABRA3, and GABRB3 in parietal cortex (Brodmann’s Area 40 (BA40)), while GABRA1 and GABRB3 were significantly altered in cerebellum, and GABRA1 was significantly altered in superior frontal cortex (BA9). The presence of seizure disorder did not have a significant impact on GABAA receptor subunit expression in the three brain areas. Our results demonstrate that GABAA receptors are reduced in three brain regions that have previously been implicated in the pathogenesis of autism, suggesting widespread GABAergic dysfunction in the brains of subjects with autism.
Article
Full-text available
The proximal enhancer of the cytochrome c gene (Cycs) contains binding sites for both cAMP response element binding proteins (CREB) and Nuclear Respiratory Factor 1 (NRF1). To investigate how neuronal activity regulates this enhancer region, a lentivirus was constructed in which a short-lived green fluorescent protein (GFP) was placed under the transcriptional control of the Cycs proximal enhancer linked to a synthetic core promoter. Primary hippocampal neurons were infected, and the synaptic strengths of individual neurons were measured by whole-cell patch clamping. On average the amplitude of miniature postsynaptic currents (mEPSCs) was higher in brighter GFP(+) neurons, while the frequency of mEPSCs was not significantly different. Inhibiting neural activity by applying a GABAA receptor agonist increased GFP expression in most neurons, which persisted after homeostatic synaptic scaling as evidenced by a decrease in the amplitude and frequency of mEPSCs. Removing the CREB binding sites revealed that calcium influx through L-type channels and NMDA receptors, and ERK1/2 activation played a role in NRF1-mediated transcription. CREB and NRF1, therefore, combine to regulate transcription of Cycs in response to changing neural activity.
Article
Full-text available
The production of neurons from neural progenitor cells, the growth of axons and dendrites and the formation and reorganization of synapses are examples of neuroplasticity. These processes are regulated by cell-autonomous and intercellular (paracrine and endocrine) programs that mediate responses of neural cells to environmental input. Mitochondria are highly mobile and move within and between subcellular compartments involved in neuroplasticity (synaptic terminals, dendrites, cell body and the axon). By generating energy (ATP and NAD(+)), and regulating subcellular Ca(2+) and redox homoeostasis, mitochondria may play important roles in controlling fundamental processes in neuroplasticity, including neural differentiation, neurite outgrowth, neurotransmitter release and dendritic remodelling. Particularly intriguing is emerging data suggesting that mitochondria emit molecular signals (e.g. reactive oxygen species, proteins and lipid mediators) that can act locally or travel to distant targets including the nucleus. Disturbances in mitochondrial functions and signalling may play roles in impaired neuroplasticity and neuronal degeneration in Alzheimer's disease, Parkinson's disease, psychiatric disorders and stroke.
Article
Full-text available
Folates are essential vitamins that play a key role as one-carbon donors in a spectrum of biosynthetic pathways including RNA and DNA synthesis. The proton-coupled folate transporter (PCFT/SLC46A1) mediates obligatory intestinal folate absorption. Loss-of-function mutations in PCFT result in hereditary folate malabsorption, an autosomal recessive disorder characterized by very low folate levels in the blood and cerebrospinal fluid. Hereditary folate malabsorption manifests within the first months after birth with anemia, immune deficiency, and neurological deficits. Here we studied the role of inducible trans-activators of PCFT gene expression. Bioinformatics identified three putative nuclear respiratory factor 1 (NRF-1) binding sites in the minimal promoter. The following evidence establish that PCFT is an NRF-1-responsive gene; electrophoretic mobility shift assay showed NRF-1 binding to native but not mutant NRF-1 sites, whereas antibody-mediated supershift analysis and chromatin immunoprecipitation revealed NRF-1 binding to its consensus sites within the PCFT promoter. Moreover, mutational inactivation of individual or all NRF-1 binding sites resulted in 40-60% decrease in luciferase reporter activity. Consistently, overexpression of NRF-1 or a constitutively active NRF-1 VP-16 construct resulted in increased reporter activity and PCFT mRNA levels. Conversely, introduction of a dominant-negative NRF-1 construct markedly repressed reporter activity and PCFT mRNA levels; likewise, introduction of NRF-1 siRNA duplexes to cells resulted in decreased PCFT transcript levels. Moreover, NRF-1 silencing down-regulated genes encoding for key folate transporters and enzymes in folate metabolism. These novel findings identify NRF-1 as a major inducible transcriptional regulator of PCFT gene expression. The implications of this linkage between folate transport and metabolism with mitochondria biogenesis and respiration are discussed.
Article
Full-text available
Increases in ATP production machinery have been described in brain after 3 h of sleep deprivation. Whether this is sustained with longer durations of extended wakefulness is unknown. We hypothesized that energy depletion could be a mechanism leading to difficulty maintaining wakefulness and assessed changes in components of the electron transport chain. Protein levels of key subunits of complexes IV and V of the electron transport chain (COXI, COXIV, ATP5B) and uncoupling protein 2 (UCP2) in isolated mitochondria by Westerns in mouse cerebral cortex after 3 and 12 h of sleep deprivation were compared to that in control mice. Activity of complex IV enzyme and relevant transcription factors-Nrf1, Nrf2 (Gabp), and phosphorylation of AMP-dependent kinase (AMPK)-were also assessed. 8-10 week old C57BL/6J male mice (n = 91). 3, 6, and 12 h of sleep deprivation. After both 3 and 12 h of sleep deprivation, complex IV proteins and enzyme activity were significantly increased. The complex V catalytic subunit was significantly increased after 12 h of sleep deprivation only. Increased levels of UCP2 protein after 12 h of sleep deprivation suggests that there might be alterations in the ATP/AMP ratio as wakefulness is extended. That phosphorylation of AMPK is increased after 6 h of sleep deprivation supports this assertion. The increase in Nrf1 and Nrf2 (Gabp) mRNA after 6 h of sleep deprivation provides a mechanism by which there is up-regulation of key proteins. There are complex dynamic changes in brain energy regulation with extended wakefulness.
