Article

3,3′‐Diindolylmethane Enhances Glucose Uptake Through Activation of Insulin Signaling in 3T3‐L1 Adipocytes

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Objective Indole‐3‐carbinol (I3C), a naturally occurring compound found in cruciferous vegetables, and its metabolite 3,3′‐diindolylmethane (DIM) reduce body mass and serum glucose levels in high‐fat‐diet‐induced obese mice. This study aimed to determine whether I3C or DIM could increase glucose uptake via enhanced insulin sensitivity in 3T3‐L1 adipocytes, as well as the mechanism involved. Methods 3T3‐L1 preadipocytes were differentiated by using a mixture of adipogenic inducers, including a suboptimal concentration of insulin. Results DIM, but not I3C, increased adipocyte differentiation through upregulation of peroxisome proliferator‐activated receptor γ and CCAAT/enhancer‐binding protein α. DIM also enhanced glucose uptake by increasing expression of glucose transporter 4 in adipocytes. This was associated with DIM‐enhanced phosphorylation of the signaling intermediates Akt, insulin receptor substrate‐1, and insulin receptor early in differentiation. Conclusions Our findings suggest that DIM may improve insulin sensitivity through the activation of the insulin signaling pathway, leading to enhanced glucose uptake.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... 3,3 -diindolylmethane (DIM) is a natural compound produced from the acid-catalyzed self-condensation of indole-3-carbinol, which is abundant in cruciferous vegetables, such as broccoli and cabbage [11,12]. Previous studies have found that DIM can improve type 2 diabetes by enhancing glucose uptake through the activation of insulin signaling in 3T3-L1 cells, and by lowering the plasma glucose levels in high-fat-diet-fed obese mice [13,14]. ...
... Molecules 2019, 24, x FOR PEER REVIEW 2 of 10 cabbage [11,12]. Previous studies have found that DIM can improve type 2 diabetes by enhancing glucose uptake through the activation of insulin signaling in 3T3-L1 cells, and by lowering the plasma glucose levels in high-fat-diet-fed obese mice [13,14]. Streptozotocin (STZ) is widely used to study the pathology of diabetes mellitus and diabetic complications in most strains of rodents [15]. ...
... Type 1 diabetes mellitus is a metabolic disease resulting from the destruction of insulinproducing β cells in the pancreas, that leads to hyperglycemia [1,2,20]. DIM, a major metabolite of indole-3-carbinol, which is naturally produced in broccoli and cabbage, enhances glucose uptake through the improvement of insulin sensitivity in 3T3-L1 cells [13]. STZ has been widely used to induce type 1 diabetes in experimental animals by causing an abnormality in the β cell function of the pancreatic islets [15][16][17]. ...
Article
Full-text available
Type 1 diabetes mellitus (insulin-dependent diabetes) is characterized by hyperglycemia caused by an insulin deficiency. Diabetic nephropathy is a major complication of hyperglycemia. 3,3′-diindolylmethane (DIM)-a natural compound produced from indole-3-carbinol, found in cruciferous vegetables-enhances glucose uptake by increasing the activation of the insulin signaling pathway in 3T3-L1 adipocytes. In this study, we investigated whether DIM could improve insulin-dependent diabetes and nephropathy in streptozotocin (STZ)-induced diabetic mice. In mice, STZ induced hyperglycemia, hunger, thirst, and abnormally increased kidney weight and serum creatinine, which is a renal functional parameter. DIM decreased STZ-increased high blood glucose levels and food and water intake in diabetic mice. DIM also improved diabetic nephropathy by inhibiting the expression of PKC-α, the marker of albuminuria, and TGF-β1, an indicator of renal hypertrophy, in diabetic mice. Our findings suggest that DIM may ameliorate hyperglycemia and diabetic nephropathy through the inhibition of PKC-α and TGF-β1 signaling.
... Moreover, I3C exerts anti-obesity effects by reducing body weight and fat accumulation in epididymal adipose tissue in HFD-induced obese mice and thereby improves hyperglycemia and hyperinsulinemia [126]. In an in vitro trial, I3C prevented the differentiation of 3T3-L1 preadipocytes into adipocytes, inhibits adipogenesis by regulating 5′adenosine monophosphate-activated protein kinase (AMPK) signaling [127][128][129]. ...
Article
Full-text available
Cardiovascular and metabolic diseases are a leading cause of death worldwide. Epidemiological studies strongly highlight various benefits of consuming colorful fruits and vegetables in everyday life. In this review, we aimed to revisit previous studies conducted in the last few decades regarding green-colored foods and their bioactive compounds in consideration of treating and/or preventing cardiovascular and metabolic diseases. This review draws a comprehensive summary and assessment of research on the physiological effects of various bioactive compounds, mainly polyphenols, derived from green-colored fruits and vegetables. In particular, their health-beneficial effects, including antioxidant, anti-inflammatory, anti-diabetic, anti-obesity, cardioprotective, and lipid-lowering properties, will be discussed. Furthermore, the bioavailability and significance of action of these bioactive compounds on cardiovascular and metabolic diseases will be discussed in detail.
... Type 2 diabetes is a metabolic disease characterized by abnormally high blood glucose levels and cellular insulin resistance despite normal insulin production by the pancreas [1]. Persistent hyperglycemia is associated with cardiovascular disorders, renal dysfunction, and retinopathy [2]. ...
Article
Full-text available
Type 2 diabetes is a complex, heterogeneous, and polygenic disease. Currently, available drugs for treating type 2 diabetes predominantly include sulfonylureas, α-glucosidase inhibitors, and biguanides. However, long-term treatment with these therapeutic drugs is often accompanied by undesirable side effects, which have driven interest in the development of more effective and safer antidiabetic agents. To address the urgent need for new chemical solutions, we focused on the analysis of structurally novel and/or biologically new metabolites produced by insect-associated microbes as they have recently been recognized as a rich source of natural products. Comparative LC/MS-based analysis of Actinomadura sp. RB99, isolated from a fungus-growing termite, led to the identification of the type II polyketide synthase-derived fridamycin A. The structure of fridamycin A was confirmed by 1H NMR data and LC/MS analysis. The natural microbial product, fridamycin A, was examined for its antidiabetic properties in 3T3-L1 adipocytes, which demonstrated that fridamycin A induced glucose uptake in 3T3-L1 cells by activating the AMP-activated protein kinase (AMPK) signaling pathway but did not affect adipocyte differentiation, suggesting that the glucose uptake took place through activation of the AMPK signaling pathway without inducing adipogenesis. Our results suggest that fridamycin A has potential to induce fewer side effects such as weight gain compared to rosiglitazone, a commonly used antidiabetic drug, and that fridamycin A could be a novel potential therapeutic candidate for the management of type 2 diabetes.
