Content uploaded by Moulay Ahmed Boumehdi
Author content
All content in this area was uploaded by Moulay Ahmed Boumehdi on May 03, 2018
Content may be subject to copyright.
50
Abstract Book
filoniennes renfermant des roches basiques à intermédiaires allant même jusqu'aux termes
différenciés acides.
A ce stade de l'étude, plusieurs types pétrographiques sont distingués :
- Un ensemble filonien allongé dans un couloir de 60 km de long et 5 km de large,
orienté NE –SW. La texture et la composition des filons sont variables d’un dyke à
l’autre, microgrenue à grenue porphyrique avec quartz, K-feldspath, plagioclase,
biotite et amphibole en plus des minéraux accessoires ;
- Un granite mis en place en massifs circonscrits et protrusions d'amplitude
hectométrique, alignés suivant une direction méridienne à l'intérieur du CST. Ces
pointements semblent constituer des apophyses d'un batholite plus ample encore
enfoui, générateur d'une large auréole de métamorphisme de contact. Cet épisode
granitique semble synchrone d'un magmatisme tonalitique avec lequel il développe un
contact sinueux et progressif, permettant une migration de cristaux entre les deux
faciès;
- Des lentilles de microleucogranites d'origine supracrustale, mises en place dans des
couloirs de cisaillement subparallèles à jeu senestre, récurrents à l'échelle de CST.
La cartographie des occurrences magmatiques suivant une approche de pétrologie
structurale a permis de classifier les différents épisodes magmatiques et préciser leur
filiation génétique.
Morphology, architecture and emplacement of the Central Atlantic Magmatic
Province (CAMP) basaltic successions in Morocco, and comparisons with the
Deccan (India) and Parana (Brazil) traps. Proposal of a new facies model for
the emplacement of the Continental Flood Basalt
N. Youbi1,2, H. El Hachimi3, M. Kh. Bensalah1,2, J. Madeira2, M. A. Boumehdi1,2, H. Sheth4, R.
Duraiswami5, J. Mata2, L. Martins2, El. H. Chellai1, A. Marzoli6, H. Bertrand7, F. Medina8, M.
Ben Abbou9, F. Zouita1, H. Khounch1
1 Department of Geology, Faculty. of Sciences-Semlalia, Cadi Ayyad University, Prince Moulay Abdellah
Boulevard, P.O. Box 2390, Marrakech, 40 000, Morocco, e-mail: youbi@uca.ma; boumehdi@uca.ac.ma;
2 Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
Email : jmadeira@fc.ul.pt; jmata@fc.ul.pt
3 Department of Geology, Faculty of Sciences, Chouaïb Doukkali University, 24000 El Jadida, Morocco.
Email : elhachimi_hind@yahoo.fr
4 Department of Earth Sciences, Indian Institute of Technology Bombay, Mumbai, India. Email:
hcsheth@iitb.ac
5 Department of Geology, Savitribai Phule Pune University, Pune 411 007, India. Email:
raymond.duraiswami@gmail.com
6 Dipartimento di Geoscienze, Università di Padova, 35131 Padova, Italy. Email : andrea.marzoli@unipd.it
7 Laboratoire de Géologie de Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276, Lyon 69364, France.
Email : herve.bertrand@ens-lyon.fr
8 Moroccan Association of Geosciences, Rabat, Morocco
9 Department of Geology, Faculty of Sciences Dhar Al Mahraz, Sidi Mohammed Ben Abdellah University,
Fès, Morocco
Once considered to be composed by monotonous stacks of basaltic lava, continental flood
basalt (CFB) provinces are now known to display considerable diversity in lava flow
51
Abstract Book
morphology. Whereas most initial studies of flood basalt morphology and emplacement
focused on younger provinces such as the Columbia River Basalt (e.g., Self et al. 1996;
Thordarson and Self 1998), subsequent investigations have also targeted older provinces
such as the Central Atlantic Magmatic Province (CAMP, e.g., Kontak, 2008; Martins et al.,
2008; El Hachimi et al., 2011), Paranà-Etendeka (Jerram et al., 1999a, b; Waichel et al., 2006,
Waichel et al., 2008; Waichel et al., 2012; Rossetti et al., 2014), and the Deccan Volcanic
Province (DVP, e.g., Keszthelyi et al. 1999; Duraiswami et al., 2001, Duraiswami et al., 2003;
Bondre et al., 2004a,b; Sheth 2006; Sheth et al., 2011; Duraiswami et al., 2014). It is
becoming increasingly clear that every CFB province is unique in terms of its tectono-
magmatic evolution as well as in the types of lava flows and their proportions. Bondre et al.
