ChapterPDF Available

Water-energy nexus in semiarid regions and coastal cities of California and Baja California

Authors:

Figures

Content may be subject to copyright.
!
1!
Water Energy Nexus in semiarid region and coastal cities of
California and Baja California
Gabriela Muñoz Meléndez1, Sonya Ziaja2,3, Guido Franco2
1El Colegio de la Frontera Norte, Departamento de Estudios Urbanos y Medio
Ambiente, Tijuana, B.C., México
2 Research & Development Division, California Energy Commission, Sacramento,
CA, USA
3 University of Arizona, School of Geography and Development, Tucson, AZ, USA
!" #$%&'()*%+'$
The$ complexity$ of$ the$ environmental$ problems$ we$ faced$ nowadays$ have$ been$
addressed$ by$ compartmentalizing$ issues$ into$ isolated$ systems$ to$ be$ able$ to$
operationalize,$characterize,$and$evaluate$them$and$then$propose$solutions.$Somehow$
along$the$way,$during$such$abstraction,$is$commonly$forgotten$to$assembly$issues$back$
again$to$resemblance$how$they$are$encountered$in$real$life$with$some$of$their$entangled$
complexity;$in$doing$so,$crucial$information$is$lost$at$the$underestimated$links;$this$is$
case$for$ the$ nexus$ between$ water$ and$ energy,$ their$ individual$ importance$ as$engines$
for$life$and$development$is$hugely$recognized$but$their$overlaps$have$been$disregarded.$ $
And$ those$ dismissed$ relationships$ have$ a$ latent$ social,$ economic,$ environmental,$
political$and$physical$relevance.$ For$example,$the$water-energy$ link$is$crucial$ for$ the$
urban$development,$it$has$been$reported$that$between$30$to$40$%$of$energy$demanded$
by$ local$ governments$ is$ to$ operate$ water$ and$ wastewater$ treatment$ plants;$ such$
demand$is$likely$to$increase$in$20%$for$the$next$15$years$due$to$population$growth$and$
potential$drought$conditions$(Coppeland,$2013).$Energy$investment$could$be$higher$if$
the$transference$of$water$in$aqueducts$is$taken$into$account.$Furthermore,$the$fuel$mix$
to$generate$electricity$consumed$to$move$and$treat$water$and$wastewater$will$have$an$
impact$on$air$quality$and$the$generation$of$Greenhouse$Gases$emission$alike.$Moreover,$
underestimating$the$link$between$water$and$energy$could$be$costly$in$financial$terms$
and$has$implications$in$planning.$
$
!
2!
$
Yet,$the$ link$ between$ water$ and$ energy$ does$ not$limit$to$metropolitan$environments,$
irrigation$play$ a$ key$role$ in$ the$production$ of$ food,$given$ that$ agriculture$ consumes$
more$than$70$%$of$water$withdrawals;$that$is$accompanied$by$energy$investment,$this$
will$increase$with$the$use$of$fuel$and$electricity$for$harvesting,$packing,$transportation$
and$commercialization.$There$is$not$only$a$water$footprint$but$a$long$chain$of$energy$
investment$that$goes$along$with$it$together$with$air$quality$impacts,$greenhouse$gases$
emissions,$ land$ use$ degradation$ and$ loss$ of$ biodiversity;$ to$ name$ but$ other$ few$
implications.$ $
This$line$of$ thinking$could$ have$ been$ crossing$ Peter$Glieck’$mind$more$than$20$years$
ago$when$ he$ stated$ that$ water$ and$ energy$ were$ related$ in$ many$ complexes$ ways$ too$
deeply$ interconnected$ to$ continue$ approaching$ energy$ policy$ and$ water$ policy$ as$
independent$(Gleick,$1994).$However,$a$decade$went$by$before$the$water-energy$nexus$
received$any$wide-spread$attention;$and$when$it$did,$the$implications$of$water$scarcity$
for$meeting$energy$needs$to$sustain$population$and$economic$growth$tended$to$drive$
the$analysis$(Glassman$et$al,$2011;$Allouche$et$al.$2015).$ $
In$ the$ U.S.$ much$ of$ the$ water-energy$ nexus$ research$ has$ focused$ on$ the$ energy$
embedded$ in$ the$ water$ and$ wastewater$ sectors;$ these$ studies$were$developed$ by$
academic,$ nonprofit$ and$ state$ agency$ researchers$ and$ policy$ analysts$ (Water$ in$ the$
West,$ 2013).$ Although$ there$ are$ studies$ from$various$ locations$ around$ the$ United$
States$ (Stillwell$ et$ al,$ 2010),$ most$ were$ concentrated$ in$ the$ Southwestern$ region$