Article
Obesity and metabolic disorders have gradually become public health-threatening problems. The metabolic disorder is a cluster of complex metabolic abnormalities which are featured by dysfunction in glucose and lipid metabolism, and results from the increasing prevalence of visceral obesity. With the core driving factor of insulin resistance, metabolic disorder mainly includes type 2 diabetes mellitus (T2DM), micro and macro-vascular diseases, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and the dysfunction of gut microbiota. Strategies and therapeutic attention are demanded to decrease the high risk of metabolic diseases, from lifestyle changes to drug treatment, especially herbal medicines. Indole is a parent substance of numerous bioactive compounds, and itself can be produced by tryptophan catabolism to stimulate glucagon-like peptide-1 (GLP-1) secretion and inhibit the development of obesity. In addition, in heterocycles drug discovery, the indole scaffold is primarily found in natural compounds with versatile biological activity and plays a prominent role in drug molecules synthesis. In recent decades, plenty of natural or synthesized indole deriviatives have been investigated and elucidated to exert effects on regulating glucose hemeostasis and lipd metabolism. The aim of this review is to trace and emphasize the compounds containing indole scaffold that possess immense potency on preventing metabolic disorders, particularly T2DM, obesity and NAFLD, along with the underlying molecular mechanisms, therefore facilitate a better comprehension of their druggability and application in metabolic diseases.
Chapter
Glucosinolates are a group of sulfur- and nitrogen-containing glycosides found in the plant order Brassicales which includes several important vegetable crops of the Brassica genus such as broccoli, cabbage, radish and cauliflower among others. Their hydrolysis byproducts, namely isothiocyanataes, are responsible for the distinct aroma and pungent taste of cruciferous species, most of which contain species-specific glucosinolates, hence the high number of individual compounds. They are considered as beneficial to human compounds with several confirmed health effects, while a significant amount of research work has been carried out recently to identify those mechanisms and synergisms that are responsible for the activities of glucosinolates, as well to reveal physiological aspects in the plant × environment interactions. This chapter discusses the biochemistry and health properties of glucosinolates, their physiological significance as well as the hydrolysis process in the plant response to different abiotic stresses.
Article
3,3'-diindolylmethane (DIM) has an anticancer activity, but the role DIM plays on malignant melanoma cells and its specific mechanism is unclear. We studied the biological effects of DIM on malignant melanoma cells and the related mechanism and the results showed that DIM significantly suppressed cell proliferation and induced apoptosis in malignant melanoma cells. In addition, the expression levels of phosphatase and tensin homolog deleted on chromosome ten (PTEN), Bax, Bid, cleaved caspase-3, and cleaved caspase-9 were increased after DIM treatment. In A2058 PTENmut cells, DIM-mediated inhibition of proliferation and DIM-induced apoptosis were attenuated. Additionally, the overexpression and knockdown of PTEN could regulate such effects of DIM in malignant melanoma cells. Furthermore, DIM exerted growth-inhibiting and apoptosis-inducing effects in vivo. This study demonstrated that DIM has antitumor effect in human malignant melanoma cells through the mitochondrial apoptotic pathway activated by PTEN/Akt signaling.
Article
Full-text available
Murine 3T3-L1 preadipocytes proliferate normally in medium containing fetal calf serum depleted of insulin, growth hormone, and insulin-like growth factor-I (IGF-I). However, the cells do not differentiate into adipocytes in the presence of the hormone-depleted serum. Supplementation of the growth medium with 10-20 nM IGF-I or 2 microM insulin restores the ability of 3T3-L1 cells to develop into adipocytes. The cells acquire an adipocyte morphology, accumulate triglycerides, and express a 450-fold increase in the activity of the lipogenic enzyme glycerol-3-phosphate dehydrogenase. The increase in glycerol-3-phosphate dehydrogenase activity is paralleled by the accumulation of glycerol-3-phosphate dehydrogenase mRNA and mRNA for the myelin P2-like protein aP2, another marker for fat cell development. IGF-I or insulin-stimulated adipogenesis in 3T3-L1 cells is not dependent on growth hormone. Occupancy of preadipocyte IGF-I receptors by IGF-I (or insulin) is implicated as a central step in the differentiation process. The IGF-I receptor binds insulin with a 70-fold lower affinity than IGF-I, and 30-70-fold higher levels of insulin are required to duplicate the effects of an optimal amount of IGF-I. The effects of 10-20 nM IGF-I are likely to be mediated by high affinity (KD = 5 nM) IGF-I receptors that are expressed at a density of 13,000 sites/preadipocyte. In undifferentiated cells the IGF-I receptor concentration is twice that of the insulin receptor. After adipocyte differentiation is triggered, the number and affinity of IGF-I receptors remain constant while insulin receptor number increases approximately 25-fold as developing adipocytes become responsive to insulin at the level of metabolic regulation. Thus, preadipocytes have the potential for a maximal response to IGF-I, whereas the accumulation of more than 95% of adipocyte insulin receptors and the appearance of responsiveness to insulin are consequences of differentiation. IGF-I or insulin is essential for the induction of a variety of abundant and nonabundant mRNAs characteristic of 3T3-L1 adipocytes.
Article
Full-text available
Indole-3-carbinol (I3C) is a phytochemical present mainly in cruciferous vegetables. In this study, we investigated the mechanism by which I3C blocks adipogenesis in 3T3-L1 cells, and evaluated the anti-adipogenic effect of I3C in zebrafish. Our data showed that I3C mainly inhibits early differentiation of adipocyte through cell cycle arrest. Inhibition of early differentiation was reflected by down-regulation of early adipogenic factors such as CCAAT-enhancer binding proteins β and δ (C/EBPβ and C/EBPδ), followed by down-regulation of late adipogenic factors such as peroxisome proliferator-activated receptor γ (PPARγ) and C/EBPα, and regulation of signaling molecules. This result was supported by a reduction in triglyceride (TG) levels and TG synthetic enzymes. I3C activated AMP-activated protein kinase α (AMPKα) to inhibit fatty acid synthesis. In addition, an anti-adipogenic effect of I3C was found in zebrafish study. Our data suggest that vegetables-derived I3C could reduce lipid accumulation via various molecular mechanisms in cell.
Article
Full-text available
The development of a hormone-responsive glucose transport activity during differentiation of 3T3-L1 murine fibroblasts to an insulin-sensitive adipocyte-like phenotype was studied. Glucose transport activity was insensitive to insulin or insulin-like growth factor I (IGF-I) before differentiation, and was increased by 8-10-fold after differentiation by both insulin and IGF-I via their own respective receptors. In contrast, in undifferentiated cells insulin and IGF-I stimulated a large increase of [3H]thymidine incorporation into DNA via IGF-I receptors, indicating that undifferentiated 3T3-L1 cells are equipped with fully functioning hormone (IGF-I) receptors. Thus the previously described increase in expression of insulin receptors during differentiation cannot solely account for the development of hormone-sensitive glucose transport in the 3T3-L1 cell. The total glucose transport activity reconstituted from membrane fractions was increased by about 3-fold during differentiation. In differentiated cells, more than 80% of the total reconstitutable glucose transport activity was detected in an intracellular compartment (200,000 g microsomes) as compared with about 20% in undifferentiated cells. Immunoblots with specific antiserum confirmed previous reports indicating that the adipose tissue/muscle glucose transporter (GT3) was exclusively present in the differentiated cells, whereas the erythrocyte/brain glucose transporter (GT1) was detected in both differentiated and undifferentiated cells. Upon differentiation, GT1 was redistributed from plasma membranes to the intracellular compartment. In addition, the newly formed GT3 was predominantly found (greater than 80% of total) in the microsomal fraction of differentiated cells. Both GT1 and GT3 appeared to be hormone-sensitive, since in differentiated cells insulin as well as IGF-I gave rise to their translocation from the intracellular compartment to the plasma membrane. These data suggest that, in addition to the specific expression of the GT3 transporter, the formation of a large pool of intracellular glucose transporters comprising both GT1 and GT3 contributes to the development of insulin sensitivity in the 3T3-L1 cell.