Article
Full-text available
Nineteen GABAA receptor (GABAAR) subunits are known in mammals with only a restricted number of functionally identified native combinations. The physiological role of β1-subunit-containing GABAARs is unknown. Here we report the discovery of a new structural class of GABAAR positive modulators with unique β1-subunit selectivity: fragrant dioxane derivatives (FDD). At heterologously expressed α1βxγ2L (x-for 1,2,3) GABAAR FDD were 6 times more potent at β1- versus β2- and β3-containing receptors. Serine at position 265 was essential for the high sensitivity of the β1-subunit to FDD and the β1N286W mutation nearly abolished modulation; vice versa the mutation β3N265S shifted FDD sensitivity toward the β1-type. In posterior hypothalamic neurons controlling wakefulness GABA-mediated whole-cell responses and GABAergic synaptic currents were highly sensitive to FDD, in contrast to β1-negative cerebellar Purkinje neurons. Immunostaining for the β1-subunit and the potency of FDD to modulate GABA responses in cultured hypothalamic neurons was drastically diminished by β1-siRNA treatment. In conclusion, with the help of FDDs we reveal a functional expression of β1-containing GABAARs in the hypothalamus, offering a new tool for studies on the functional diversity of native GABAARs.
Article
Full-text available
Aberrant DNA methylation at CpG islands is thought to contribute to cancer initiation and progression, but mechanisms that establish and maintain DNA methylation status during tumorigenesis or normal development remain poorly understood. In this study, we used methyl-CpG immunoprecipitation to generate comparative DNA methylation profiles of healthy and malignant cells (acute leukemia and colorectal carcinoma) for human CpG islands across the genome. While searching for sequence patterns that characterize DNA methylation states, we discovered several nonredundant sequences in CpG islands that were resistant to aberrant de novo methylation in cancer and that resembled consensus binding sites for general transcription factors (TF). Comparing methylation profiles with global CpG island binding data for specific protein 1, nuclear respiratory factor 1, and yin-yang 1 revealed that their DNA binding activity in normal blood cells correlated strictly with an absence of de novo methylation in cancer. In addition, global evidence showed that binding of any of these TFs to their consensus motif depended on their co-occurrence with neighboring consensus motifs. In summary, our results had two major implications. First, they pointed to a major role for cooperative binding of TFs in maintaining the unmethylated status of CpG islands in health and disease. Second, our results suggest that the majority of de novo methylated CpG islands are characterized by the lack of sequence motif combinations and the absence of activating TF binding.
Article
Full-text available
We have shown altered expression of gamma-aminobutyric acid A (GABA(A)) and gamma-aminobutyric acid B (GABA(B)) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3 GABA(A) subunits previously associated with autism (GABRalpha4; GABRalpha5; GABRbeta1). Three GABA receptor subunits demonstrated mRNA and protein level concordance in superior frontal cortex (GABRalpha4, GABRalpha5, GABRbeta1) and one demonstrated concordance in cerebellum (GABBetaR1). These results provide further evidence of impairment of GABAergic signaling in autism.
Article
Full-text available
Neuronal activity and energy metabolism are tightly coupled processes. Regions high in neuronal activity, especially of the glutamatergic type, have high levels of cytochrome c oxidase (COX). Perturbations in neuronal activity affect the expressions of COX and glutamatergic NMDA receptor subunit 1 (NR1). The present study sought to test our hypothesis that the coupling extends to the transcriptional level, whereby NR1 and possibly other NR subunits and COX are coregulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), which regulates all COX subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutations, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Grin 1 (NR1), Grin 2b (NR2b) and COX subunit genes, but not of Grin2a and Grin3a genes. These transcripts were upregulated by KCl and downregulated by tetrodotoxin (TTX) in cultured primary neurons. However, silencing of NRF-1 with small interference RNA blocked the upregulation of Grin1, Grin2b, and COX induced by KCl, and overexpression of NRF-1 rescued these transcripts that were suppressed by TTX. NRF-1 binding sites on Grin1 and Grin2b genes are also highly conserved among mice, rats, and humans. Thus, NRF-1 is an essential transcription factor critical in the coregulation of NR1, NR2b, and COX, and coupling exists at the transcriptional level to ensure coordinated expressions of proteins important for synaptic transmission and energy metabolism.
Article
Full-text available
The gamma-aminobutyric acid (GABA) type A receptor (GABA(A)R) is the major inhibitory neurotransmitter receptor in the brain. Its multiple subunits show regional, developmental, and disease-related plasticity of expression; however, the regulatory networks controlling GABA(A)R subunit expression remain poorly understood. We report that the seizure-induced decrease in GABA(A)R alpha1 subunit expression associated with epilepsy is mediated by the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway regulated by brain-derived neurotrophic factor (BDNF). BDNF- and seizure-dependent phosphorylation of STAT3 cause the adenosine 3',5'-monophosphate (cAMP) response element-binding protein (CREB) family member ICER (inducible cAMP early repressor) to bind with phosphorylated CREB at the Gabra1:CRE site. JAK/STAT pathway inhibition prevents the seizure-induced decrease in GABA(A)R alpha1 abundance in vivo and, given that BDNF is known to increase the abundance of GABA(A)R alpha4 in a JAK/STAT-independent manner, indicates that BDNF acts through at least two distinct pathways to influence GABA(A)R-dependent synaptic inhibition.
