ArticlePDF Available

Environmental functions of smallholder farmer land classes in the Zicuirán-Infiernillo Biosphere Reserve, Mexico. Funciones ambientales de las clases de tierra campesinas en la reserva de la biosfera Zicuirán-Infiernillo, México

Authors:

Abstract and Figures

Introduction: There are few cases in which the environmental functions of soils have been quantitatively evaluated using data from soil profile descriptions. Objective: The environmental functions of seven peasants land classes (Barrosa, Polvilla, Charanda, Tocura, Cementante, Polvilla/Barrosa and Polvilla/Charanda) in the Zicuirán-Infiernillo biosphere, Mexico, were evaluated in order to propose a more rational use of the soils. Materials and methods: Soil & Environment® software was used to evaluate the soil function in the water cycle, food and biomass production, nutrient cycle, habitat for flora and fauna, habitat for human life and torrential rainfall infiltration. Results and discussion: The Barrosa land class, distributed in the valley, has the most suitable environmental levels, followed by the Polvilla-Barrosa class with very high capacity in terms of torrential rainfall infiltration, and the Tocura and Polvilla-Charanda classes with high suitability in the same environmental function. Next is the Charanda class, suitable for the production of food and biomass and as a component of the nutrient cycle; finally, with more restricted suitability, in general terms, there is the Polvilla class that stands out as a flora and fauna habitat. Conclusion: The Barrosa and Charanda land classes have the greatest potential as food and biomass producers, and as a component of the nutrient cycle; however, these classes correspond to the area with the largest human settlements, which could cause problems in the supply of agricultural and livestock products.
Content may be subject to copyright.
Environmental functions of smallholder
farmer land classes in the Zicuirán-Infiernillo
Biosphere Reserve, Mexico
Funciones ambientales de las clases de
tierras campesinas en la Reserva de la
Biosfera Zicuirán-Infiernillo, México
Cutzi Bedolla-Ochoa,*; Francisco Bautista; Ángeles Gallegos
Universidad Nacional Autónoma de México, Centro de Investigaciones en Geografía Ambiental.
Antigua carretera a Pátzcuaro núm. , col. Exhacienda de San José de la Huerta. C. P. .
Morelia, Michoacán, México.
Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones sobre los
Recursos Naturales. Avenida Juanito Itzícuaro s/n, col. Nueva Esperanza. C. P. .
Morelia, Michoacán, México.
Skiu (Scientific Knowledge in Use). Cascadas núm. , fracc. Campestre La Huerta.C. P. .
Morelia, Michoacán, México.
*Corresponding author: cutzibedolla@gmail.com, tel.: + ()   ext. .
Abstract
Introduction: There are few cases in which the environmental functions of soils have been
quantitatively evaluated using data from soil profile descriptions.
Objective: The environmental functions of seven peasants land classes (Barrosa, Polvilla, Charanda,
Tocura, Cementante, Polvilla/Barrosa and Polvilla/Charanda) in the Zicuirán-Infiernillo biosphere,
Mexico, were evaluated in order to propose a more rational use of the soils.
Materials and methods: Soil & Environment® software was used to evaluate the soil function in
the water cycle, food and biomass production, nutrient cycle, habitat for flora and fauna, habitat
for human life and torrential rainfall infiltration.
Results and discussion: The Barrosa land class, distributed in the valley, has the most suitable
environmental levels, followed by the Polvilla-Barrosa class with very high capacity in terms of
torrential rainfall infiltration, and the Tocura and Polvilla-Charanda classes with high suitability in
the same environmental function. Next is the Charanda class, suitable for the production of food
and biomass and as a component of the nutrient cycle; finally, with more restricted suitability, in
general terms, there is the Polvilla class that stands out as a flora and fauna habitat.
Conclusion: The Barrosa and Charanda land classes have the greatest potential as food and
biomass producers, and as a component of the nutrient cycle; however, these classes correspond
to the area with the largest human settlements, which could cause problems in the supply of
agricultural and livestock products.
Resumen
Introducción: Existen pocos casos en que las funciones ambientales de los suelos hayan sido
evaluadas cuantitativamente utilizando datos de descripciones de perfiles de suelo.
Objetivo: Las funciones ambientales de siete clases de tierras campesinas (Barrosa, Polvilla,
Charanda, Tocura, Cementante, Polvilla/Barrosa y Polvilla/Charanda) de la biosfera Zicuirán-
Infiernillo, México, se evaluaron con el fin de proponer un uso más racional de los suelos.
Materiales y métodos: El software Soil & Environment® se utilizó para evaluar la función del suelo
en el ciclo de agua, producción de alimento y biomasa, ciclo de nutrimentos, hábitat para flora y
fauna, hábitat para la vida humana e infiltración en lluvias torrenciales.
Resultados y discusión: La clase de tierra Barrosa, distribuida en el valle, presenta los niveles
ambientales más aptos, seguida de la clase Polvilla-Barrosa con muy alta capacidad en términos de
infiltración de lluvias torrenciales, y de las clases Tocura y Polvilla-Charanda con aptitud alta en la
misma función ambiental. Posteriormente se encuentra la clase Charanda, apta para la producción
de alimentos y biomasa y como componente del ciclo de nutrimentos; finalmente, con aptitud más
restringida, en términos generales, se encuentra la clase Polvilla que destaca como hábitat de flora
y fauna.
Conclusión: Las clases de tierra Barrosa y Charanda son las de mayor potencial como productoras
de alimento y biomasa, y como componente del ciclo de nutrientes; sin embargo, estas clases
corresponden al área con mayores asentamientos humanos, lo cual podría ocasionar problemas de
abasto de productos agrícolas y pecuarios.
Received: September 21, 2017 / Accepted: May 2, 2018.
Palabras clave: perfil del
suelo; clase Barrosa; clase
Charanda; aptitud del
suelo; funciones del suelo.
Keywords: soil profile;
Barrosa class; Charanda class;
soil suitability; soil functions.
Scientific article http://dx.doi.org/10.5154/r.rchscfa.2017.09.058
www.chapingo.mx/revistas/forestales
Please cite this article as follows (APA 6): Bedolla-Ochoa, C., Bautista, F., & Gallegos, A. (). Environmental functions of
smallholder farmer land classes in the Zicuirán-Infiernillo Biosphere Reserve, Mexico. Revista Chapingo Serie Ciencias Forestales
y del Ambiente, 24(), -. doi: ./r.rchscfa...
266 Environmental functions of smallholder...
Revista Chapingo Serie Ciencias Forestales y del Ambiente | Vol. XXIV, núm. 3, septiembre-diciembre 2018.
Introduction
The importance of soils for sustaining human life has
been recognized during the last half century by both
national (Secretaría de Medio Ambiente y Recursos
Naturales [SEMARNAT], ) and international
organizations (Food and Agriculture Organization
of the United Nations [FAO], , , ). One of
the strategies for protecting soil from degradation is
by evaluating its environmental functions (Banwart
et al., ; Bouma, ; Lehmann, ; Lehmann,
David, & Stahr, ), which must be quantitatively
defined through replicable procedures. Likewise,
it is important to analyze these functions in terms
of relative importance, which makes it possible to
establish the particular level of capital and services
in a specific social context, where the ultimate goal
is to provide well-being to human beings and the
environment (Bautista, Gallegos, & Álvarez, ;
Blum, ; Lehmann et al., ).