Article
Full-text available
Thiazolidinedione derivatives are antidiabetic agents that increase the insulin sensitivity of target tissues in animal models of non-insulin-dependent diabetes mellitus. In vitro, thiazolidinediones promote adipocyte differentiation of preadipocyte and mesenchymal stem cell lines; however, the molecular basis for this adipogenic effect has remained unclear. Here, we report that thiazolidinediones are potent and selective activators of peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily recently shown to function in adipogenesis. The most potent of these agents, BRL49653, binds to PPARγ with a Kd of approximately 40 nM. Treatment of pluripotent C3H10T1/2 stem cells with BRL49653 results in efficient differentiation to adipocytes. These data are the first demonstration of a high affinity PPAR ligand and provide strong evidence that PPARγ is a molecular target for the adipogenic effects of thiazolidinediones. Furthermore, these data raise the intriguing possibility that PPARγ is a target for the therapeutic actions of this class of compounds.
Article
Full-text available
The two glucose transporter isoforms GLUT4 and GLUT1 present in 3T3-L1 cells were labeled in the insulin-stimulated and basal states with the impermeant bis-mannose photolabel, 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis-(D-mannos- 4-yloxy)-2-propylamine. The redistributions of these labeled transporters from the plasma membrane to the low density microsome membrane fraction were followed while cells were maintained at either insulin-stimulated or basal steady states. In both these steady states GLUT4 and GLUT1 were continuously recycled. Analysis of the time courses for tracer-tagged GLUT4 and GLUT1 redistribution showed that the endocytosis rate constants were only approximately 30% slower in the insulin-stimulated (0.08 and 0.093 min-1) compared with the basal (0.116 and 0.121 min-1) state. In the insulin-stimulated state, the rate constants for GLUT4 and GLUT1 exocytosis (0.086 and 0.096 min-1) were similar to those of endocytosis. In contrast, the exocytosis rate constants of GLUT4 and GLUT1 in the basal state were 0.01 and 0.035 min-1. We therefore conclude that the main effect of insulin is to increase GLUT4 and GLUT1 exocytosis rate constants by approximately 9- and 3-fold, respectively, and that the unique feature of the GLUT4 isoform is the very slow rate of exocytosis in the basal state.
Article
Full-text available
Insulin resistance is a major component of type 2 diabetes; therefore, an insulin sensitizer agent like the thiazolidinedione compound troglitazone is considered a very promising drug. Troglitazone exerts an antihyperglycemic activity in a dose-dependent manner between 200 and 600 mg/day in type 2 diabetic patients treated with diet alone, sulfonylureas, or insulin. Additive antihyperglycemic effect may also be obtained by combining troglitazone and metformin. The antihyperglycemic effect of troglitazone as monotherapy is rather modest (reduction of HbA1c by 0.5-1.0%), but it appears to be somewhat greater when it is combined with other antidiabetic drugs. No double-blind studies have directly compared the activity of troglitazone with that of sulfonylureas or metformin. Troglitazone has been shown to exert additional beneficial effects on serum lipid profile and arterial blood pressure. It may be considered as a valuable alternative in insulin-resistant (obese and hyperinsulinemic) diabetic patients who appear to be the best responders to the drug. However, the efficacy of troglitazone is challenged by its safety profile, and the risk of hepatotoxicity still remains a major concern in clinical practice.
Article
Full-text available
Dietetic professionals urge Americans to increase fruit and vegetable intakes. The American Institute of Cancer Research estimates that if the only dietary change made was to increase the daily intake of fruits and vegetables to 5 servings per day, cancer rates could decline by as much as 20%. Among the reasons cited for this health benefit are that fruits and vegetables are excellent sources of fiber, vitamins, and minerals. They also contain nonnutritive components that may provide substantial health benefits beyond basic nutrition. Examples of the latter are the glucosinolate hydrolysis products, sulforaphane, and indole-3-carbinol. Epidemiological studies provide evidence that the consumption of cruciferous vegetables protects against cancer more effectively than the total intake of fruits and vegetables. This review describes the anticarcinogenic bioactivities of glucosinolate hydrolysis products, the mineral selenium derived from crucifers, and the mechanisms by which they protect against cancer. These mechanisms include altered estrogen metabolism, protection against reactive oxygen species, altered detoxification by induction of phase II enzymes, decreased carcinogen activation by inhibition of phase I enzymes, and slowed tumor growth and induction of apoptosis.
Article
Full-text available
Since the discovery of insulin roughly 80 yr ago, much has been learned about how target cells receive, interpret, and respond to this peptide hormone. For example, we now know that insulin activates the tyrosine kinase activity of its cell surface receptor, thereby triggering intracellular signaling cascades that regulate many cellular processes. With respect to glucose homeostasis, these include the function of insulin to suppress hepatic glucose production and to increase glucose uptake in muscle and adipose tissues, the latter resulting from the translocation of the glucose transporter 4 (GLUT4) to the cell surface membrane. Although simple in broad outline, elucidating the molecular intricacies of these receptor-signaling pathways and membrane-trafficking processes continues to challenge the creative ingenuity of scientists, and many questions remain unresolved, or even perhaps unasked. The identification and functional characterization of specific molecules required for both insulin signaling and GLUT4 vesicle trafficking remain key issues in our pursuit of developing specific therapeutic agents to treat and/or prevent this debilitating disease process. To this end, the combined efforts of numerous research groups employing a range of experimental approaches has led to a clearer molecular picture of how insulin regulates the membrane trafficking of GLUT4.
Article
Full-text available
Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique role using insulin signalling as a model system.
Article
Gregoire, Francine M., Cynthia M. Smas, and Hei Sook Sul. Understanding Adipocyte Differentiation. Physiol. Rev. 78: 783–809, 1998. — The adipocyte plays a critical role in energy balance. Adipose tissue growth involves an increase in adipocyte size and the formation of new adipocytes from precursor cells. For the last 20 years, the cellular and molecular mechanisms of adipocyte differentiation have been extensively studied using preadipocyte culture systems. Committed preadipocytes undergo growth arrest and subsequent terminal differentiation into adipocytes. This is accompanied by a dramatic increase in expression of adipocyte genes including adipocyte fatty acid binding protein and lipid-metabolizing enzymes. Characterization of regulatory regions of adipose-specific genes has led to the identification of the transcription factors peroxisome proliferator-activated receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein (C/EBP), which play a key role in the complex transcriptional cascade during adipocyte differentiation. Growth and differentiation of preadipocytes is controlled by communication between individual cells or between cells and the extracellular environment. Various hormones and growth factors that affect adipocyte differentiation in a positive or negative manner have been identified. In addition, components involved in cell-cell or cell-matrix interactions such as preadipocyte factor-1 and extracellular matrix proteins are also pivotal in regulating the differentiation process. Identification of these molecules has yielded clues to the biochemical pathways that ultimately result in transcriptional activation via PPAR-γ and C/EBP. Studies on the regulation of the these transcription factors and the mode of action of various agents that influence adipocyte differentiation will reveal the physiological and pathophysiological mechanisms underlying adipose tissue development.