Article
Full-text available
Using clonal cell lines isolated from murine neuroblastoma C1300, we investigated the mitochondrial changes related to neuronal differentiation and, more generally, the role played by the mitochondrion in this phenomenon. By different approaches (measurement of the mitochondrial mass, immunoquantification of specific mitochondrial proteins, or incorporation of Rhodamine 123), the differentiation of the inducible clone, N1E-115, was found associated with an important increase of the cellular content in mitochondria. This increase could be observed with differentiating N1E-115 cells maintained in suspension, i.e. under conditions where neurite outgrowth is prevented but other early stages of (biochemical) differentiation continue to occur. That these mitochondrial changes are likely to be correlated with these stages of neuronal differentiation, rather than with simple progression to the postmitotic stage, stems from comparative experiments with clone N1A-103, a neuroblastoma cell line variant that becomes postmitotic after induction but fails to differentiate and shows no modification in its cellular content in mitochondria. In accordance with these observations, chloramphenicol prevents differentiation when added together with the inducer. This effect is probably related to the inhibition of mitochondrial translation rather than to modification of the bioenergetic needs because oligomycine, a potent inhibitor of the mitochondrial ATP synthetase, shows no effect on neurogenesis. As a working hypothesis and in keeping with independently published models, we postulate that products resulting from mitochondrial translation could be involved in the organization of the cytoskeleton or of certain membrane components whose rearrangements should be the prerequisite or the correlates to early stages of neuronal differentiation.
Article
Full-text available
The developmental stage at which nerve cells initially express specific neurotransmitters and their corresponding receptors remains elusive. In the present study, the distribution patterns of transcripts for the GABA-synthesizing enzyme, glutamate decarboxylase (GAD67), and specific GABAA receptor subunits were examined in the proliferative zone of the rat central nervous system using in situ hybridization. In order to define the DNA synthetic zone of the germinal matrix, tissue sections were taken from embryos whose mothers had been injected with 5-bromo-2'-deoxyuridine (BrdU) and had survived for 1 hr. BrdU immunocytochemistry was used to locate the relative position of BrdU-immunoreactive nuclei within the ventricular zone (VZ). At embryonic day (E) 15 in the alar plate of the lumbar spinal cord, and at E17 and E20 in the dorsomedial sector of the neocortex, densely packed BrdU-immunoreactive nuclei were consistently detected in lateral portions of the inner half of the germinal matrix, indicating that the inner half of the germinal matrix corresponded to the VZ, while the outer half corresponded to the transitional (TZ) or subventricular zone (SV). In situ hybridization in tissue sections adjacent to BrdU-immunoreacted ones showed that the transcripts for GABAA receptor alpha 3, beta 3, and gamma 2 subunits were found exclusively in the mantle zone, while those for alpha 4, beta 1, and gamma 1 subunits were predominantly detected in the inner half of the germinal matrix (i.e., VZ). Furthermore, in the E15 germinal matrix of the lumbar spinal cord, cells exhibiting alpha 4 subunit mRNA were much more abundant in the receding intermediate plate, which contains mostly postmitotic cells, than in the alar plate comprised of many DNA-synthesizing cells, strongly suggesting that only those cells completing final cell division expressed the subunit mRNAs. In clear contrast, GAD67 mRNA was abundant in the outer half of the germinal matrix (i.e., TZ or SV), and in the intermediate zone as well. Immunocytochemical staining of E17 neocortex with anti-GABA antibody revealed a well defined band of GABA-immunoreactive cells and processes in the SV and occasional positive cells in the VZ. It appears that cells in the proliferative zone may express GABA at the migratory stage, whereas cells in the VZ may express mRNAs for GABAA receptor alpha 4, beta 1, and gamma 1 subunits at the premigratory stage, just after completing cell division.(ABSTRACT TRUNCATED AT 400 WORDS)
Article
Full-text available
Temporal lobe epilepsy is the most prevalent seizure disorder in adults. Compromised inhibitory neurotransmitter function in the hippocampus contributes to the hyperexcitability generating this condition, but the underlying molecular mechanisms are unknown. Combining patch-clamp recording and single-cell mRNA amplification (aRNA) techniques in single dentate granule cells, we demonstrate that expression of GABA(A) receptor subunit mRNAs is substantially altered in neurons from epileptic rats. These changes in gene expression precede epilepsy onset by weeks and correlate with profound alterations in receptor function, indicating that aberrant GABA(A) receptor expression and function has an essential role in the process of epileptogenesis.
Article
Full-text available
We have developed a method to determine the stoichiometry of subunits within an oligomeric cell surface receptor using fluorescently tagged antibodies to the individual subunits and measuring energy transfer between them. Anti-c-Myc monoclonal antibody (mAb 9-E10) derivatized with a fluorophore (europium cryptate, EuK) was used to individually label c-Myc-tagged alpha1-, beta2-, or gamma2-subunits of the hetero-oligomeric gamma-aminobutyric acid (GABAA) receptor in intact cells. The maximal fluorescent signal derived from the alpha1(c-Myc)beta2gamma2 and the alpha1beta2(c-Myc)gamma2 receptors was twice that obtained with alpha1beta2gamma2(c-Myc), suggesting that there are 2x alpha-, 2x beta-, and 1x gamma-subunits in a receptor monomer. This observation was extended using fluorescence energy transfer. Receptors were half-maximally saturated with EuK-anti-c-Myc mAb, and the remaining alpha1(c-Myc) subunits were labeled with excess anti-c-Myc mAb derivatized with the fluorescence energy acceptor, XL665. On exposure to laser light, energy transfer from EuK to XL665 occurred with alpha1(c-Myc)beta2gamma2 and alpha1beta2(c-Myc)gamma2, but no significant energy transfer was observed with alpha1beta2gamma2(c-Myc) receptors, indicating the absence of a second gamma-subunit in a receptor monomer. We confirm that the GABAA receptor subtype, alpha1beta2gamma2, is composed of two copies each of the alpha- and beta-subunits and one copy of the gamma-subunit (i.e. (alpha1)2(beta2)2(gamma2)1) and conclude that this method would have general applicability to other multisubunit cell surface proteins.
Article
Full-text available
Genetic studies of the Drosophila erect wing (ewg) gene have revealed that ewg has an essential function in the embryonic nervous system and is required for the specification of certain muscle cells. We have found that EWG is a site-specific transcriptional activator, and we report here that evolutionarily conserved regions of EWG contribute both positively and negatively to transcriptional activity. Using gel mobility shift assays, we have shown that an EWG dimer binds specifically to DNA. In transfection assays, EWG activated expression of a reporter gene bearing specific binding sites. Analysis of deletion mutants and fusions of EWG to the Gal4 DNA binding domain has identified a transcriptional activation domain in the C terminus of EWG. Deletion analysis also revealed a novel inhibitory region in the N terminus of EWG. Strikingly, both the activation domain and the inhibitory region are conserved in EWG homologs including human nuclear respiratory factor 1 (NRF-1) and the sea urchin P3A2 protein. The strong conservation of elements that determine transcriptional activity suggests that the EWG, NRF-1, and P3A2 family of proteins shares common mechanisms of action and has maintained common functions across evolution.