Through different action plans or strategies, various
authors have recognized and evaluated the following
environmental, economic, social and cultural soil
functions: filtration and regulation of heavy metals,
as a component of the water cycle, food and biomass
production, as a component of the nutrient cycle,
habitat for flora, fauna and human life, transformation
medium, natural and cultural archive, filtration and
infiltration, and organic carbon fixation (Bautista et
al., ; Bouma, ; Brady & Weil, ; Lehmann
et al., ).
Lehmann et al. () and Lehmann and Stahr ()
developed models and software for evaluating soil
functions based on data from soil profiles (TUSEC);
however, the software is impractical and of limited use.
Bautista, Gallegos, and Pacheco () reviewed these
evaluation models and designed a more functional
software called Soil & Environment® that operates in
two directions, as a database for recording information
on soil profiles and for evaluating their functions,
quantitatively, through interpretative models.
Knowledge of soil properties and characteristics is
of great importance; appropriate crop selection and
practices suitable for soil conservation depend on
having this knowledge, thereby ensuring continuous
soil use with minimum loss of quality. Much of this
information is held by farmers, who have accumulated
extensive knowledge about their natural environment
over generations. In this way, based on the knowledge
of farmers, suitable strategies can be designed and
developed to achieve sustainable production systems.
The use of smallholder farmer land classes is very useful
as a means of communication at the local level (Bautista
& Zinck, ) and of technology transfer (Nethononda &
Odhiambo, ; Segura-Castruita et al., ).
Introducción
La importancia de los suelos para el sostén de la vida
humana ha sido reconocida durante el último medio
siglo por organizaciones nacionales (Secretaría de Medio
Ambiente y Recursos Naturales [SEMARNAT], ) e
internacionales (Food and Agriculture Organization of
the United Nations [FAO], , , ). Una de las
estrategias para proteger a los suelos de la degradación
es la evaluación de sus funciones ambientales (Banwart
et al., ; Bouma, ; Lehmann, ; Lehmann,
David, & Stahr, ), las cuales deben ser definidas
cuantitativamente a través de procedimientos
replicables. Asimismo, es importante el análisis de
estas funciones en términos de importancia relativa,
que permita establecer el nivel particular del capital
y servicios en un contexto social determinado, donde
el objetivo final sea proporcionar bienestar a los seres
humanos y el ambiente (Bautista, Gallegos, & Álvarez,
; Blum, ; Lehmann et al., ).
A través de diferentes planes de acción o estrategias,
diversos autores han reconocido y evaluado las
siguientes funciones ambientales, económicas,
sociales y culturales del suelo: filtración y regulación
de metales pesados, componente del ciclo de agua,
producción de alimento y biomasa, componente del
ciclo de nutrimentos, hábitat de flora y fauna, hábitat
de la vida humana, transformación del medio, archivo
natural y cultural, filtración e infiltración, y fijación de
carbono orgánico (Bautista et al., ; Bouma, ;
Brady & Weil, ; Lehmann et al., ).
Lehmann et al. () y Lehmann y Stahr ()
desarrollaron modelos y un software para la evaluación
de las funciones de los suelos con base en perfiles
(TUSEC); sin embargo, el software es poco práctico y de
utilización restringida. Bautista, Gallegos, y Pacheco
() retomaron estos modelos de evaluación y
diseñaron un software más funcional denominado
Soil & Environment® que opera en dos direcciones,
como base de datos para el registro de información
de los perfiles de suelos y para evaluar sus funciones,
cuantitativamente, a través de modelos interpretativos.
El conocimiento de las propiedades y características de
los suelos reviste gran importancia; de ello depende que
los cultivos y las prácticas a realizar sean adecuados para
la conservación del suelo, asegurando su utilización
continua con la mínima pérdida de calidad. Gran parte
de esta información la poseen los campesinos, quienes
han acumulado conocimiento amplio sobre su entorno
natural durante generaciones. De esta manera, a partir
del conocimiento de los agricultores y campesinos,
se pueden diseñar y desarrollar estrategias aptas para
lograr sistemas productivos sustentables. El uso de las
clases de tierras campesinas es de gran utilidad como
medio de comunicación a nivel local (Bautista & Zinck,
267
Bedolla-Ochoa et al.
Revista Chapingo Serie Ciencias Forestales y del Ambiente | Vol. XXIV, núm. 3, septiembre-diciembre 2018.
The Zicuirán-Infiernillo Biosphere Reserve (ZIBR) has
great geodiversity, expressed in geoforms, climatic
types and subtypes, and soil groups. However, it is
marked by land-use conflicts and threats, due to the
migration of the rural population into the interior
of the reserve to occupy new lands. Population
growth and immigration cause conflicts that affect
different aspects; on the one hand, the preservation
of the environment, the protection of landscapes and
the conservation of biodiversity and geodiversity and,
on the other, the satisfaction of the basic needs of the
population in this area. Therefore, it is necessary to offer
alternatives to ensure the conservation and protection
of the biodiversity, as well as the social and economic
development of the community. The objective of this
study is to evaluate the environmental functions of
the soils in the Zicuirán-Infiernillo Biosphere Reserve
(ZIBR), using the land classes identified by peasants.
Materials and methods
The study site comprises two zones belonging to
the ZIBR, one a buffer area and the other an area of
influence. The site is located in the municipality of La
Huacana, Michoacán, Mexico, between coordinates
° ’ ” and ° ’ ’’ NL and ° ’ ” and
° ’ ” EL (Figure ), with elevation levels ranging
from to  m. The climate is warm subhumid
(Aw) with rain during the summer; the average annual
rainfall is  mm and the average annual temperature
is  °C (Comisión Nacional del Agua [CONAGUA], ).
Figure 1. Location of the study area in the municipality of La Huacana, Michoacán, Mexico.
Figura 1. Localización de la zona de estudio en el municipio de La Huacana, Michoacán, México.
) y de trasferencia de tecnología (Nethononda &
Odhiambo, ; Segura-Castruita et al., ).
La Reserva de la Biosfera Zicuirán-Infiernillo (RBZI)
posee gran geodiversidad, expresada en geoformas,
tipos y subtipos climáticos, y grupos de suelos. No
obstante, presenta conflictos de uso de la tierra y
amenazas, debido a que existe migración de la población
rural hacia el interior de la reserva, para ocupar nuevos
terrenos. El crecimiento demográfico y la inmigración
causan conflictos que afectan diferentes aspectos; por
un lado, la preservación del ambiente, la protección
de los paisajes y la conservación de la biodiversidad
y geodiversidad y, por el otro, la satisfacción de las
necesidades básicas de la población en esta zona.