Article
Scope: Indole-3-carbinol (I3C), a derivative abundant in cruciferous vegetables such as cabbage, is well known for its various health benefits such as chemo-preventive and anti-obesity effects. I3C is easily metabolized to 3,3'-diindolylmethane (DIM), a more stable form, in acidic conditions of the stomach. However, the anti-obesity effect of DIM has not been investigated clearly. We sought to investigate the effect of DIM on diet-induced obesity and to elucidate its underlying mechanisms. Methods and results: High-fat diet (HFD)-fed obese mouse and MDI-induced 3T3-L1 adipogenesis models were used to study the effect of DIM. We observed that the administration of DIM (50 mg/kg BW) significantly suppressed HFD-induced obesity, associated with a decrease in adipose tissue. Additionally, we observed that DIM treatment (40 and 60 μM), but not I3C treatment, significantly inhibited MDI-induced adipogenesis by reducing the levels of several adipogenic proteins such as PPARγ and C/EBPα. DIM, but not I3C, suppressed cell cycle progression in the G1 phase, which occurred in the early stage of adipogenesis, inducing post-translational degradation of cyclin D1 by inhibiting ubiquitin specific peptidase 2 (USP2) activities. Conclusion: Our findings indicate that cruciferous vegetables, which can produce DIM as a metabolite, have the potential to prevent or treat chronic obesity. This article is protected by copyright. All rights reserved.
Article
3,3'-diindolylmethane is a major in vivo metabolite of indole-3-carbinol, a bioactive compound found in cruciferous vegetables. Although 3,3'-diindolylmethane has been implicated to possess antitumorigenic and anti-inflammatory properties, the effect of 3,3'-diindolylmethane on adipogenesis has not been explored previously. Thus, the present study was conducted to determine if 3,3'-diindolylmethane affects adipogenesis using 3T3-L1 adipocytes and Caenorhabditis elegans. Treatment of 3,3'-diindolylmethane significantly reduced fat accumulation without affecting viability in 3T3-L1 adipocytes. 3,3'-diindolylmethane suppressed expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding protein α (C/EBPα), fatty acid binding protein 4 (FABP4), and perilipin. In addition, 3,3'-diindolylmethane activated AMP-activated protein kinase α (AMPKα), which subsequently inactivated acetyl CoA carboxylase (ACC), resulting in reduced fat accumulation. These observations were further confirmed in C. elegans as treatment with 3,3'-diindolylmethane significantly reduced body fat accumulation, which was partly associated with aak-1, but not aak-2, orthologs of AMPKα catalytic subunits α1 and α2, respectively. The current results demonstrate that 3,3'-diindolylmethane, a biologically active metabolite of indole-3-carbinol, may prevent adipogenesis through the AMPKα-dependent pathway.
Article
Dodeca-2(E),4(E)-dienoic acid isobutylamide (DDI), an alkamide derived from the plant Echinacea purpurea, promotes adipocyte differentiation and activates peroxisome proliferator-activated receptor γ, which is associated with enhanced insulin sensitivity. In the present study, we investigated whether DDI may increase glucose uptake through activation of the insulin signaling pathway in 3T3-L1 adipocytes. DDI increased insulin-stimulated glucose uptake, and expression and translocation of glucose transporter 4 in adipocytes treated with sub-optimal levels of insulin. Additionally, DDI enhanced Akt phosphorylation, whereas phosphoinositide 3-kinase/Akt inhibitors suppressed DDI-induced glucose uptake. These results suggest that DDI may improve insulin sensitivity through the activation of Akt signaling, which leads to enhanced glucose uptake.
Article
Indole glucosinolates, present in cruciferous vegetables have been investigated for their putative pharmacological properties. The current study was designed to analyse whether the treatment of the indole glucosinolates-indole-3-carbinol (I3C) and its metabolite 3,3'-diindolylmethane (DIM) could alter the carbohydrate metabolism in high-fat diet (HFD)-induced C57BL/6J mice. The plasma glucose, insulin, haemoglobin (Hb), glycosylated haemoglobin (HbA1c), glycogen and the activities of glycolytic enzyme (hexokinase), hepatic shunt enzyme (glucose-6-phosphate dehydrogenase), gluconeogenic enzymes (glucose-6-phosphatase and fructose-1,6-bisphosphatase) were analysed in liver and kidney of the treated and HFD mice. Histopathological examination of liver and pancreases were also carried out. The HFD mice show increased glucose, insulin and HbA1c and decreased Hb and glycogen levels. The elevated activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase and subsequent decline in the activity of glucokinase and glucose-6-phosphate dehydrogenase were seen in HFD mice. Among treatment groups, the mice administered with I3C and DIM, DIM shows decreased glucose, insulin and HbA1c and increased Hb and glycogen content in liver when compared to I3C, which was comparable with the standard drug metformin. The similar result was also obtained in case of carbohydrate metabolism enzymes; treatment with DIM positively regulates carbohydrate metabolic enzymes by inducing the activity of glucokinase and glucose-6-phosphate dehydrogenase and suppressing the activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase when compared to I3C, which were also supported by our histopathological observations.
Article
Indole-3-carbinol (I3C) is a compound found in high concentrations in Brassica family vegetables, including broccoli, cauliflower and cabbage, and is regarded as a promising chemopreventive agent against various cancers. This study assesses the protective effect of I3C against diet-induced obesity in mice. Mice were randomly grouped to receive either a normal diet, high-fat (40% energy as fat) diet (HFD) or I3C-supplemented diet (1 g/kg diet) for 10 weeks. I3C supplementation significantly ameliorated HFD-induced increases in body weight gain, visceral fat pad weights and plasma lipid levels. The visceral adipose tissue mRNA levels of uncoupling proteins 1 and 3, crucial factors of thermogenesis, and their regulators such as sirtuin 1, peroxisome proliferator-activated receptor (PPAR) α and PPARγ coactivator 1α, which were down-regulated by HFD, were normalized by supplementation with I3C. In contrast, I3C supplementation significantly decreased expression levels of a key adipogenic transcription factor, PPARγ2, and its target genes, such as leptin and adipocyte protein 2, in the visceral adipose tissue of mice maintained on the HFD. Furthermore, HFD-induced up-regulation in mRNA levels of inflammatory cytokines (tumor necrosis factor α, interferon β and interleukin 6) was significantly ameliorated by I3C. These findings suggest that I3C has a potential benefit in preventing obesity and metabolic disorders, and the action for I3C in vivo may involve multiple mechanisms including decreased adipogenesis and inflammation, along with activated thermogenesis.
Article
Obesity is a risk factor for numerous metabolic disorders such as type 2 diabetes, hypertension, and coronary heart disease. Adipocyte differentiation is triggered by adipocyte hyperplasia, which leads to obesity. In this study, the inhibitory effect of sulforaphane, an isothiocyanate, on adipogenesis in 3T3-L1 cells was investigated. Sulforaphane decreased the accumulation of lipid droplets stained with Oil Red O and inhibited the elevation of triglycerides in the adipocytes (half-maximal inhibitory concentration = 7.3 µmol/l). The expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), major transcription factors for adipocyte differentiation, was significantly reduced by sulforaphane. The major effects of sulforaphane on the inhibition of adipocyte differentiation occurred during the early stage of adipogenesis. Thus, the expression of C/EBPβ, an early-stage biomarker of adipogenesis, decreased in a concentration-dependent manner when the adipocytes were exposed to sulforaphane (0, 5, 10, and 20 µmol/l). The proliferation of adipocytes treated with 20 µmol/l sulforaphane for 24 and 48 h was also suppressed. These results indicate that sulforaphane may specifically affect mitotic clonal expansion to inhibit adipocyte differentiation. Sulforaphane arrested the cell cycle at the G(0)/G(1) phase, increased p27 expression, and decreased retinoblastoma (Rb) phosphorylation. Additionally, sulforaphane modestly decreased the phosphorylation of ERK1/2 and Akt. Our results indicate that the inhibition of early-stage adipocyte differentiation by sulforaphane may be associated with cell cycle arrest at the G(0)/G(1) phase through upregulation of p27 expression.