Article
Full-text available
Nuclear respiratory factor 1 (NRF-1) is a transcriptional activator of nuclear genes that encode a range of mitochondrial proteins including cytochrome c, various other respiratory chain subunits, and delta-aminolevulinate synthase. Activation of NRF-1 in fibroblasts has been shown to induce increases in cytochrome c expression and mitochondrial respiratory capacity. To further evaluate the role of NRF-1 in the regulation of mitochondrial biogenesis and respiratory capacity, we generated transgenic mice overexpressing NRF-1 in skeletal muscle. Cytochrome c expression was increased approximately twofold and delta-aminolevulinate synthase was increased approximately 50% in NRF-1 transgenic muscle. The levels of some mitochondrial proteins were increased 50-60%, while others were unchanged. Muscle respiratory capacity was not increased in the NRF-1 transgenic mice. A finding that provides new insight regarding the role of NRF-1 was that expression of MEF2A and GLUT4 was increased in NRF-1 transgenic muscle. The increase in GLUT4 was associated with a proportional increase in insulin-stimulated glucose transport. These results show that an isolated increase in NRF-1 is not sufficient to bring about a coordinated increase in expression of all of the proteins necessary for assembly of functional mitochondria. They also provide the new information that NRF-1 overexpression results in increased expression of GLUT4.
Article
Full-text available
The Cys-loop receptors constitute an important superfamily of LGICs (ligand-gated ion channels) comprising receptors for acetylcholine, 5-HT3 (5-hydroxytryptamine; 5-HT3 receptors), glycine and GABA (gamma-aminobutyric acid; GABAA receptors). A vast knowledge of the structure of the Cys-loop superfamily and its impact on channel function have been accrued over the last few years, leading to exciting new proposals on how ion channels open and close in response to agonist binding. Channel opening is initiated by the extracellular association of agonists to discrete binding pockets, leading to dramatic conformational changes, culminating in the opening of a central ion pore. The importance of channel structure is exemplified in the allosteric modulation of channel function by the binding of other molecules to distinct sites on the channel, which exerts an additional level of control on their function. The subsequent conformational changes (gating) lead to channel opening and ion transport. Following channel pore opening, ion selectivity is determined by receptor structure in, and around, the ion pore. As a final level of control, cytoplasmic determinants control the magnitude (conductance) of ion flow into the cell. Thus the Cys-loop receptors are complex molecular motors, with moving parts, which can transduce extracellular signals across the plasma membrane. Once the full mechanical motions involved are understood, it may be possible to design sophisticated therapeutic agents to modulate their activity, or at least be able to throw a molecular spanner into the works!
Article
Full-text available
The establishment and maintenance of epigenetic gene silencing is fundamental to cell determination and function. The essential epigenetic systems involved in heritable repression of gene activity are the Polycomb group (PcG) proteins and the DNA methylation systems. Here we show that the corresponding silencing pathways are mechanistically linked. We find that the PcG protein EZH2 (Enhancer of Zeste homolog 2) interacts-within the context of the Polycomb repressive complexes 2 and 3 (PRC2/3)-with DNA methyltransferases (DNMTs) and associates with DNMT activity in vivo. Chromatin immunoprecipitations indicate that binding of DNMTs to several EZH2-repressed genes depends on the presence of EZH2. Furthermore, we show by bisulphite genomic sequencing that EZH2 is required for DNA methylation of EZH2-target promoters. Our results suggest that EZH2 serves as a recruitment platform for DNA methyltransferases, thus highlighting a previously unrecognized direct connection between two key epigenetic repression systems.
Article
Although the stoichiometry of the major synaptic αβγ subunit-containing GABAA receptors has consensus support for 2α:2β:1γ, a clear view of the stoichiometry of extrasynaptic receptors containing δ subunits has remained elusive. Here we examine the subunit stoichiometry of recombinant α4β3δ receptors using a reporter mutation and a functional electrophysiological approach.
Article
The homeostatic regulation of neuronal activity in glutamatergic and GABAergic synapses is critical for neural circuit development and synaptic plasticity. The induced expression of the transcription factor early growth response 1 (Egr-1) in neurons is tightly associated with many forms of neuronal activity, but the underlying target genes in the brain remained to be elucidated. The present study uses a quantitative real-time PCR approach, in combination with in vivo chromatin immunoprecipitation, and reveals that GABAA receptor subunit, GABRA2 (α2), GABRA4 (α4), and GABRQ (θ) genes, are transcriptional targets of Egr-1. Transfection of a construct that overexpresses Egr-1 in neuroblastoma (Neuro2A) cells up-regulates the α2, α4, and θ subunits. Given that Egr-1 knockout mice display less GABRA2, GABRA4, and GRBRQ mRNA in the hippocampus, and that Egr-1 directly binds to their promoters and induces mRNA expression, the present findings support a role for Egr-1 as a major regulator for altered GABAA receptor composition in homeostatic plasticity, in a glutamatergic activity-dependent manner. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Article
Schizophrenia is a severe neuropsychiatric disorder with a strong and complex genetic background. Recent genome-wide association studies (GWAS) have successfully identified several susceptibility loci of schizophrenia. In order to interpret the functional role of the genetic variants and detect the combined effects of some of these genes on schizophrenia, protein-interaction-network-based analysis (PINBA) has emerged as an effective approach. In the current study, we conducted a PINBA of our previous GWAS data taken from the Han Chinese population. In order to do so, we used dense module search (DMS), a method that locates densely connected modules for complex diseases by integrating the association signal from GWAS datasets into the human protein-protein interaction (PPI) network. As a result, we identified one gene set with a joint effect significantly associated with schizophrenia and gene expression profiling analysis suggested that they were mainly neuro- and immune-related genes, such as glutamatergic gene (GRM5), GABAergic genes (GABRB1, GABARAP) and genes located in the MHC region (HLA-C, TAP2, HIST1H1B). Further pathway enrichment analysis suggested that these genes are involved in processes related to neuronal and immune systems, such as the Adherens junction pathway, the Neurotrophin signaling pathway and the Toll-like receptor signaling pathway. In our study, we identified a set of susceptibility genes that had been missed in single-marker GWAS, and our findings could promote the study of the genetic mechanisms in schizophrenia.