Por lo anterior, es necesario ofrecer alternativas
para garantizar la conservación y protección de
la biodiversidad, así como el desarrollo social y
económico de la comunidad. El presente estudio tiene
como objetivo evaluar las funciones ambientales de los
suelos en la Reserva de la Biosfera Zicuirán-Infiernillo
(RBZI), utilizando las clases de tierra identificadas por
los campesinos.
Materiales y métodos
El sitio de estudio comprende dos zonas pertenecientes
a la RBZI; una de amortiguamiento y una de influencia.
El área se localiza en el municipio de La Huacana,
Michoacán, México, entre las coordenadas ° ’ ” y
° ’ ’’ LN y ° ’ ” y ° ’ ” LE (Figura );
268 Environmental functions of smallholder...
Revista Chapingo Serie Ciencias Forestales y del Ambiente | Vol. XXIV, núm. 3, septiembre-diciembre 2018.
Technicians and producers jointly described  soil
profiles of . m in depth or as far as the parent
material allowed. The profiles corresponded to seven
land classes: Barrosa, Polvilla, Charanda, Tocura,
Cementante, Polvilla/Barrosa and Polvilla/Charanda.
The main characteristics of the physical environment
and the morphology of the soil profile were recorded
based on the criteria established by Siebe, Janh, and
Stahr () and FAO (). The physical and chemical
analyses carried out were bulk density, texture, wet and
dry color, pH, organic matter, exchangeable cations (Ca,
Mg, Na, K) and electrical conductivity (SEMARNAT, ).
Using the Soil & Environment® software, information
on soil profiles was evaluated for the following
environmental functions: the water cycle component,
food and biomass production, nutrient cycle
component, habitat for flora and fauna, habitat for
human life and torrential rainfall filtration (Bautista
et al., ; Gallegos, Bautista, & Dubrovin, ). The
evaluations were interpreted based on five classes
representing the capacity of soil functions: very high
(), high (), medium (), low () and very low ().
A geopedological map was made that has the geoforms
as a cartographic base and the land class associations as
a legend (Zinck, Metternicht, Bocco, & Del Valle, ).
The map, developed in ArcGIS .. (Environmental
Systems Research Institute [ESRI], , WGS 
datum, Universal Transverse of Mercator [UTM]
projection), was used for mapping the environmental
functions of the land classes.
Results and discussion
Environmental functions of the land classes
The physical and chemical properties of the soils by
horizon (Figure ) were transformed into measurements
of the properties by profile (Table ), which allowed a
better understanding of the functioning of the soil in
an integrated manner, enabling the evaluation of its
environmental functions.
According to Table , the Barrosa land class, distributed
in the valley, has the most suitable environmental
levels, followed by the Polvilla-Barrosa class with very
high capacity in terms of torrential rainfall infiltration
and the Tocura and Polvilla-Charanda classes with high
suitability in the same environmental function. Next
is the Charanda class, suitable for food and biomass
production and as a nutrient cycle component; finally,
with more restricted suitability, in general terms, there
is the Polvilla class that stands out as a habitat for flora
and fauna.
The habitat for flora and fauna is a measure of the
“naturalness” of the site because the degree of dist urbance
presenta elevaciones de  a  m. El clima es cálido
subhúmedo (Aw) con lluvia durante el verano; la
precipitación media anual es  mm y la temperatura
media anual es  °C (Comisión Nacional del Agua
[CONAGUA], ).
Los técnicos y productores, de manera conjunta,
describieron  perfiles de suelo de . m de
profundidad o hasta donde el material parental lo
permitió. Los perfiles correspondieron a siete clases de
tierra: Barrosa, Polvilla, Charanda, Tocura, Cementante,
Polvilla/Barrosa y Polvilla/Charanda. Las principales
características del medio físico y la morfología del
perfil del suelo se registraron con base en los criterios
establecidos por Siebe, Janh, y Stahr () y FAO
(). Los análisis físicos y químicos realizados fueron
densidad aparente, textura, color húmedo y seco, pH,
materia orgánica, cationes intercambiables (Ca, Mg,
Na, K) y conductividad eléctrica (SEMARNAT, ).
Mediante el software Soil & Environment®, la información
de los perfiles de suelo se evaluó para las siguientes
funciones ambientales: componente del ciclo de agua,
producción de alimento y biomasa, componente del
ciclo de nutrimentos, hábitat para la flora y fauna,
hábitat para la vida humana y filtración en lluvias
torrenciales (Bautista et al., ; Gallegos, Bautista, &
Dubrovin, ). Las evaluaciones se interpretaron con
base en cinco clases que representan la capacidad de
las funciones del suelo: muy alta (), alta (), media (),
baja () y muy baja ().
Se realizó un mapa geomorfopedológico que tiene las
geoformas como base cartográfica y las asociaciones de
las clases de tierra como leyenda (Zinck, Metternicht,
Bocco, & Del Valle, ). El mapa, elaborado en ArcGis
.. (Environmental Systems Research Institute
[ESRI], ; datum WGS , proyección Universal
Transverse of Mercator [UTM]), se utilizó para la
realización de los mapas de las funciones ambientales
de las clases de tierra.
Resultados y discusión
Las funciones ambientales de las clases de tierra
Las propiedades físicas y químicas de los suelos por
horizonte (Figura ) se transformaron a mediciones de
las propiedades por perfil (Cuadro ), lo cual permitió
una mejor comprensión del funcionamiento del suelo
de manera integral, posibilitando la evaluación de sus
funciones ambientales.
Acorde con el Cuadro , la clase de tierra Barrosa,
distribuida en el valle, presenta los niveles ambientales
más aptos, seguida de la clase Polvilla-Barrosa con muy
alta capacidad en términos de infiltración de lluvias
torrenciales y de las clases Tocura y Polvilla-Charanda
269
Bedolla-Ochoa et al.
Revista Chapingo Serie Ciencias Forestales y del Ambiente | Vol. XXIV, núm. 3, septiembre-diciembre 2018.
Table 1. Properties of the soils by full profile in the Zicuirán-Infiernillo Biosphere Reserve, Mexico.
Cuadro 1. Propiedades de los suelos por perfil completo en la Reserva de la Biosfera Zicuirán-Infiernillo, México.
Profile key /
Clave del perfil
Land Use /
Uso del
suelo
Depth
(cm) /
Profundidad
(cm)
FE
(kg·m-2) /
TF
(kg·m-2)
FC
(L·m-2) /
CC
(L·m-2)
CEC
(mol·m-2) /
CIC
(mol·m-2)
SOC
(t·h a-1) /
COS
(t·h a-1)
pH OM /
MO
Polvilla
Cobano-
IG and SV ⁄
PI y VS
 . . .. . .
BarrosaP ENCR and
LDF ⁄
GEN y SBC
 . . . . ..
Cementante  RA, LDF
and MF ⁄
AT, SBC
y SM
  . . .. ..
Polvilla-
Barrosa P
C  . ... . .
Polvilla-
Charanda ⁄
SV and EG ⁄
VS y PE
 . .. . . .