Article
This study investigated the effects of indole-3-carbinol (I3C), a cruciferous vegetable derivative, on obesity and its associated factors in high-fat-diet-induced obese (DIO) mice. Eighteen male C57BL/6 mice were randomly assigned to one of three groups: basal, high fat (HF), and HF + 5 mg/kg of I3C intraperitoneally (HFI). After 12 wk of treatment, obesity-associated factors, including body weight, organ weight, serum concentrations of glucose, triacylglycerol, insulin, and adipokines, and macrophage accumulation and lipid metabolism-associated factors in epididymal adipose tissue were measured. Body weight and epididymal adipose tissue weight were greater (P < 0.01), and adipocytes were larger in the HF group than in the basal and HFI groups. Compared with the HF group, the HFI group had improved glucose tolerance, a higher serum adiponectin concentration, lower serum glucose, triacylglycerol, insulin, and leptin concentrations, and less F4/80 expression in epididymal adipose tissue (P < 0.001). Furthermore, I3C treatment decreased acetyl coenzyme A carboxylase mRNA expression (P < 0.05) and increased peroxisome proliferator-activated receptor-γ protein expression (P < 0.05) in epididymal adipose tissue of DIO mice. The I3C treatment decreased body weight and fat accumulation and infiltrated macrophages in epididymal adipose tissue of DIO mice, and these reductions were associated with improved glucose tolerance and with modulated expression of adipokines and lipogenic-associated gene products, including acetyl coenzyme A carboxylase and peroxisome proliferator-activated receptor-γ.
Article
Indole-3-carbinol [I3C, also called 3-(hydroxymethyl)indole] is a naturally occurring modulator of carcinogenesis with a biological activity that is at least partially dependent on its conversion to active substances in acidic media. We compared the identities of the major oligomeric products of I3C produced under conditions approximating those found in gastric juice with the reported identities of products of 3-substituted indoles produced under enzymatic and other nonenzymatic conditions. After a 10-min treatment in aqueous HCl solution, I3C was converted in 18% yield to a mixture of acetonitrile-soluble products, the major components of which (as determined by HPLC) were diindol-3-ylmethane (5.9%), 5,6,11,12,17,18-hexahydrocyclononal[1,2-b:4,5-b':7,8-b"]triindo le (2.0%), and [2-(indol-3-ylmethyl)indol-3-yl]indol-3-ylmethane (5.9%). Tentative assignments were made for 3,3-bis(indol-3-ylmethyl)indolenine (0.59%), a symmetrical cyclic tetramer (0.64%), and a linear tetramer (1.1%). Indolo[3,2-b]carbazole (ICZ) was formed slowly in aqueous acidic solutions in low yields (2.0 ppm) which increased to greater than 90 ppm following addition of an organic solvent [tetrahydrofuran (THF) or dimethylformamide (DMF)] to a neutralized solution. Relative yields of trimers vs dimer increased with decreasing pH and with decreasing starting concentration of I3C. Evidence is presented that ICZ formation may not involve radical intermediates as is characteristic of photodynamic processes. A mechanistic rationale is presented for the formation of the identified products.
Article
The potency of indole-3-carbinol (I3C) to form condensation products under acidic aqueous conditions was studied. After identifying a known dimer, 3,3'-diindolylmethane (DIM), we elucidated the structures of two trimers also found in acid reaction mixtures: 5,6,11,12,17,18-hexahydrocyclonona[1,2-b:4,5-b':7,8-b"]tri-indole (CTI), and 2,3-bis[3-indolylmethyl] indole (BII). The formation of these indole oligomers was shown to be pH dependent. The highest amounts of DIM and BII were formed in aqueous solutions having a pH value ranging from 4 to 5. No CTI could be detected at pH values above 4.5. In rats that received an oral dose of I3C we could detect DIM and BII in gastric contents, stomach tissue, small intestine and liver. No CTI could be detected in vivo after oral exposure to I3C. In in vitro experiments, using rat hepatocytes, the cytochrome P-450IA1 apoprotein level, 7-ethoxyresorufin O-deethylation activity (EROD) and DT-diaphorase activity (DTD) were markedly enhanced by DIM and CTI as well as BII.
Article
Murine 3T3-L1 preadipocytes proliferate normally in medium containing fetal calf serum depleted of insulin, growth hormone, and insulin-like growth factor-I (IGF-I). However, the cells do not differentiate into adipocytes in the presence of the hormone-depleted serum. Supplementation of the growth medium with 10-20 nM IGF-I or 2 microM insulin restores the ability of 3T3-L1 cells to develop into adipocytes. The cells acquire an adipocyte morphology, accumulate triglycerides, and express a 450-fold increase in the activity of the lipogenic enzyme glycerol-3-phosphate dehydrogenase. The increase in glycerol-3-phosphate dehydrogenase activity is paralleled by the accumulation of glycerol-3-phosphate dehydrogenase mRNA and mRNA for the myelin P2-like protein aP2, another marker for fat cell development. IGF-I or insulin-stimulated adipogenesis in 3T3-L1 cells is not dependent on growth hormone. Occupancy of preadipocyte IGF-I receptors by IGF-I (or insulin) is implicated as a central step in the differentiation process. The IGF-I receptor binds insulin with a 70-fold lower affinity than IGF-I, and 30-70-fold higher levels of insulin are required to duplicate the effects of an optimal amount of IGF-I. The effects of 10-20 nM IGF-I are likely to be mediated by high affinity (KD = 5 nM) IGF-I receptors that are expressed at a density of 13,000 sites/preadipocyte. In undifferentiated cells the IGF-I receptor concentration is twice that of the insulin receptor. After adipocyte differentiation is triggered, the number and affinity of IGF-I receptors remain constant while insulin receptor number increases approximately 25-fold as developing adipocytes become responsive to insulin at the level of metabolic regulation. Thus, preadipocytes have the potential for a maximal response to IGF-I, whereas the accumulation of more than 95% of adipocyte insulin receptors and the appearance of responsiveness to insulin are consequences of differentiation. IGF-I or insulin is essential for the induction of a variety of abundant and nonabundant mRNAs characteristic of 3T3-L1 adipocytes.