Article
Inhibitory neurotransmission is primarily governed by γ-aminobutyric acid (GABA) type A receptors (GABAARs). GABAARs are heteropentameric ligand-gated channels formed by the combination of 19 possible subunits. GABAAR subunits are subject to multiple types of regulation, impacting the localization, properties, and function of assembled receptors. GABAARs mediate both phasic (synaptic) and tonic (extrasynaptic) inhibition. While the regulatory mechanisms governing synaptic receptors have begun to be defined, little is known about the regulation of extrasynaptic receptors. We examine the contributions of GABAARs to the pathogenesis of neurodevelopmental disorders, schizophrenia, depression, epilepsy, and stroke, with particular focus on extrasynaptic GABAARs. We suggest that extrasynaptic GABAARs are attractive targets for the treatment of these disorders, and that research should be focused on delineating the mechanisms that regulate extrasynaptic GABAARs, promoting new therapeutic approaches.
Article
Mitochondrial dysfunction has been suggested to be a contributing factor of epilepsy, but the underlying mechanisms are not completely explored. Mitochondrial biogenesis is involved in regulation of mitochondrial content, morphology, and function. In the current study, we show mitochondrial biogenesis severely impaired in hippocampi of rats with chronic seizures induced by pilocarpine, as evidenced by decreased mitochondrial DNA (mtDNA) content and decreased mtDNA-encoded protein level. Furthermore, we show mtDNA transcription and replication reduced in rats with chronic seizures. These defects were independent of downregulation of mitochondrial biogenesis-related factors, such as peroxisome proliferator-activated receptor gamma coactivator-1α, nuclear respiratory factor-1, and mitochondrial transcription factor A (Tfam), but depended on reduced Tfam-DNA binding activity. The present study suggests novel mechanisms for mitochondrial dysfunction during chronic seizures.
Article
Inhibition in the adult mammalian central nervous system (CNS) is mediated by γ-aminobutyric acid (GABA). The fast inhibitory actions of GABA are mediated by GABA type A receptors (GABA(A)Rs); they mediate both phasic and tonic inhibition in the brain and are the principle sites of action for anticonvulsant, anxiolytic, and sedative-hypnotic agents that include benzodiazepines, barbiturates, neurosteroids, and some general anesthetics. GABA(A)Rs are heteropentameric ligand-gated ion channels that are found concentrated at inhibitory postsynaptic sites where they mediate phasic inhibition and at extrasynaptic sites where they mediate tonic inhibition. The efficacy of inhibition and thus neuronal excitability is critically dependent on the accumulation of specific GABA(A)R subtypes at inhibitory synapses. Here we evaluate how neurons control the number of GABA(A)Rs on the neuronal plasma membrane together with their selective stabilization at synaptic sites. We then go on to examine the impact that these processes have on the strength of synaptic inhibition and behavior.
Article
The histaminergic neurons of the posterior hypothalamus (tuberomamillary nucleus-TMN) control wakefulness, and their silencing through activation of GABA(A) receptors (GABA(A)R) induces sleep and is thought to mediate sedation under propofol anaesthesia. We have previously shown that the β1 subunit preferring fragrant dioxane derivatives (FDD) are highly potent modulators of GABA(A)R in TMN neurons. In recombinant receptors containing the β3N265M subunit, FDD action is abolished and GABA potency is reduced. Using rat, wild-type and β3N265M mice, FDD and propofol, we explored the relative contributions of β1- and β3-containing GABA(A)R to synaptic transmission from the GABAergic sleep-on ventrolateral preoptic area neurons to TMN. In β3N265M mice, GABA potency remained unchanged in TMN neurons, but it was decreased in cultured posterior hypothalamic neurons with impaired modulation of GABA(A)R by propofol. Spontaneous and evoked GABAergic synaptic currents (IPSC) showed β1-type pharmacology, with the same effects achieved by 3 μM propofol and 10 μM PI24513. Propofol and the FDD PI24513 suppressed neuronal firing in the majority of neurons at 5 and 100 μM, and in all cells at 10 and 250 μM, respectively. FDD given systemically in mice induced sedation but not anaesthesia. Propofol-induced currents were abolished (1-6 μM) or significantly reduced (12 μM) in β3N265M mice, whereas gating and modulation of GABA(A)R by PI24513 as well as modulation by propofol were unchanged. In conclusion, β1-containing (FDD-sensitive) GABA(A)R represent the major receptor pool in TMN neurons responding to GABA, while β3-containing (FDD-insensitive) receptors are gated by low micromolar doses of propofol. Thus, sleep and anaesthesia depend on different GABA(A)R types.
Article
The kinesin superfamily of motor proteins is known to be ATP-dependent transporters of various types of cargoes. In neurons, KIF17 is found to transport vesicles containing the N-methyl-D-aspartate receptor NR2B subunit from the cell body specifically to the dendrites. These subunits are intimately associated with glutamatergic neurotransmission as well as with learning and memory. Glutamatergic synapses are highly energy-dependent, and recently we found that the same transcription factor, nuclear respiratory factor 1 (NRF-1), co-regulates energy metabolism (via its regulation of cytochrome c oxidase and other mitochondrial enzymes) and neurochemicals of glutamatergic transmission (NR1, NR2B, GluR2, and nNOS). The present study tested our hypothesis that NRF-1 also transcriptionally regulates KIF17. By means of in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation assays, promoter mutations, and real-time quantitative PCR, we found that NRF-1 (but not NRF-2) functionally regulates Kif17, but not Kif1a, gene. NRF-1 binding sites on Kif17 gene are highly conserved among mice, rats, and humans. Silencing of NRF-1 with small interference RNA blocked the up-regulation of Kif17 mRNA and proteins (and of Grin1 and Grin2b) induced by KCl-mediated depolarization, whereas over-expressing NRF-1 rescued these transcripts and proteins from being suppressed by TTX. Thus, NRF-1 co-regulates oxidative enzymes that generate energy and neurochemicals that consume energy related to glutamatergic neurotransmission, such as KIF17, NR1, and NR2B, thereby ensuring that energy production matches energy utilization at the molecular and cellular levels.