Charanda⁄ RA, EG
and SL ⁄
AT, PE y TS
 . . . . ..
Toc ura ⁄   C and LDF ⁄
C y SBC
  . . . . . .
FE = fine earth, FC = field capacity, CEC = cation exchange capacity, SOC = soil organic carbon, OM = organic matter. Land uses: IG = intensive grazing, ENCR = extensive
nomadic cattle ranching, LDF = low deciduous forest, MF = medium forest, C = crops, RA = rainfed agriculture, EG = extensive grazing, SL = selective logging, SV = secondary
vegetation.
TF = tierra fina, CC = capacidad de campo, CIC = capacidad de intercambio catiónico, COS = carbono orgánico del suelo, MO = materia orgánica. Usos del suelo: PI = pastoreo
intensivo, GEN = ganadería extensiva nómada, SBC = selva baja caducifolia, SM = selva mediana, C = cultivos, AT= agricultura de temporal, PE = pastoreo extensivo, TS = tala
selectiva, VS = vegetación secundaria.
Figure 2. Profiles of the smallholder farmer land classes identified and classified according to farmer knowledge
and IUSS Working Group WRB (2006) for soils of the Zicuirán-Infiernillo Biosphere Reser ve, Mexico.
Figura 2. Perfiles de las clases de tierras campesinas identificadas y clasificadas de acuerdo con el conocimiento
campesino y IUSS Working Group WR B (2006) para suelos de la Reserva de la Biosfera Zicuirán-
Infiernillo, México.
270 Environmental functions of smallholder...
Revista Chapingo Serie Ciencias Forestales y del Ambiente | Vol. XXIV, núm. 3, septiembre-diciembre 2018.
is evaluated. In this sense, the Polvilla/Barrosa class
exhibits favorable conditions as habitat for flora and
fauna; it is also suitable as a water cycle component
and for aquifer recharge. This land class is located in
the altiplano; therefore, the most suitable function is
as a conservation area. However, it is also reported as
suitable for human life, a situation that would conflict
with the environmental functions.
The environmental functions of the land classes
and their current uses
The Polvilla/Charanda, Cementante and Charanda
land classes are located in the plains (Table ). The
Polvilla/Charanda class with secondary vegetation
is used for extensive semi-nomadic grazing; based
on the evaluations, the ideal function is torrential
rainfall infiltration. The Cementante class is used
mainly in rainfed agriculture and is suggested as a
rainfall infiltrator, food and biomass producer, and
nutrient cycle component, while Charanda, with
rainfed agriculture, extensive nomadic grazing and
selective logging, presents qualities as a nutrient cycle
component and for food and biomass production.
In the valley, the Barrosa class is located in low
deciduous forest with extensive nomadic cattle
ranching. This type of land has the suitability to be
used as a means of producing food and biomass or as
a nutrient cycle component; it is not desirable for it
Table 2. Evaluation of the environmental functions of the soil profiles in the Zicuirán-Infiernillo Biosphere
Reserve, Mexico.
Cuadro 2. Evaluación de las funciones ambientales de los perfiles de suelo en la Reserva Zicuirán-Infiernillo,
México.
Land classes /
Clases de tierra FB / A-B NC /
Cic-Nu
WC /
Cic-Ag
FFH /
HFF
TRI /
Inf-ll-t
HHL /
HVH
Suitabilit y /
Aptitud
Suggested use /
Uso sugerido
Toc ur a
(foothills) ⁄ (piedemonte)
    Conservation ⁄
Conservación
Barrosa
(valley) ⁄ (valle)
    Agriculture ⁄
Agricultura
PolvillaBarrosa
(altiplano) ⁄ (altiplano)
    Conservation ⁄
Conservación
Polvilla
(hill) ⁄ (colina)
    Conservation ⁄
Conservación
Cementante
(plain) ⁄ (planicie)
    Urbanism ⁄
Urbanismo
Charanda
(plain) ⁄ (planicie)
    Agriculture ⁄
Agricultura
Polvilla⁄Charanda
(plain) ⁄ (planicie)
    Urbanism ⁄
Urbanismo
FB = food and biomass, NC = nutrient cycle, WC = water cycle, FFH = flora and fauna habitat, TRI = torrential rainfall infiltration, HHL = habitat for human life.
Suitability classes: very high (5), high (4), medium (3), low (2) and very low (1).
A-B = alimentos y biomasa, Cic-Nu = ciclo de nutrimentos, Cic-Ag = ciclo del agua, HFF = hábitat de flora y fauna, Inf-ll-t = infiltración en lluvias torrenciales,
HVH = hábitat para la vida humana. Clases de aptitud: muy alta (5), alta (4), media (3), baja (2) y muy baja (1).
con aptitud alta en la misma función ambiental.
Posteriormente se encuentra la clase Charanda, apta
para la producción de alimentos y biomasa y como
componente del ciclo de nutrimentos; finalmente,
con aptitud más restringida, en términos generales, se
encuentra la clase Polvilla que destaca como hábitat de
flora y fauna.
El hábitat para la flora y fauna es una medida de la
“naturalidad” del sitio, debido a que se evalúa el grado de
perturbación. En este sentido, la clase Polvilla/Barrosa
registra condiciones favorables como hábitat para la
flora y la fauna; también es apta como componente
del ciclo de agua y para la recarga de acuíferos. Esta
clase de tierra se ubica en el altiplano, por tanto, la
función más idónea es como área de conservación; sin
embargo, también se reporta apta para la vida humana,
situación que entraría en conflicto con las funciones
ambientales.
Las funciones ambientales de las clases de tierra
y los usos actuales
En las planicies se presentan las clases de tierra
Polvilla/Charanda, Cementante y Charanda (Cuadro ).
La Polvilla/Charanda con vegetación secundaria se
usa para pastoreo extensivo seminómada; con base en
las evaluaciones, la función idónea es la infiltración
de lluvias torrenciales. La clase Cementante se usa
principalmente en agricultura de temporal y se sugiere
271
Bedolla-Ochoa et al.
Revista Chapingo Serie Ciencias Forestales y del Ambiente | Vol. XXIV, núm. 3, septiembre-diciembre 2018.
to be used as habitat for human life because it would
undermine the food supply and affect the water quality
of the rivers, as is already seen today.
The Polvilla/Barrosa class dominates the high plateau
and is currently used for the cultivation of pastures;
this land use could be compatible with the infiltration
capacity in torrential rains; on the plain, this class is
suitable as habitat for human life.
In the hill areas, the Polvilla class is reported to have
secondary vegetation and to be used for intensive cattle
grazing. Based on the evaluation of soil functions, it is
suggested that this type of land be used as a habitat for
flora and fauna.
Finally, the Tocura land class, located in the foothills
and used for pasture cultivation, could be used
as a torrential rainfall infiltrator or as a water
cycle component.
Land evaluation is “the process of assessment of
land performance when used for specific purposes”
(FAO, ), although it can also be “all the methods
to explain or predict land-use potential” (De la Rosa,
Mayol, Díaz-Pereira, Fernández, & De la Rosa, .)