Article
The role of insulin during GH-stimulated adipogenesis of 3T3-F442A fibroblasts was investigated. Adipogenesis in defined medium (DM), as quantified by the level of glycerol-3-phosphate dehydrogenase activity, revealed that there existed a strict requirement for both insulin and GH during adipogenesis. The concentration of insulin required to elicit half-maximal adipogenesis was approximately 20 nM. Insulin-like growth factor I was less effective than insulin in promoting adipogenesis, indicating that insulin action during differentiation was most likely mediated through the insulin receptor. Cellular viability was not compromised by the absence of insulin, as judged by colony-forming efficiency or trypan blue exclusion. Deletion of insulin from DM supplemented with 1 nM recombinant human GH reduced glycerol-3-phosphate dehydrogenase activity to uninduced levels. Removal of other individual DM constituents did not have this effect. The growth factors fibroblast growth factor, platelet-derived growth factor, and bombesin did not substitute for insulin during GH-stimulated adipogenesis. The characteristic increase in cell number observed during serum-based differentiation, reflecting clonal expansion of young adipocytes, did not occur in DM supplemented with insulin, and insulin-like growth factor I were necessary for this event. These results suggest that insulin functions in concert with GH as a coinducer of the differentiating signals.
Article
The glucose transport activity of fat cells was assayed in a cell-free system. The activity was solubilized and incorporated into egg-lecithin liposomes. The carrier-mediated glucose transport activity was estimated by subtracting the cytochalasin B-insensitive component from the total glucose uptake activity of the modified liposomes. When a crude microsomal preparation from fat cells was fractionated by sucrose density gradient centrifugation, two transport activities (peaks A and B) were separated. Peak A coincided with the peak of 5'-nucleotidase, a marker of the plasma membrane. Peak B appeared to coincide with the peak of UDPGal:N-acetylglucosamine galactosyltransferase, a marker of the Golgi apparatus. Peak A was considerably smaller than peak B under basal conditions. When cells were exposed to 1 nM insulin for 5 min before homogenization, the height of peak A increased whereas that of peak B decreased. Insulin had no significant effect on the galactosyltransferase activity. The Km values of glucose transport facilitated by the activities in peaks A and B were both approximately 10-15 mM. These results imply that insulin facilitates translocation of the transport activity from an intracellular storage site to the plasma membrane.
Article
Non-insulin-dependent diabetes mellitus is a complex metabolic disorder that involves numerous biochemical abnormalities, a heterogenous clinical picture, and a polygenic hereditary component. The pathophysiologic state involves increased basal hepatic glucose production, decreased insulin-mediated glucose utilization in target tissues, and altered pancreatic function with decreased beta cell function and enhanced glucagon secretion. Prospective studies indicate that insulin resistance and hyperinsulinemia exist in the prediabetic state at a time when glucose tolerance is normal. When hyperglycemia supervenes, both insulin secretion and insulin-mediated glucose utilization are further compromised, mediated in part by sustained hyperglycemia itself. Insulin resistance may occur at any level in the biologic action of insulin, from initial binding to cell surface receptors to the phosphorylation cascade that is initiated by autophosphorylation of the insulin receptor. Receptors isolated from patients with non-insulin-dependent diabetes mellitus have compromised autophosphorylation-kinase activity when isolated from adipocytes, liver, erythrocytes, and skeletal muscle. The magnitude of the decrease in insulin receptor kinase activity is correlated with the degree of fasting hyperglycemia. However, the defect in insulin receptor kinase activity is normalized after weight reduction or other measures that reduce hyperglycemia, indicating the secondary nature of the defect. Clarification of the mechanisms underlying insulin resistance in non-insulin-dependent diabetes mellitus will lead to new treatment modalities for this disease.
Article
The insulin receptor is a member of the ligand-activated receptor and tyrosine kinase family of transmembrane signaling proteins that collectively are fundamentally important regulators of cell differentiation, growth, and metabolism. The insulin receptor has a number of unique physiological and biochemical properties that distinguish it from other members of this large well-studied receptor family. The main physiological role of the insulin receptor appears to be metabolic regulation, whereas all other receptor tyrosine kinases are engaged in regulating cell growth and/or differentiation. Receptor tyrosine kinases are allosterically regulated by their cognate ligands and function as dimers. In all cases but the insulin receptor (and 2 closely related receptors), these dimers are noncovalent, but insulin receptors are covalently maintained as functional dimers by disulfide bonds. The initial response to the ligand is receptor autophosphorylation for all receptor tyrosine kinases. In most cases, this results in receptor association of effector molecules that have unique recognition domains for phosphotyrosine residues and whose binding to these results in a biological response. For the insulin receptor, this does not occur; rather, it phosphorylates a large substrate protein that, in turn, engages effector molecules. Possible reasons for these differences are discussed in this review. The chemistry of insulin is very well characterized because of possible therapeutic interventions in diabetes using insulin derivatives. This has allowed the synthesis of many insulin derivatives, and we review our recent exploitation of one such derivative to understand the biochemistry of the interaction of this ligand with the receptor and to dissect the complicated steps of ligand-induced insulin receptor autophosphorylation. We note possible future directions in the study of the insulin receptor and its intracellular signaling pathway(s).
Article
The integration of multiple transmembrane signals is especially important during development and maintenance of the nervous system, communication between cells of the immune system, evolution of transformed cells, and metabolic control (Hunter 1997). Tyrosine phosphorylation plays a key role in many of these processes by directly controlling the activity of receptors or enzymes at early steps in signaling cascades, or by the assembly of multicomponent signaling complexes around activated receptors or their cellular substrates (Pawson 1995). In most if not all cases, initialization of the signaling cascade controlled by growth factor and cytokine receptors originates with multisite tyrosine phosphorylation catalyzed directly by kinases activated during ligand-induced dimerization of specific membrane receptors (Schlessinger 1988; Helding 1995). In many cases, tyrosine autophosphorylation sites in activated receptors directly bind signaling proteins containing Src homology-2 domains (SH2 proteins). In other cases, tyrosine autophosphorylation increases the activity of the receptor kinase, which mediates tyrosine phosphorylation of cytosolic substrates or docking proteins that recruit SH2 proteins into multipotential signaling complexes (Myers and White 1995). The network is further elaborated through other modules which mediate protein-protein or protein-lipid interactions, including PTB, PDZ, SH3, WW, and PH domains.
Article
The past several years have seen an explosive increase in our understanding of the transcriptional basis of adipose cell differentiation. In particular, a key role has been illustrated for PPAR-gamma, a member of the nuclear hormone receptor superfamily. PPAR-gamma has also been recently identified as the major functional receptor for the thiazolidinedione class of insulin-sensitizing drugs. This review examines the evidence that has implicated this transcription factor in the processes of adipogenesis and systemic insulin action. In addition, several models are discussed that may explain how a single protein can be involved in these related but distinct physiological actions. I also point out several important areas where our knowledge is incomplete and more research is needed. Finally, I discuss how advances in our understanding of nuclear receptor function, particularly the docking of cofactors in a ligand-dependent fashion, should lead to improved drugs that utilize the PPAR-gamma system for the treatment of insulin resistance.
Article
New molecules discovered during the past ten years have created a rational framework to understand signalling transduction by a broad range of growth factors and cytokines, including insulin. Insulin action is initiated through the insulin receptor, a transmembrane glycoprotein with intrinsic protein tyrosine kinase activity. The tyrosine kinase mediates the insulin response through tyrosine phosphorylation of various cellular substrates, in particular the IRS-proteins. During insulin-stimulated tyrosine phosphorylation, the IRS-proteins mediate a broad biological response by binding and activating various enzymes or adapter molecules. Although we are far from a complete understanding of the insulin signalling system and its failure, enough pieces of the puzzle are falling into place that mechanism-based solutions to insulin resistance encountered with type II diabetes may soon be attainable.