Article
Nuclear respiratory factor 1 (NRF-1) is one of the key transcription factors implicated in mitochondrial biogenesis by activating the transcription of mitochondrial transcription factor A (mtTFA) and subunit genes of respiratory enzymes. NRF-1 transactivation activity can be enhanced by interaction with transcription coactivator peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha). The expression of PGC-1alpha, NRF-1 and mtTFA in neurons is known to be tightly regulated by neuronal activity. However, the coupling signaling mechanism is poorly understood. Here, we use primary cultures of rat visual cortical neurons and a rat model of monocular deprivation (MD) to investigate whether AMP-activated protein kinase (AMPK) is implicated in mediating activity-dependent regulation of PGC-1alpha and NRF-1 expression in neurons. We find that KCl depolarization rapidly activates AMPK and significantly increases PGC-1alpha, NRF-1, and mtTFA levels with increased ATP production in neuron cultures. Similarly, pharmacological activation of AMPK with 5'-aminoimidazole-4-carboxamide riboside (AICAR) or resveratrol also markedly increases PGC-1alpha and NRF-1 mRNA levels in neuron cultures. All these effects can be completely blocked by an AMPK inhibitor, Compound C. Conversely, 1 week of MD significantly reduces AMPK phosphorylation and activity, dramatically down-regulates PGC-1alpha and NRF-1 expression in deprived primary visual cortex. Administration of resveratrol in vivo significantly activates AMPK activity and attenuates the effects of MD on mitochondria by significant increase in PGC-1alpha and NRF-1 levels, mitochondria amount, and coupled respiration. These results strongly indicate that AMPK is an essential upstream mediator that couples neuronal activity to mitochondrial energy metabolism by regulation of PGC-1alpha-NRF-1 pathway in neurons.
Article
Neuronal activity, especially of the excitatory glutamatergic type, is highly dependent on energy from the oxidative pathway. We hypothesized that the coupling existed at the transcriptional level by having the same transcription factor to regulate a marker of energy metabolism, cytochrome c oxidase (COX) and an important subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors, GluR2 (Gria2). Nuclear respiratory factor 1 (NRF-1) was a viable candidate because it regulates all COX subunits and potentially activates Gria2. By means of in silico analysis, electrophoretic mobility shift and supershift, chromatin immunoprecipitation, and promoter mutational assays, we found that NRF-1 functionally bound to Gria2 promoter. Silencing of NRF-1 with small interference RNA prevented the depolarization-stimulated up-regulation of Gria2 and COX, and over-expression of NRF-1 rescued neurons from tetrodotoxin-induced down-regulation of Gria2 and COX transcripts. Thus, neuronal activity and energy metabolism are tightly coupled at the molecular level, and NRF-1 is a critical agent in this process.
Article
Expression of the respiratory apparatus depends on both nuclear and mitochondrial genes. Although these genes are sequestered in distinct cellular organelles, their transcription relies on nucleus-encoded factors. Certain of these factors are directed to the mitochondria, where they sponsor the bi-directional transcription of mitochondrial DNA. Others act on nuclear genes that encode the majority of the respiratory subunits and many other gene products required for the assembly and function of the respiratory chain. The nuclear respiratory factors, NRF-1 and NRF-2, contribute to the expression of respiratory subunits and mitochondrial transcription factors and thus have been implicated in nucleo-mitochondrial interactions. In addition, coactivators of the PGC-1 family serve as mediators between the environment and the transcriptional machinery governing mitochondrial biogenesis. One family member, peroxisome proliferator-activated receptor gamma coactivator PGC-1-related coactivator (PRC), is an immediate early gene product that is rapidly induced by mitogenic signals in the absence of de novo protein synthesis. Like other PGC-1 family members, PRC binds NRF-1 and activates NRF-1 target genes. In addition, PRC complexes with NRF-2 and HCF-1 (host cell factor-1) in the activation of NRF-2-dependent promoters. HCF-1 functions in cell-cycle progression and has been identified as an NRF-2 coactivator. The association of these factors with PRC is suggestive of a role for the complex in cell growth. Finally, shRNA-mediated knock down of PRC expression results in a complex phenotype that includes the inhibition of respiratory growth on galactose and the loss of respiratory complexes. Thus, PRC may help integrate the expression of the respiratory apparatus with the cell proliferative program.
Article
This mini-review attempts to update experimental evidence on the existence of GABA(A) receptor pharmacological subtypes and to produce a list of those native receptors that exist. GABA(A) receptors are chloride channels that mediate inhibitory neurotransmission. They are members of the Cys-loop pentameric ligand-gated ion channel (LGIC) superfamily and share structural and functional homology with other members of that family. They are assembled from a family of 19 homologous subunit gene products and form numerous receptor subtypes with properties that depend upon subunit composition, mostly hetero-oligomeric. These vary in their regulation and developmental expression, and importantly, in brain regional, cellular, and subcellular localization, and thus their role in brain circuits and behaviors. We propose several criteria for including a receptor hetero-oligomeric subtype candidate on a list of native subtypes, and a working GABA(A) receptor list. These criteria can be applied to all the members of the LGIC superfamily. The list is divided into three categories of native receptor subtypes: "Identified", "Existence with High Probability", and "Tentative", and currently includes 26 members, but will undoubtedly grow, with future information. This list was first presented by Olsen & Sieghart (in press).