A land assessment should consider the following
factors: climate, soil, relief, market, technological
level to apply and current land use. For each factor, an
interpretative method and the assignment of ranges
(suitable, moderately suitable, marginally suitable and
unsuitable) are needed. In this sense, an analysis of the
soil profile in relation to its environmental functions,
carried out in a systematic and orderly way by means
of software, is a contribution to the process of assessing
its capacities.
Assessing the environmental functions of soils through
Soil & Environment® adds to the diversity of interpretive
soil models (FAO, , ; Segura-Castruita, Sánchez-
Guzmán, Ortiz-Solorio, & Gutiérrez-Castorena, ;
United States Department of Agriculture [USDA], ).
According to Bautista et al. (), the automation of
interpretive soil methods using specialized software
provides the following advantages: a) reduces errors in
the capture of base information, b) avoids potential data
loss, c) decreases data query time, d) avoids introducing
errors in the application of evaluation techniques and
e) improves the handling of information emanating
from the evaluation.
The soil function map (Figure ) represents a model
of integration and interaction of some of the soil-
forming factors. This proposed land-use model must
be discussed among authorities, technicians and the
productive and environmental sector.
compatible como infiltradora de lluvias, productora
de alimento y biomasa, y como componente del ciclo de
nutrimentos; mientras que Charanda, con agricultura
de temporal, pastoreo extensivo nómada y tala selectiva,
presenta cualidades como componente del ciclo de
nutrimentos y para la producción de alimento y biomasa.
En el valle, la clase Barrosa se ubica en selva baja
caducifolia con ganadería extensiva nómada. Esta
clase de tierra posee la condición para aprovecharse
como medio productor de alimento y biomasa o como
componente del ciclo de nutrimentos; no es deseable
que se utilice como hábitat de vida humana porque
se atentaría contra el abastecimiento de alimentos
y afectaría la calidad del agua de los ríos, como ya se
observa en la actualidad.
En altiplanicie domina la Polvilla/Barrosa que
actualmente se utiliza para el cultivo de pastos; este uso
de la tierra podría resultar compatible con la capacidad de
infiltración en lluvias torrenciales; en planicie, la clase
es adecuada como hábitat para la vida humana.
En colina se reporta la Polvilla con vegetación secundaria
y con uso para pastoreo intensivo de ganado. Con base
en la evaluación de las funciones del suelo, se sugiere
que dicha clase de tierra sea usada como hábitat para
la flora y la fauna.
Finalmente, la clase de tierra Tocura, localizada en
piedemonte y usada para el cultivo de pastos, podría
ser utilizada como infiltradora en lluvias torrenciales o
como componente del ciclo de agua.
La evaluación de tierras es “el proceso de evaluación
del desempeño de las tierras cuando se usan para
propósitos específicos” (FAO, ), aunque también
puede ser “todos los métodos para explicar o predecir
el potencial de uso de la tierra” (De la Rosa, Mayol, Díaz-
Pereira, Fernández, & De la Rosa, ). Una evaluación
de tierras debe considerar los siguientes factores: clima,
suelo, relieve, mercado, nivel tecnológico a aplicar y
uso actual del terreno. Para cada factor es necesario
un método interpretativo y la asignación de rangos
(apto, medianamente apto, marginalmente apto y no
apto). En este sentido, el análisis del perfil de suelo en
relación con sus funciones ambientales, de manera
sistemática y ordenada mediante un software, es un
aporte al proceso de evaluación de sus aptitudes.
La evaluación de las funciones ambientales de los
suelos mediante Soil & Environment® se suma a
la diversidad de modelos interpretativos de suelos
(FAO, , ; Segura-Castruita, Sánchez-Guzmán,
Ortiz-Solorio, & Gutiérrez-Castorena, ; United
State Department of Agriculture [USDA], ). De
272 Environmental functions of smallholder...
Revista Chapingo Serie Ciencias Forestales y del Ambiente | Vol. XXIV, núm. 3, septiembre-diciembre 2018.
Figure 3. Suitability of land classes based on environmental functions, using Soil & Environment®, in soils of the
Zicuirán-Infiernillo Biosphere Reserve, Mexico.
Figura 3. Mejores aptit udes de las cla ses de tierr as campesinas con base en la eva luación de las funciones ambientales,
utilizando Soil & Environment®, en suelos de la Reserva de la Biosfera Zicuirán-Infiernillo, México.
273
Bedolla-Ochoa et al.
Revista Chapingo Serie Ciencias Forestales y del Ambiente | Vol. XXIV, núm. 3, septiembre-diciembre 2018.
This study represents the first contribution in terms
of evaluating soil functions carried out in Mexico.
Similar to the conclusion formed by Liang, Lehmann,
Wu, and Stahr (), evaluations aimed at an
appropriate use of natural resources allow for a global
understanding of the soil and provide references for
the planning of its use.
Conclusions
In the Zicuirán-Infiernillo Biosphere Reserve, the
Barrosa and Charanda land classes have the greatest
potential in terms of their function as food and biomass
producers, and as a component of the nutrient cycle.
However, these classes correspond to the area with the
largest human settlements; that is, they are located in
fertile, flat, deep and more moist soils, a situation that
could cause problems in the supply of agricultural and
livestock products. Therefore, there is a need to form
an effective evaluation and conservation mechanism to
balance land uses, considering their best environmental
suitabilities and functions. On the other hand, Soil &
Environment® uses information on the climate and
slope of the terrain or geoform for the estimation of
some models; for this reason, the software requires the
incorporation of climate and relief databases, as well
as of the uses of the land and its proximity to roads
and waterbodies.
Acknowledgments
The authors wish to thank the following: The Dirección
General del Personal Académico of the Universidad
Nacional Autónoma de México for funding the PAPIIT
IN  project; CONACYT for granting the doctoral
fellowship of the first author; our farmer friends for
carrying out the fieldwork; Manuel Mendoza for the
advice provided for making the maps; Alma Barajas A.
for support provided during fieldwork; and the Skiu
company for providing us with the S & E software license.
End of English version
References / Referencias
Bautista, F., Gallegos, T. A., & Álvarez, A. O. (). La evaluación
automatizada de las funciones ambientales del suelo con base
en datos de perfiles. México: Centro de Investigaciones en
Geografía Ambiental, Universidad Nacional Autónoma
de México. Retrieved from http://www.ciga.unam.mx/
publicaciones/images/abook_file/----.pdf
Bautista, F., Gallegos, A., & Pacheco, A. (). Analysis of
the environmental functions of soil profile data (Soil &
Environment). México: Skiu. Retrieved from https://
www.researchgate.net/publication/_
Analysis_of_the_environmental_functions_with_
soil_profile_data_Soil_Environment
acuerdo con Bautista et al. (), la automatización
de los métodos interpretativos de suelos mediante un
software especializado propicia las ventajas siguientes: a)
disminución de errores en la captura de la información
base, b) se evita la pérdida potencial de los datos, c)
disminuye el tiempo de consulta de datos, d) evita la
introducción de errores en la aplicación de las técnicas
de evaluación y e) mejora el manejo de la información
emanada de la evaluación.