Article
Under acidic conditions, indole-3-carbinol (13C) is converted to a series of oligomeric products thought to be responsible for the biological effects of dietary 13C. Chromatographic separation of the crude acid mixture of 13C, guided by cell proliferation assay in human MCF-7 cells, resulted in the isolation of 2-(indol-3-ylmethyl)-3,3'-diindolylmethane (LTr-1) as a major antiproliferative component. LTr-1 inhibited the growth of both estrogen-dependent (MCF-7) and -independent (MDA-MB-231) breast cancer cells by approximately 60% at a non-lethal concentration of 25 microM. LTr-1 had no apparent effect on the proliferation of MCF-7 cells in the absence of estrogen. LTr-1 was a weak ligand for the estrogen receptor (ER) (IC50 70 microM) and efficiently inhibited the estradiol (E2)-induced binding of the ER to its cognate DNA responsive element. The antagonist effects of LTr-1 also were exhibited in assays of endogenous pS2 gene expression and in cells transiently transfected with an estrogen-responsive reporter construct (pERE-vit-CAT). LTr-1 activated both binding of the aryl hydrocarbon (Ah) receptor to its cognate DNA responsive element and expression of the Ah receptor-responsive gene CYP1A1. LTr-1 was a competitive inhibitor of CYP1A1-dependent ethoxyresorufin-O-deethylase (EROD) activity. In summary, these results demonstrated that LTr-1, a major in vivo product of I3C, could inhibit the proliferation of both estrogen-dependent and -independent breast tumor cells and that LTr-1 is an antagonist of estrogen receptor function and a weak agonist of Ah receptor function.
Article
Obesity is associated with insulin resistance. Insulin resistance underlies a constellation of adverse metabolic and physiological changes (the insulin resistance syndrome) which is a strong risk factor for development of type 2 diabetes and CHD. The present article discusses how accumulation of triacylglycerol in adipocytes can lead to deterioration of the responsiveness of glucose metabolism in other tissues. Lipodystrophy, lack of adipose tissue, is also associated with insulin resistance. Any plausible explanation for the link between excess adipose tissue and insulin resistance needs to be able to account for this observation. Adipose tissue in obesity becomes refractory to suppression of fat mobilization by insulin, and also to the normal acute stimulatory effect of insulin on activation of lipoprotein lipase (involved in fat storage). The net effect is as though adipocytes are 'full up' and resisting further fat storage. Thus, in the postprandial period especially, there is an excess flux of circulating lipid metabolites that would normally have been 'absorbed' by adipose tissue. This situation leads to fat deposition in other tissues. Accumulation of triacylglycerol in skeletal muscles and in liver is associated with insulin resistance. In lipodystrophy there is insufficient adipose tissue to absorb the postprandial influx of fatty acids, so these fatty acids will again be directed to other tissues. This view of the link between adipose tissue and insulin resistance emphasises the important role of adipose tissue in 'buffering' the daily influx of dietary fat entering the circulation and preventing excessive exposure of other tissues to this influx.
Article
Insulin-stimulated glucose uptake in adipose tissue and striated muscle is critical for reducing post-prandial blood glucose concentrations and the dysregulation of this process is one hallmark of Type II (non-insulin-dependent) diabetes mellitus. It has been well established that the insulin-stimulated redistribution of the insulin responsive glucose transporter, GLUT-4, from intracellular storage sites to the plasma membrane depends on the production of phosphoinositide 3,4,5 trisphosphate by the Class IA Phosphatidylinositol 3' kinase. Recent discoveries however, have shown the presence of a second insulin signalling pathway leading to GLUT-4 translocation, a pathway dependent on insulin receptor signalling emanating from caveolae or lipid rafts at the plasma membrane. This pathway begins with the phosphorylation of the adaptor protein Cbl by the insulin receptor, and results in the activation of a small GTP binding protein, TC10, a member of the Rho family. TC10 is able to modulate actin structure in 3T3L1 adipocytes, and its overexpression inhibits insulin-stimulated GLUT-4 translocation, an inhibition completely dependent on localization of TC10 to the caveolae or lipid rafts. The spatial compartmentalization of insulin signalling from caveolae or lipid rafts provides a novel signalling pathway that functions in concert with general signalling mechanisms in the control of actin dynamics regulating insulin-dependent GLUT-4 translocation.
Article
Obesity is the most common risk factor for cardiovascular diseases in industrial countries. It is now clear that adipose tissue secretes various bioactive substances, conceptualized as adipocytokines, and that dysregulation of adipocytokines directly contributes to obesity-related diseases. Chronic inflammatory processes contribute to the development of atherosclerosis. In this review, the authors focus on the relationship between adiponectin, a recently discovered anti-atherogenic adipocytokine, and vascular inflammation. Plasma concentrations of adiponectin, an adipocyte-specific protein, are reduced in obese subjects and in patients with type 2 diabetes and coronary artery disease. Adiponectin inhibits the expression of tumor necrosis factor-alpha-induced endothelial adhesion molecules, macrophage-to-foam cell transformation, tumor necrosis factor-alpha expression in macrophages and adipose tissues, and smooth muscle cell proliferation. In addition, adenovirus-expressed adiponectin reduces atherosclerotic lesions in a mouse model of atherosclerosis, and adiponectin-deficient mice exhibit an excessive vascular remodeling response to injury. Clinically, hypoadiponectinemia is closely associated with increased levels of inflammatory markers such as C-reactive protein and interleukin-6. Adiponectin acts as an anti-inflammatory and anti-atherogenic plasma protein. Adiponectin is an endogenous biologically relevant modulator of vascular remodeling linking obesity and vascular disease.
Article
Indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) are promising cancer chemopreventive agents in rodent models, but there is a paucity of data on their pharmacokinetics and tissue disposition. The disposition of I3C and its acid condensation products, DIM, [2-(indol-3-ylmethyl)-indol-3-yl]indol-3-ylmethane (LTr(1)), indolo[3,2b]carbazole (ICZ) and 1-(3-hydroxymethyl)-indolyl-3-indolylmethane (HI-IM) was studied, after oral administration of I3C (250 mg/kg) to female CD-1 mice. Blood, liver, kidney, lung, heart, and brain were collected between 0.25 and 24 h after administration and the plasma and tissue concentrations of I3C and its derivatives determined by high-performance liquid chromotography. I3C was rapidly absorbed, distributed, and eliminated from plasma and tissues, falling below the limit of detection by 1 h. Highest concentrations of I3C were detected in the liver where levels were approximately 6-fold higher than those in the plasma. Levels of DIM, LTr(1), and HI-IM were much lower, although they persisted in plasma and tissues for considerably longer. DIM and HI-IM were still present in the liver 24 h after I3C administration. Tissue levels of DIM and LTr(1) were found to be in equilibrium with plasma at almost every time point measured. In addition to acid condensation products of I3C, a major oxidative metabolite (indole-3-carboxylic acid) and a minor oxidative metabolite (indole-3-carboxaldehyde) were detected in plasma of mice after oral administration of I3C. ICZ was also tentatively identified in the liver of these mice. This study shows for the first time that, after oral administration to mice, I3C, in addition to its acid condensation products, is absorbed from the gut and distributed systemically into a number of well-perfused tissues, thus allowing the possibility for some pharmacological activity of the parent compound in vivo.