Article
The assembly of the respiratory apparatus requires the coordinate expression of a large number of genes from both nuclear and mitochondrial genetic systems. In vertebrate organisms, the molecular mechanisms integrating the activities of these distinct genomic compartments in response to tissue demands for respiratory energy remain unknown. A potential inroad to this problem came with the discovery of nuclear respiratory factor 1 (NRF-1), a novel transcriptional activator defined by mutational and DNA binding analysis of the somatic cytochrome c promoter. Functional NRF-1 sites are now observed in several other recently isolated nuclear genes whose products function in the mitochondria. Among these are genes encoding subunits of the cytochrome c oxidase (subunit VIc) and reductase (ubiquinone-binding protein) complexes. In addition, a functional NRF-1 site resides in the MRP RNA gene encoding the RNA moiety of a ribonucleoprotein endonuclease involved in mitochondrial DNA replication. Synthetic oligomers of these sites competitively displace NRF-1 binding to the cytochrome c promoter. NRF-1-binding activities for each site also have the same thermal lability, copurify chromatographically, and make similar guanosine nucleotide contacts within each recognition sequence. Moreover, NRF-1 recognition in vitro correlates with the ability of each site to stimulate expression in vivo from a truncated cytochrome c promoter. The presence of NRF-1-binding sites in nuclear genes encoding structural components of the mammalian electron transport chain, as well as the mitochondrial DNA replication machinery, suggests a mechanism for coordination of nuclear and mitochondrial genetic systems through the concerted modulation of nuclear genes.
Article
Nuclear respiratory factor 1 (NRF-1) was first discovered as an activator of the cytochrome c gene and was subsequently found to play a broader role in nuclear-mitochondrial interactions. We have now cloned a HeLa cDNA encoding NRF-1 using degenerate oligomers derived from tryptic peptide sequences for PCR amplification. The cDNA-encoded protein was indistinguishable from the authentic HeLa cell factor on denaturing gels, displayed the expected NRF-1 DNA-binding specificity, and made the same guanine nucleotide contacts as HeLa NRF-1 on binding known NRF-1 recognition sites. Antiserum raised against the highly purified recombinant protein recognized the identical DNA-protein complex formed using either a crude nuclear fraction or nearly homogeneous HeLa NRF-1. Recombinant NRF-1 also activated transcription through specific sites from several NRF-1-responsive promoters, confirming both the transcriptional activity and specificity of the cDNA product. Portions of NRF-1 are closely related to sea urchin P3A2 and the erect wing (EWG) protein of Drosophila. Both are recently identified developmental regulatory factors. The region of highest sequence identity with P3A2 and EWG was in the amino-terminal half of the molecule, which was found by deletion mapping to contain the DNA-binding domain, whereas the carboxy-terminal half of NRF-1 was highly divergent from both proteins. The DNA-binding domain in these molecules is unrelated to motifs found commonly in DNA-binding proteins; thus, NRF-1, P3A2, and EWG represent the founding members of a new class of highly conserved sequence-specific regulatory factors.
Article
The gamma-aminobutyric acid type A (GABAA) receptor represents an elementary switching mechanism integral to the functioning of the central nervous system and a locus for the action of many mood- and emotion-altering agents such as benzodiazepines, barbiturates, steroids, and alcohol. Anxiety, sleep disorders, and convulsive disorders have been effectively treated with therapeutic agents that enhance the action of GABA at the GABAA receptor or increase the concentration of GABA in nervous tissue. The GABAA receptor is a multimeric membrane-spanning ligand-gated ion channel that admits chloride upon binding of the neurotransmitter GABA and is modulated by many endogenous and therapeutically important agents. Since GABA is the major inhibitory neurotransmitter in the CNS, modulation of its response has profound implications for brain functioning. The GABAA receptor is virtually the only site of action for the centrally acting benzodiazepines, the most widely prescribed of the anti-anxiety medications. Increasing evidence points to an important role for GABA in epilepsy and various neuropsychiatric disorders. Recent advances in molecular biology and complementary information derived from pharmacology, biochemistry, electrophysiology, anatomy and cell biology, and behavior have led to a phenomenal growth in our understanding of the structure, function, regulation, and evolution of the GABAA receptor. Benzodiazepines, barbiturates, steroids, polyvalent cations, and ethanol act as positive or negative modulators of receptor function. The description of a receptor gene superfamily comprising the subunits of the GABAA, nicotinic acetylcholine, and glycine receptors has led to a new way of thinking about gene expression and receptor assembly in the nervous system. Seventeen genetically distinct subunit subtypes (alpha 1-alpha 6, beta 1-beta 4, gamma 1-gamma 4, delta, p1-p2) and alternatively spliced variants contribute to the molecular architecture of the GABAA receptor. Mysteriously, certain preferred combinations of subunits, most notably the alpha 1 beta 2 gamma 2 arrangement, are widely codistributed, while the expression of other subunits, such as beta 1 or alpha 6, is severely restricted to specific neurons in the hippocampal formation or cerebellar cortex. Nervous tissue has the capacity to exert control over receptor number, allosteric uncoupling, subunit mRNA levels, and posttranslational modifications through cellular signal transduction mechanisms under active investigation. The genomic organization of the GABAA receptor genes suggests that the present abundance of subtypes arose during evolution through the duplication and translocations of a primordial alpha-beta-gamma gene cluster. This review describes these varied aspects of GABAA receptor research with special emphasis on contemporary cellular and molecular discoveries.