El mapa de funciones de suelos (Figura ) representa un
modelo de integración e interacción de algunos de los
factores formadores de suelo. Dicho modelo de utilización
del territorio propuesto debe ser discutido entre
autoridades, técnicos y sector productivo y ambiental.
Este estudio representa la primera contribución en
términos de evaluación de las funciones del suelo
realizada en México. De modo similar a lo concluido por
Liang, Lehmann, Wu, y Stahr (), las evaluaciones
orientadas a un uso adecuado de los recursos
naturales permiten una comprensión global del suelo y
proporcionan referencias a la planificación de su uso.
Conclusiones
En la Reserva de la Biosfera Zicuirán-Infiernillo, las clases
de tierra Barrosa y Charanda son las de mayor potencial en
términos de su función como productoras de alimento y
biomasa, y como componente del ciclo de nutrientes. No
obstante, dichas clases corresponden al área con mayores
asentamientos humanos; es decir, estos se localizan
en las tierras fértiles, planas, profundas y con mayor
humedad, situación que podría ocasionar problemas de
abasto de productos agrícolas y pecuarios. Por lo anterior,
existe la necesidad de formar un mecanismo efectivo de
evaluación y conservación, para equilibrar los usos del
suelo, considerando sus mejores aptitudes y funciones
ambientales. Por otra parte, Soil & Environment® ocupa
información del clima y de la pendiente del terreno o
geoforma para la estimación de algunos modelos; por tal
razón, el software requiere la incorporación de bases de
datos del clima y relieve, así como de los usos de la tierra
y su cercanía a caminos y cuerpos de agua.
Agradecimientos
A la Dirección General de Asuntos del Personal
Académico de la Universidad Nacional Autónoma
de México por el financiamiento al proyecto PAPIIT
IN  y al CONACYT por la beca doctoral de la
primera autora. A nuestros amigos campesinos por el
trabajo de campo; a Manuel Mendoza por la asesoría
para la elaboración de los mapas; a Alma Barajas A. por
el apoyo durante el trabajo de campo; y a la empresa
Skiu por facilitarnos la licencia del software S&E.
Fin de la versión en español
274 Environmental functions of smallholder...
Revista Chapingo Serie Ciencias Forestales y del Ambiente | Vol. XXIV, núm. 3, septiembre-diciembre 2018.
Bautista, F., & Zinck, A. J. (). Construction of an Yucatec
Maya soil classification and comparison with the
WRB framework. Journal Ethnobiology Ethnomed, 6(),
–. doi: ./---
Banwart, S., Menon, M., Bernasconi, S. M., Bloem, J.,
Blum, W. E., de Souza, D. M., ...Zhang, B. (). Soil
processes and functions across an international
network of Critical Zone Observatories: Introduction
to experimental methods and initial results. Comptes
Rendus Geoscience, 344(), –. doi: ./j.
crte...
Bouma, J. (). Soils are back on the global agenda:
Now what? Geoderma, 150, –. doi: ./j.
geoderma...
Blum, W. E. H. (). Functions of soil for society and the
environment. Reviews in Environmental Science and Bio/
Techno l og y, 4, –. doi: ./s---x
Brady, N. C., & Weil, R. R. (). The nature and properties of
soils (th ed). Upper Saddle River, NJ, USA: Prentice
Hall.
Comisión Nacional del Agua (CONAGUA). (). Servicio
meteorológico nacional; datos climatológicos -
. Retrieved April , , from http://smn.
cna.gob.mx/climatologia/normales/estacion/mich/
NORMAL.TXT
De la Rosa, D., Mayol, F., Díaz-Pereira, E., Fernández, M., & De
la Rosa, D. (). A land evaluation decision support
system (Mic roLEIS DSS) for agr icultura l soil protection:
With special reference to the Mediterranean region.
Environmental Modeling & Software, 19(), –. doi:
./j.envsoft...
Environmental Systems Research Institute (ESRI). ().
ArcMap ... ArcGIS Resource Center. Redlands,
California, USA: Author.
Food and Agriculture Organization of the United Nations
(FAO). (). The future of our land: Facing the challenge.
Rome, Italy: FAO-UNEP. Retrieved from http://www.
fao.org/docrep//xe/xe.htm
Food and Agriculture Organization of the United Nations
(FAO). (). Guidelines for soil description (th ed.).
Rome, Italy: Author.
Food and Agriculture Organization of the United Nations
(FAO). (). Guía para la descripción de suelos. Roma,
Italia: Autor. Retrieved from de www.fao.org//a-
as.pdf
Gallegos, A., Bautista, F., & Dubrovin, I. (). Suelo y
ambiente: Software para evaluar las funciones
ambientales de los suelos. Software & Systems, 114(),
–. doi: ./-x..-
Lehmann, A. (). Technosols and other proposals on
urban soils for the WRB (World reference base for
soil resources). International Agrophysics, 20(), 
. Retrieved from http://www.old.international-
agrophysics.org/artykuly/ international_agrophysics/
IntAgr____.pdf
Lehmann, A., David, S., & Stahr, K. (). TUSEC-Technique
for soil evaluation and categorization for natural and
anthropogenic soils. Germany: Universitat Hohenheim
Bodenkundliche Hefte.
Lehmann, A., & Stahr, K. (). The potential of soil
functions and planner-oriented soil evaluation to
achieve sustainable land use. Journal of Soils and
Sediments, 10(), –. doi: ./s- -
-
Liang, S., Lehmann, A., Wu, K., & Stahr, K. (). Perspectives
of function-based soil evaluation in land-use planning
in China. Soils Sediments, 14, – doi: ./s-
--y
Nethononda, L. O., & Odhiambo, J. J. O. (). Indigenous soil
knowledge relevant to crop production of smallholder
farmers at Rambuda irrigation scheme, Vhembe
District South Africa. African Journal of Agricultural
Research, 6(), –. doi: ./AJAR.
Segura-Castruita, M. A., Sánchez-Guzmán, P., Ortiz-Solorio,
C. A., & Gutiérrez-Castorena, M. C. (). Carbono
orgánico de los suelos de Mé xico. Terra Latinoamer icana,
23(), –. Retrieved from http://www.redalyc.org/
pdf//.pdf
Segura-Castruita, M. A., Martínez-Corral, L., García-
Barrientos, E., Huerta-García, A., García-Hernández,
J. L., Fortis-Hernández, M., …Preciado-Rangel,
P. (). Localization of local soil classes in an
arid region of Mexico, using satellite imagery.
International Journal of Remote Sensing, 33(), –,
doi: ./..
Siebe, C., Janh, R., & Stahr, K. (). Manual para la descripción
y evaluación ecológica de suelos en el campo. México:
Sociedad Mexicana de la Ciencia del Suelo.