Article
Indole-3-carbinol (I3C) is produced by members of the family Cruciferae, and particularly members of the genus Brassica (e.g., cabbage, radishes, cauliflower, broccoli, Brussels sprouts, and daikon). Under acidic conditions, 13C is converted to a series of oligomeric products (among which 3,3'-diindolylmethane is a major component) thought to be responsible for its biological effects in vivo. In vitro, 13C has been shown to suppress the proliferation of various tumor cells including breast cancer, prostate cancer, endometrial cancer, colon cancer, and leukemic cells; induce G1/S arrest of the cell cycle, and induce apoptosis. The cell cycle arrest involves downregulation of cyclin D1, cyclin E, cyclin- dependent kinase (CDK)2, CDK4, and CDK6 and upregulation of p15, p21, and p27. Apoptosis by I3C involves downregulation antiapoptotic gene products, including Bcl-2, Bcl-xL, survivin, inhibitor-of-apoptosis protein (IAP), X chromosome-linked IAP (XIAP), and Fas-associated death domain protein-like interleukin-1-beta-converting enzyme inhibitory protein (FLIP); upregulation of proapoptotic protein Bax; release of micochondrial cytochrome C; and activation of caspase-9 and caspase-3. This agent inhibits the activation of various transcription factors including nuclear factor-kappaB, SP1, estrogen receptor, androgen receptor and nuclear factor-E2-related factor 2 (Nrf2). This indole potentiates the effects of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) through induction of death receptors and synergises with chemotherapeutic agents through downregulation of P-glycoprotein (P-gp). In vivo, I3C was found to be a potent chemopreventive agent for hormonal-dependent cancers such as breast and cervical cancer. These effects are mediated through its ability to induce apoptosis, inhibit DNA-carcinogen adduct formation, and suppress free-radical production, stimulate 2-hydroxylation of estradiol, inhibit invasion and angiogenesis. Numerous studies have indicated that I3C also has a strong hepatoprotective activity against various carcinogens. Initial clinical trials in women have shown that I3C is a promising agent against breast and cervical cancers.
Article
Glucose transport into muscle is the initial process in glucose clearance and is uniformly defective in insulin-resistant conditions of obesity, metabolic syndrome, and Type II diabetes mellitus. Insulin regulates glucose transport by activating insulin receptor substrate-1 (IRS-1)-dependent phosphatidylinositol 3-kinase (PI3K) which, via increases in PI-3,4,5-triphosphate (PIP(3)), activates atypical protein kinase C (aPKC) and protein kinase B (PKB/Akt). Here, we review (i) the evidence that both aPKC and PKB are required for insulin-stimulated glucose transport, (ii) abnormalities in muscle aPKC/PKB activation seen in obesity and diabetes, and (iii) mechanisms for impaired aPKC activation in insulin-resistant conditions. In most cases, defective muscle aPKC/PKB activation reflects both impaired activation of IRS-1/PI3K, the upstream activator of aPKC and PKB in muscle and, in the case of aPKC, poor responsiveness to PIP(3), the lipid product of PI3K. Interestingly, insulin-sensitizing agents (e.g., thiazolidinediones, metformin) improve aPKC activation by insulin in vivo and PIP3 in vitro, most likely by activating 5'-adenosine monophosphate-activated protein kinase, which favorably alters intracellular lipid metabolism. Differently from muscle, aPKC activation in the liver is dependent on IRS-2/PI3K rather than IRS-1/PI3K and, surprisingly, the activation of IRS-2/PI3K and aPKC is conserved in high-fat feeding, obesity, and diabetes. This conservation has important implications, as continued activation of hepatic aPKC in hyperinsulinemic states may increase the expression of sterol regulatory element binding protein-1c, which controls genes that increase hepatic lipid synthesis. On the other hand, the defective activation of IRS-1/PI3K and PKB, as seen in diabetic liver, undoubtedly and importantly contributes to increases in hepatic glucose output. Thus, the divergent activation of aPKC and PKB in the liver may explain why some hepatic actions of insulin (e.g., aPKC-dependent lipid synthesis) are increased while other actions (e.g., PKB-dependent glucose metabolism) are diminished. This may explain the paradox that the liver secretes excessive amounts of both very low density lipoprotein triglycerides and glucose in Type II diabetes. Previous reviews from our laboratory that have appeared in the Proceedings have provided essentials on phospholipid-signaling mechanisms used by insulin to activate several protein kinases that seem to be important in mediating the metabolic effects of insulin. During recent years, there have been many new advances in our understanding of how these lipid-dependent protein kinases function during insulin action and why they fail to function in states of insulin resistance. The present review will attempt to summarize what we believe are some of the more important advances.
Article
A detailed understanding of the processes governing adipose tissue formation will be instrumental in combating the obesity epidemic. Much progress has been made in the last two decades in defining transcriptional events controlling the differentiation of mesenchymal stem cells into adipocytes. A complex network of transcription factors and cell-cycle regulators, in concert with specific transcriptional coactivators and corepressors, respond to extracellular stimuli to activate or repress adipocyte differentiation. This review summarizes advances in this field, which constitute a framework for potential antiobesity strategies.
Article
During the course of oncogenesis and tumor progression, cancer cells constitutively upregulate signaling pathways relevant to cell proliferation and survival as a strategy to overcome genomic instability and acquire resistance phenotype to chemotherapeutic agents. In light of this clinical and molecular heterogeneity of human cancers, it is desirable to concomitantly target these genetic abnormalities by using an agent with pleiotropic mode of action. Indole-3-carbinol and its metabolite 3,3'-diindoylmethane (DIM) target multiple aspects of cancer cell-cycle regulation and survival including Akt-NF kappa B signaling, caspase activation, cyclin-dependent kinase activities, estrogen metabolism, estrogen receptor signaling, endoplasmic reticulum stress, and BRCA gene expression. This broad spectrum of anti-tumor activities in conjunction with low toxicity underscores the translational value of indole-3-carbinol and its metabolites in cancer prevention/therapy. Furthermore, novel anti-tumor agents with overlapping underlying mechanisms have emerged via structural optimization of indole-3-carbinol and DIM, which may provide considerable therapeutic advantages over the parental compounds with respect to chemical stability and anti-tumor potency. Together, these agents might foster new strategies for cancer prevention and therapy.
Obesity, adiponectin and vascular inflammatory disease
  • Ouchi
3,3 0 -Diindolylmethane suppresses high-fat dietinduced obesity through inhibiting adipogenesis of pre-adipocytes by targeting USP2 activity
  • H Yang
  • S G Seo
  • S H Shin
Yang H, Seo SG, Shin SH, et al. 3,3 0 -Diindolylmethane suppresses high-fat dietinduced obesity through inhibiting adipogenesis of pre-adipocytes by targeting USP2 activity. Mol Nutr Food Res 2017;61. doi:10.1002/mnfr.201700119
Diabetes mellitus, type 2, pediatric. StatPearls. Treasure Island: StatPearls Publishing
  • C V Tillotson
  • S W Boktor
Tillotson CV, Boktor SW. Diabetes mellitus, type 2, pediatric. StatPearls. Treasure Island: StatPearls Publishing; 2017. https://www.ncbi.nlm.nih.gov/books/ NBK431046/ 2. Frayn KN. Adipose tissue and the insulin resistance syndrome. Proc Nutr Soc 2001; 60:375-380.
An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma)
  • J M Lehmann
  • L B Moore
  • T A Smith-Oliver