(2004a,b) have cautioned against using only the Columbia River Basalt province as an
analogue for all CFB provinces. They stressed the need to document the morphology of lava
flows from each individual province in order to obtain insights into their emplacement and
eruptive histories. An important reason for documenting flow morphology in older provinces
is to uncover lava types and modes of emplacement that are not observed in younger and
active volcanic provinces. Indeed, recent studies from CFB provinces have led to the
recognition of distinct lava types that have few young analogues (e.g. rubbly pahoehoe;
Keszthelyi et al. 2006). Here we compare the morphology, architecture and emplacement of
the CAMP basaltic successions in Morocco with the DVP (India) and Parana (Brazil) traps and
propose a new facies model for the emplacement of the CFB. Our comparison on the
physical volcanology of these key provinces and others CFB indicate that they do not have a
simple, ‘layer-cake stratigraphy’, but contain complex internal and external architectures.
Such architectures are governed by the volume of individual eruption events, the location
and abundance of volcanic centers, and the evolution of these centers through time. The
architecture of most, if not all, CFB provinces reveals that the production of compound
pahoehoe flows was followed by flows with a simpler, sheet-like geometry indicating a
fundamental temporal change in the emplacement process of lava flows. Accordingly, it
appears that flood basalt volcanism initially starts out at relatively low effusion rate, which
gradually accelerate to high effusion rate, high-volume eruptions. This worldwide similarity
suggests that the magma genesis and/or magma ascension processes are similar in all CFB
provinces (Jerram 2002; Jerram et al. 1999a, b; Planke et al. 2000; White et al. 2009; Jerram
and Widdowson 2005; Martins et al., 2008; El Hachimi et al., 2011; Waichel et al., 2012;
Rossetti et al., 2014; Duraiswami et al., 2014), although local conditions (coeval regional
geomorphology, surface and underground water availability) may constrain the details of the
internal architecture of each province (Luchetti et al., 2014; El Ghilani et al., 2017).
References
Bondre NR, Duraiswami RA, Dole G 2004a.Morphology and emplacement of flows from the Deccan Volcanic
Province, India. Bull Volcanol 66:29-45
Bondre NR, Duraiswami RA, Dole G 2004b.A brief comparison of lava flows from the Deccan Volcanic Province
and the Columbia-Oregon Plateau flood basalts: Implications for models of flood basalt emplacement. In: Sheth
HC, Pande K (eds) Magmatism in India through time. Proc IndAcadSci (Earth and Planet Sci) 113:809-817.
Duraiswami RA, Bondre NR, Dole G, Phadnis VM, Kale VS 2001.Tumuli and associated features from the
western Deccan Volcanic Province, India. Bull Volcanol 63:435-442.
Duraiswami RA, Dole G, Bondre NR 2003.Slabby pahoehoe from the western Deccan Volcanic Province:
evidence for incipient pahoehoe–aa transitions. J VolcanolGeotherm Res 121:195-217.
Duraiswami, R.A., PurvaGadpallu, Shaikh, T.N. and Neha Cardin 2014. Pahoehoe-a’a transitions in the lava
flow fields of the western Deccan Traps, India- implications for emplacement dynamics, flood basalt
architecture and volcanic stratigraphy. Jour.Asian Earth Sci., v.84, pp.146-166
52
Abstract Book
El Ghilani, S.; Youbi, N.; Madeira, J.; Chellai, E.H.; Lopez-Galindo, A.; Martins, L. andMata, J.
2017.Environmental implication of subaqueous lava flows from a continental Large Igneous Province: examples
from the Moroccan Central Atlantic Magmatic Province (CAMP). J. African Earth Sci. 127: 211–221.
El Hachimi H, Youbi N, Madeira J, Bensalah MK, Martins L, Mata J, Bertrand H, Marzoli A, Medina F, Munhá
J, Bellieni J, Mahmoudi A, Ben Abbou M, Assafar H 2011. Morphology, internal architecture, and emplacement
mechanisms of lava flows from the Central Atlantic Magmatic Province (CAMP) of Argana basin (Morocco). In:
Van Hinsbergen DJJ, Buiter SJH, Torsvik TH, Gaina C, Webb SJ (eds) The Formation and Evolution of Africa: A
Synopsis of 3.8 Ga of Earth History. Geol Soc Lond Spec Publ 357, 167-193.
Jerram DA, Mountney N, Stollhofen H. 1999a. Facies architecture of the Etjo Sandstone Formation and its
interaction with the Basal Etendeka food basalts of NW Namibia: Implications for offshore analogues. In:
Cameron N, Bate R, Clure V (eds) The Oil and Gas Habitats of the South Atlantic. GeolSocLond Spec Publ 153,
367-380.