Secretaría de Medio Ambiente y Recursos Naturales
(SEMARNAT). (). Norma Oficial Mexicana
NOM--SEMARNAT-. Que establece las
especif icaciones de fertil idad, salinidad y c lasificación
de suelos. Estudio, muestreo y análisis. México:
Diario Oficial de la Federación. Retrieved from http://
biblioteca.semarnat.gob.mx/janium/Documentos/
Ciga/libros/DOn.pdf
United States Department of Agriculture (USDA). ().
Kellogg Soil Survey Laboratory. Methods Manual.
Soil Survey Investigations Report No. . Version ..
Retrieved from https://www.nrcs.usda.gov/Internet/
FSE_DOCUMENTS/stelprdb.pdf
IUSS Working Group WRB. (). World reference base for soil
resources 2006. Rome: FAO. Retrieved from www.fao.
org//a-ae.pdf
Zinck, J. A., Metternicht, G., Bocco, G., & Del Valle, H. F. ().
Geopedology. An integration of geomorphology and pedology
for soil and landscape studies. Springer International
Publishing Switzerland. doi: ./----
... On the other hand, the value of the environmental functions of soils has been recognized in recent years [8][9][10][11], but only qualitative models have been developed for evaluating these functions [12][13][14]. There are a few examples of quantitative models that consider the environmental soil functions, but the complete soil profile has never been included in these evaluations [15][16][17][18][19]. The first quantitative models for evaluating the environmental soil functions considering the complete soil profile were made by [8,20]. ...
... The Soil & Environment software has been evaluated and used successfully [8,18,21]; however, it is still necessary to calibrate it to work with the specific conditions of all possible soils, such as Andosols. ...
... For this function, the presence of contaminants and the generation of dust and humidity in the environment were evaluated, which are factors that can have negative repercussions on human health [17]. The Eutric Skeletic Mollic Silandic Andosol (Loamic) had medium aptitude levels with respect to its ability to perform this function is a result of its weak aggregate stability, causing dust formation, which can potentially cause gastric or pulmonary diseases [18]. The fact that Andosol was more highly evaluated than Cambisol and Regosol evidenced the need to complement the evaluation by considering natural risk factors. ...
Article
Full-text available
Abstract: Making quantitative evaluations of the environmental functions of the soil in a quantitative way is an urgent necessity for transitioning towards the sustainable use of soils. The objective of this work was to use and improve the Soil and Environment software for soils of volcanic areas, for which the software was not designed to work on. The study was conducted in the volcanic area of Michoacan, Mexico. Nine soil profiles were described; samples were taken from each horizon and the physical and chemical properties of each sample were analyzed. The Soil and Environment software was used to conduct pedoecological evaluations of the soil samples and, subsequently, an evaluation of the environmental functions of the soils and the modeling of scenarios was carried out. The soil profiles studied showed variable properties of hydraulic conductivity, field capacity, air capacity, effective cation exchange capacity, and soil organic carbon. The soils showed very high nutrient retention, high naturalness and sorption of heavy metals, and low cultural and natural archive properties. The Soil and Environment software generally works well with soils of volcanic areas; however, we suggest improvements in the evaluation method of the following functions: naturalness and agricultural quality. Additionally, the estimating method of aeration capacity and hydraulic conductivity should be calibrated for the properties of the volcanic soils. The modeling of scenarios allowed us to identify the soil profiles that are most vulnerable to degradation. The modeling of scenarios provided a clear idea of the negative and positive effects that a change in soil use would have.
... In the state of Michoacán, Mexico, there is local and peasant knowledge about soil; for example, spatial relationships between land classes and soils have been reported (Barrera-Bassols, Zinck, & Van Ranst, 2009); there have been reports on the similarities and differences between land classes and soil classification according to the FAO (Ortiz-Solorio & Gutiérrez-Castorena, 1999;Sotelo-Ruiz & Ortiz-Solorio;, as well as on the P'urhépechas names of soils (Alarcón-Cháires, 2010; Bedolla-Ochoa, Bautista, & Gallegos, 2018). However, with the exception of Alcalá, Ortiz, & Gutiérrez (2001), there are few studies comparing and harmonizing the denomination or description that peasants make of various soil classes based on properties determined in the laboratory. ...
... En el estado de Michoacán, México, existe conocimiento local y campesino sobre el suelo; por ejemplo, se han reportado las relaciones espaciales entre las clases de tierra y los suelos (Barrera-Bassols, Zinck, & Van Ranst, 2009); las similitudes y diferencias entre las clases de tierras y la clasificación de suelos según la FAO (Ortiz-Solorio & Gutiérrez-Castorena, 1999;Sotelo-Ruiz & Ortiz-Solorio;; y se han publicado los nombres P'urhépechas de los suelos (Alarcón-Cháires, 2010; Bedolla-Ochoa, Bautista, & Gallegos, 2018). No obstante, con excepción de Alcalá, Ortiz, y Gutiérrez (2001), son escasos los estudios donde se compare y armonice la denominación o descripción que los campesinos hacen de diversas clases de suelo, a partir de las propiedades determinadas en laboratorio. ...
Article
Full-text available
Introduction: Peasants in La Huacana, Michoacán, have developed local knowledge about natural resources, including soil. Objective: To compare local soil knowledge with technical knowledge to elucidate whether peasants identify horizons and give them names and attributes. Materials and methods: Thirty-one trial pits were made and the profiles were described in collaboration with the peasants. Samples were taken by horizons and strata to determine their properties in the laboratory. The obtained data were subjected to discriminant analysis and principal component analysis. Results and discussion: The soil classes present in the study area were: Polvilla, Barrosa, Charanda, Tocura, Cementante, Cascajo, Balastre and Tepetate. The peasants named the soil profile horizons/materials as soil classes, making it possible to find several soil classes in one profile. These classes were statistically differentiated in the profile on the basis of physical and chemical properties; 72.13 % of the cases were correctly classified. Conclusion: For the first time, it is reported that the names of soil classes corresponded to horizons and layers of recently buried soils and not to the complete soil profile.
... The thickness of the horizons and the percentage of coarse fragments are the physical properties essential for converting the physical and chemical properties of soil into surface units (pedo-ecological evaluation) Gallegos et al., 2016;Bedolla-Ochoa et al., 2018). The evaluation of both properties is qualitative (based on the opinion of an expert). ...
Article
Full-text available
In this study, we developed a method that allows the delimitation of horizons and the quantification of coarse fragments in soil profiles from volcanic areas using digital images. The delineation of the soil profile horizons included the following phases: pre-processing of the digital image, extraction of color systems from the pre-processed image, k-means segmentation of the HSV and CIE L*a*b* color systems, delineation of the horizons, and determination of the horizon characteristics. The coarse fragments were quantified in the following three phases: superpixel analysis of the soil profile image, histogram classification of the image objects, and extraction and quantification of the coarse fragments. For horizon delineation, the HSV color system performed better for the Eutric Andic Cambisol (Loamic, Ochric), and the CIE L*a*b* system performed better for the Eutric Skeletic Mollic Silandic Andosol (Loamic). The RGB image and the S component of the HSV system demonstrated similar coarse fragment volume calculation performance for the Eutric Andic Cambisol (Loamic, Ochric), whereas the S component worked best for the Eutric Skeletic Mollic Silandic Andosol (Loamic). We created a graphic decision-making system for the delineation of soil horizons and for the quantification of coarse fragments in digital images of soil profiles.