Article
Nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) are ubiquitous transcription factors that have been implicated in the control of nuclear genes required for respiration, heme biosynthesis, and mitochondrial DNA transcription and replication. Recently, both factors have been found to be major transcriptional determinants for a subset of these genes that define a class of simple promoters involved in respiratory chain expression. Here, functional domains required for transactivation by NRF-1 have been defined. An atypical nuclear localization signal resides in a conserved amino-terminal region adjacent to the DNA binding domain and consists of functionally redundant clusters of basic residues. A second domain in the carboxy-terminal half of the molecule is necessary for transcriptional activation. The activation domains of both NRF-1 and NRF-2 were extensively characterized by both deletion and alanine substitution mutagenesis. The results show that these domains do not fall into known classes defined by a preponderance of amino acid residues, including glutamines, prolines, or isoleucines, as found in other eukaryotic activators. Rather, in both factors, a series of tandemly arranged clusters of hydrophobic amino acids were required for activation. Although all of the functional clusters contain glutamines, the glutamines differ from the hydrophobic residues in that they are inconsequential for activation. Unlike the NRF-2 domain, which contains its essential hydrophobic motifs within 40 residues, the NRF-1 domain spans about 40% of the molecule and appears to have a bipartite structure. The findings indicate that NRF-1 and NRF-2 utilize similar hydrophobic structural motifs for activating transcription.
Article
To determine the role of genes in the chromosomal regions 11p15 and 4p12 in the development of alcohol dependence, a sample of alcoholics (n = 133) and normal controls (n = 89) were screened using polymorphisms in the dopamine D4 receptor (DRD4), tyrosine hydroxylase (TH), and GABA receptor beta1 (GABRbeta1) genes. Comparison of total alcoholics with normal controls for GABRbeta1 gene was highly significant (p = 0.004). The difference between type II alcoholics and normal controls for the same allele frequencies was also significant (p = 0.029). The allele distributions of the polymorphisms in the DRD4 and TH genes in alcoholics and normal controls were similar and their differences were not significant. Our association studies indicate that the GABRbeta1 gene may play a role in the development of alcoholism. Therefore, it is important to screen a sample of well-characterized alcoholics with functional polymorphisms in all of the GABAalpha receptor subunit genes and determine their relationship with alcoholism phenotypes. Results with TH and DRD4 genes indicate that these two genes may not play major roles in the development of alcoholism.
Article
The nonparametric (model-free) method of linkage analysis Weighted Pairwise Correlation (WPC) has been proposed by Commenges [1994], and extended to incorporate identity-by-descent (IBD) information [Zinn-Justin and Abel, 1999]. We performed an autosome-wide scan in the Collaborative Study on the Genetics of Alcoholism data using the WPC-IBD method, considering two phenotypes related to alcohol dependence defined as residuals of binary traits adjusted for age and sex. Three chromosome 4 markers located in a region of 50 cM spanning from GABRB1 to D4S1651 provided Monte Carlo (MC) p-values lower than 0.005, confirming the possible influence of beta 1 GABA receptor and ADH genes in alcoholism. Furthermore, marker D15S642, not far from the ALDH6 gene, provided an MC p-value of 0.0005 in ethnic groups "White, Hispanic" and "White, non-Hispanic."
Article
We applied the transmission/disequilibrium test (TDT) for sibs (S-TDT) and for families with one parent (1-TDT), to the Collaborative Study on the Genetics of Alcoholism data set. The combined test is used to screen the whole genome to locate genes responsible for alcohol dependence. This analysis supports the previous finding that the region close to GABRB1 on chromosome 4 might be associated with alcohol dependence. The regions close to D6S474 and D11S1998 are also of particular interest. We found segregation distortion at the GR1K1 locus. The segregation distortion might be due to the binning method used in genotyping at this locus.
Article
GABA receptor genes have been postulated as candidates affecting the risk for alcoholism. The potential association between genes encoding five subunits of the GABA(A) receptors and alcoholism (alcohol dependence) was analyzed in the multiplex alcoholic pedigrees collected by the Collaborative Study on the Genetics of Alcoholism (COGA) using family-based association tests. We found consistent, although weak, linkage disequilibrium between GABRB1 (located on chromosome 4) and alcoholism (P < 0.03). Genes encoding GABRA1 and GABRA6, on chromosome 5, did not provide evidence for association with alcoholism. GABRA5 and GABRB3, on chromosome 15, were reported to be expressed uniparentally from the paternal chromosome. Analyses of paternal transmission of alleles of GABRA5 provided evidence for association with alcoholism, particularly in the Caucasian population and with the stricter ICD-10 definition of alcoholism (P < 0.004). Evidence of association was also observed during paternal transmission with GABRB3 in the Caucasian population (P < 0.007). Maternal transmissions provided no evidence for association. These data are consistent with an association between the expressed alleles in the GABA(A)-gene cluster on chromosome 15 and alcoholism that is modulated by genetic imprinting.
Article
Autistic disorder (MIM 209850) is a neurodevelopmental disorder characterized by impairments in reciprocal social interaction and communication and the presence of restricted and repetitive patterns of interest or behavior. These impairments are apparent in the first 3 years of life and persist into adulthood. With the improved detection and recognition of autism that has resulted from a broadening of the diagnostic concept and systematic population approaches, a recent prevalence study reported that autistic disorder affects as many as 1 in 300 children in a U.S. metropolitan area (Yeargin-Allsopp et al. 2003). The increase in prevalence has drawn significant attention from scientists, and a rapid increase in the level of interest in the etiology of autism has been seen in the past decade (Fombonne 1999, 2003).
Article
The mitochondrial respiratory apparatus is the product of both nuclear and mitochondrial genes. The protein coding capacity of mtDNA is restricted to the expression of 13 respiratory subunits and thus nuclear genes play a predominant role in the biosynthesis of the respiratory chain and in the expression of the mitochondrial genome. Transcriptional regulators that act on both nuclear and mitochondrial genes have been implicated in the bi-genomic expression of the respiratory chain. Mitochondrial transcription is directed by a small number of nucleus-encoded factors (Tfam, TFB1M, TFB2M, mTERF). The expression of these factors is coordinated with that of nuclear respiratory proteins through the action of transcriptional activators and coactivators. In particular, environmental signals induce the expression of PGC-1 family coactivators (PGC-1alpha, PGC-1beta, and PRC), which in turn target specific transcription factors (NRF-1, NRF-2, and ERR alpha) in the expression of respiratory genes. This system provides a mechanism for linking respiratory chain expression to environmental conditions and for integrating it with other functions related to cellular energetics.