Jerram DA, Mountney N, Holzförster F, Stollhofen H 1999b. Internal stratigraphic relationships in the Etendeka
Group in the Huab Basin, NW Namibia: understanding the onset of food volcanism. J Geodyn 28, 393-418.
Jerram, D. A. & Widdowson, M. 2005. The anatomy of Continental Flood Basalt Provinces: geological
constraints on the processes and products of flood volcanism. Lithos, 79, 385-405.
Jerram, D. A. 2002. Volcanology and facies architecture of flood basalts. In: Menzies, M. A., Klemperer, S. L.,
Ebinger, C. J. & Baker, J. (eds) Volcanic Rifted Margins. Geological Society of America, Boulder, Special Paper,
362, 121-135.
Keszthelyi L, Self S, Thordarson T 1999. Application of Recent studies on the emplacement of basaltic lava
flows to the Deccan Traps. In: Subbarao KV (ed) Deccan Volcanic Province, Mem GeolSocInd 43, 485-520.
Keszthelyi L, Self S, Thordarson T 2006. Flood lavas on Earth, Io and Mars. J GeolSocLond 163, 253-264.
Kontak DJ 2008. On the edge of CAMP: Geology and volcanology of the Jurassic North Mountain Basalt, Nova
Scotia. In: Dostal J, Greenough JD, Kontak DJ (eds) Rift-related Magmatism. Lithos 101, 74-101.
Luchetti, A.C.F.; Nardy, A.J.R.; Machado, F.B.; Madeira, J. & Arnósio, J.M. 2014.New insights on the
occurrence of peperites and sedimentary deposits within the silicic volcanic sequences of the Paraná Magmatic
Province, Brazil. Solid Earth 5, 121-130.
Martins LT, Madeira J, Youbi N, Munha J, Mata J., Kerrich R 2008. Rift-related magmatism of the Central
Atlantic Magmatic Province in Algarve, Southern Portugal. In: Dostal J, Greenough JD, Kontak DJ (eds) Rift-
related Magmatism. Lithos 101, 102-124.
Planke, S., Symonds, P. A., Alvestad, E. &Skogseid, J. 2000. Seismic volcanostratigraphy of large-volume
basaltic extrusive complexes on rifted margins. Journal of Geophysical Research, 105, 19,335-19,351.
Rossetti, L.M.L.M., Lima, E.F.E.F., Waichel, B.L.B.L., Scherer, C.M.C.M., Barreto, C.J.C.J. 2014. Stratigraphical
framework of basaltic lavas in Torres syncline main valley, southern Parana-Etendeka Volcanic Province. J. S.
Am. Earth Sci. 56:409-421.
Self S, Thordarson T, Keszthelyi L 1996. A new model for the emplacement of Columbia River basalts as large,
inflated pahoehoe lava flow fields. Geophys Res Lett 23:2689–2692.
Sheth , HC. 2006. The emplacement of pahoehoe lavas on Kilauea and in the Deccan Traps. J Earth SystSci 115,
615-629.
Sheth HC, Ray JS, Senthil Kumar P, Duraiswami RA, Chatterjee RN, Gurav T 2011. Recycling of flow-top breccia
crusts into molten interiors of flood basalt lava flows: Field and geochemical evidence from the Deccan Traps.
In: Ray J, Sen G, Ghosh B (eds) Topics in Igneous Petrology. Springer, Ch 8, 161-180.
Thordarson T, Self S 1998. The Roza Member, Columbia River Basalt Group: A gigantic pahoehoe lava flow field
formed by endogenous processes? J Geophys Res 103:27411-27445
Waichel PL, Lima EF, Lubachesky R, Sommer CA 2006. Pahoehoe flows from the central Parana Continental
Flood Basalts. Bull Volcanol 68, 599-610
Waichel PL, Scherer CMS, Frank HT 2008. Basaltic lava flows covering active aeolian dunes in the Parana Basin
in southern Brazil: Features and emplacement aspects. J VolcanolGeotherm Res 171, 59-72.
Waichel, B.L., Lima, E.F., Viana, A.R., Scherer, C.M., Bueno, G.V., Dutra, G., 2012. Stratigraphy and volcanic
facies architecture of the Torres Syncline, Southern Brazil, and its role in understanding the Parana-Etendeka
Continental Flood Basalt Province. J. Volcanol. Geotherm. Res. 216, 74-82.
White, J. D. L., Bryan, S. E., Ross, P. S., Self, S. &Thordarson, T. 2009. Physical volcanology of large igneous
provinces: update and review. In: Thordarson, T., Self, S., Larsen, G., Rowland, S. &Hoskuldsson, A. (eds) Studies
in Volcanology: The Legacy of George Walker. Special Publications of IAVCEI, 2. Geological Society, London,
291-321.