Article
Full-text available
Soil degradation is a part of total ecological crisis due to the fact that soil is the link of any ecosystem. The soil loses its environmental functions (EF) under the comprehensive loads. One of the key topics of nature protection in the last decade is the evaluation and accounting ecosystem services in human economic activity. Therefore, the search and development of spatial planning tools for areas based on their EF is very important. The article considers the software for evaluation of EF using TUSEC algorithms (Technique for Soil Evaluation and Categorization). The technique implies a score evaluation of basic environmental functions of natural and anthropogenic soils. EF evaluation allows keeping a balance of benefits and losses at a spatial planning as a result of lower environmental impacts on soil functions. The central component of the software is a relational DBMS Derby designed in Java using IDE Eclipse. Data on the site, field description and analysis of soil profiles are stored in the database using input tools. Intermediate calculations and evaluation of EF is based on input data by TUSEC algorithms. The forcasting modeling tool allows calculating the change of EF ranks for different types of land use. The evaluation results of EF and predictive models can be presented by graphs. Export of tabular and graphical information is possible as well as the spatial reference data into the GIS. Friendly interface for data input and output and database management is designed for users who do not know SQL query language.
Chapter
Full-text available
The book contains a preface and 33 chapters that cover a large array of subjects including the basics of geopedology, implementation methods and techniques, and applications in land degradation and land use planning. Subjects addressed by the contributing authors are diverse but complementary. This shows that geopedology can be seen as a far-reaching discipline to support the inventory, scientific study, and practical management of natural resources. Geopedology aims at integrating soils and geoforms, two basic components of the earth’s epidermis. Sets of examples that use different modalities or variants of geopedology are presented, from open soilscape approach for scientific research, to a more structured survey approach for mapping purposes.
Article
Full-text available
Rambuda Irrigation Scheme is found in the Mutale Local Municipality in Vhembe District of the Limpopo Province. There is no information on soils or basis for crop choices. Farmers have been growing crops on a trial and error basis and consequently no increase in yields. Situation analysis was conducted followed by field surveys that included person-to-person interview and participatory soil mapping. Verification of participatory soil map was achieved through soil profile description and classification. In general, famers knew the different types of soil found in the irrigation scheme according to local soil classification system. Farmers identified and described four soil types namely, Tshilogo, Dzwabo, Sengetavha and Tshitavha using local nomenclature. They identified soil compaction, water logging, crusting and quick drying as limiting factors to crop production. Indigenous soil classification system is based on surface soil physical properties related to the use of the soils. Indigenous soil classification system classifies soil according to their properties and is consistent with other systems used elsewhere around the world. The results showed that indigenous soil knowledge and participatory mapping provide reliable information and can be used together with modern soil classification system to develop intermediate soil classification system for South Africa.
Article
Full-text available
Purpose The complex and multi-functional body of soil is crucial for land use; therefore, soil evaluation should guide land-use planning. In regard to this, there is an urgent need for function-based soil evaluation, especially in highly developed and fast-growing countries. In China, there is no specified law which may protect soil comprehensively, and due to ignorance of certain soil functions, soil evaluation has not played a prominent role in land-use planning. In addition, soil evaluation must be brought into the practices of land-use planning in China to facilitate rational and sustainable land use. Materials and methods In this study, by analyzing the evidence of soil functions and the according algorithms for soil evaluation, the necessity and possibility of combining function-based soil evaluation and land-use planning are found. For this, existing application studies from China and Europe were used. Using the methods of TUSEC (Technique for Soil Evaluation and Categorization for Natural and Anthropogenic Soils), the results of function-based soil evaluation of Zhengzhou City are shown, and tentative suggestions for land-use planning are given. Through the summarization of the previous discussion and a case study of Zhengzhou City, the future possibilities and perspectives for soil evaluation in land-use planning in China are determined. Results and discussion At present, China's focus in soil evaluation is on agriculture; thus, a lack of attention toward ecological balances in the environment has been found. In order to satisfy the reasonable planning of different land uses, a function-based framework of soil evaluation is required. TUSEC was found to be a suitable model for the evaluation method of soil functions, which China could adopt in its land-use planning. Function-based soil evaluation is necessary to improve land-use database and mapping to guide overall land-use planning, to optimize local ecological adjustment, and to monitor ecological sensitive areas. Conclusions As the awareness of sustainable development grows, the role of soil evaluation in the procedure of land-use planning is becoming increasingly important in China. A function-based soil evaluation may be adapted to this necessity.
Article
Full-text available
A map of local soil classes (LSCs) was used to make digital maps of soil classes using computer-assisted cartography. The objectives were to establish classes of the local soils of an arid locality; to determine their physical and chemical characteristics; to relate the content of clay (Cl), organic matter (OM) and electrical conductivity (EC) to the levels of reflectance from the classes of soil; and to obtain a digital map of classes of local soils using a supervised classification of the image and verify its precision. The map of LSCs was used as basis for generating information about the physical and chemical characteristics of soils. The information was related to digital levels of a Landsat 7 Enhanced Thematic Mapper Plus (ETM+) image, and a supervised classification was performed. The precision of the digital maps was verified. The results show that a map of LSCs can be used as basis for generating digital maps.
Article
Growth in human population and demand for wealth creates ever-increasing pressure on global soils, leading to soil losses and degradation worldwide. Critical Zone science studies the impact linkages between these pressures, the resulting environmental state of soils, and potential interventions to protect soil and reverse degradation. New research on soil processes is being driven by the scientific hypothesis that soil processes can be described along a life cycle of soil development. This begins with formation of new soil from parent material, development of the soil profile, and potential loss of the developed soil functions and the soil itself under overly intensive anthropogenic land use, thus closing the cycle. Four Critical Zone Observatories in Europe have been selected focusing research at sites that represent key stages along the hypothetical soil life cycle; incipient soil formation, productive use of soil for farming and forestry, and decline of soil due to longstanding intensive agriculture. Initial results from the research show that soil develops important biogeochemical properties on the time scale of decades and that soil carbon and the development of favourable soil structure takes place over similar time scales. A new mathematical model of soil aggregate formation and degradation predicts that set-aside land at the most degraded site studied can develop substantially improved soil structure with the accumulation of soil carbon over a period of several years. Further results demonstrate the rapid dynamics of soil carbon; how quickly it can be lost, and also demonstrate how data from the CZOs can be used to determine parameter values for models at catchment scale. A structure for a new integrated Critical Zone model is proposed that combines process descriptions of carbon and nutrient flows, a simplified description of the soil food web, and reactive transport; all coupled with a dynamic model for soil structure and soil aggregation. This approach is proposed as a methodology to analyse data along the soil life cycle and test how soil processes and rates vary within, and between, the CZOs representing different life cycle stages. In addition, frameworks are discussed that will help to communicate the results of this science into a more policy relevant format using ecosystem service approaches.