(Glassman$et$al,$2013),$in$particular$California$(Blanco,$2012;$Bennett$et$al.,$2010$a&b;$
CEC,$2005;$Cooley$et$al.,$2008;$Cooley$&$Wilkinson,$2012;$the$Climate$Registry,$2015;$
Wilkinson$2000,$Wilkinson$2007).$ $
In$ Europe,$ the$ Netherlands$ and$ the$ UK$ are$ examples$ of$ leading$ countries$ that$ have$
adopted$circular$ economy$ principles$and$ implemented$its$ associated$technologies$ to$
reduce$ water-energy$ and$ water-food$ nexus$ pressures$ (Brears,$ 2015).$ There$are$
additional$efforts$to$harmonize$energy$and$water$systems$elsewhere.$For$example,$in$
Spain,$a$study$on$the$estimation$of$energy$consumption$for$urban$water$treatment$and$
seawater$ desalination$ and$ the$ role$ that$ new$ technologies$ and$ policies$ may$ play$
reducing$ energy$ consumption$ was$ sponsored$ by$ the$ Spanish$ Institute$ for$
!
3!
Diversification$ and$ Energy$ Conservation$ (IDEA)$ (Fundacion$ OPTI$ &$ IDAE,$ 2010);$ as$
well$ as$ research$ on$ the$ role$ of$ consumption-production$ on$ the$ water-energy$ nexus$
(Velazquez$et$al,$2011).$The$Stockholm$Environment$Institute$(SEI)$report$‘The$Water,$
Energy$ and$ Food$ Security$ Nexus:$ Solutions$ for$ the$ Green$ Economy’$ provides$ an$
additional$example$of$the$increasing$prevalence$of$research$on$this$concept.$
In$the$Middle$ East$and$North$ Africa$countries$(MENA),$ the$work$by$ Siddiqi$and$Diaz$
(2011)$ was$ seminal$ to$ present$ a$ systematic,$ quantitative$ evaluation$ of$ energy$
consumption$in$water$systems$and$water$consumption$in$energy$systems$at$a$country$
level$ in$ the$ MENA$ region;$ and$to$ inspect$the$ broader$ issues$ of$ water$ supply$ and$ its$
energy$implications,$and$environmental$considerations$for$future$planning.$ $
In$Asia,$the$water-energy-food$nexus$was$explored$by$using$two$case$studies,$namely$
Central$Asia$and$the$Mekong$Basin;$findings$showed$that$existing$policy$frameworks,$
energy$ and$ water$ policies$ are$ developed$ largely$ in$ isolation$ from$ one$ another$
(UNESCAP,$2013).$Additionally,$in$China$the$water$energy$nexus$has$been$related$to$the$
generation$ of$ GHG$ emissions$ from$ groundwater$ pumping$ for$ irrigation$ (Wang$ et$ al,$
2012).$
In$ Australia,$ Barry$ Newell,$ Deborah$ Marsh,$ and$ Deepak$ Sharma$ (2011)$ took$ the$
principles$ and$ concepts$ of$ systems$ thinking$ and$ applied$ them$ to$ an$ analysis$ of$ the$
resilience$of$the$Australian$National$Electricity$Market$(NEM)$to$characterize$the$water$
energy$nexus$as$a$result$of$severe$water$shortages$in$2007$that$saw$generation$capacity$
curtailed$and$a$threefold$increase$in$the$wholesale$price$for$electricity.$
Concerns$ on$ the$ water$ energy$ nexus$ are$ not$ limited$ to$ countries,$ and$ world$
organizations$ had$ reported$ on$ the$ issues$ in$ publications$ such$ as$ the$ World$ Bank$
‘Thirsty$Energy’,$The$United$Nations$(UN)$‘World$Water$Development$Report$(WWDR)$
2014’,$The$International$Energy$Agency$(IEA)$‘World$Energy$Outlook$2012’,$The$‘Water$
Security:$The$Water-Food-Energy-Climate$Nexus’$book,$launched$in$2011$by$the$World$
Economic$ Forum$ (WEF);$ this$ last$book$ links$ the$ nexus$ to$ development$ and$
conceptualizes$the$nexus$in$a$technical-managerial$fix$to$resource$scarcity,$an$approach$
that$ has$ been$ critiqued$ for$ neglecting$ underlying$ issues$ of$ equity$ and$ distribution$
(Allouche$et$al.$2015).$
$
!
4!
$
$
Studies$ listed$ above$ carried$ out$ characterizations,$ identified$ problems,$ and$ in$ some$
cases$ provide$ public$ policy$ recommendations.$ A$ constant,$ however,$ is$ that$ water$ as$
well$as$ energy$ sources$ are$ considered$to$ be$ resources$that$ are$ managed$at$ multiple$
scales.$That$is,$resources$at$ local$level$are$ managed$ by$utilities$and$ city$ or$municipal$
governments;$however,$ the$ very$same$ resources$ at$ a$ regional$ scale$ are$managed$ by$
several$ and$ diverse$ local$ domains$ each$ of$ them$ at$ an$ identifiable$ location$ and$ with$
jurisdiction$over$a$specific$“piece”$of$resource.$To$complicate$and$fragment$further$the$
management$of$resources,$service$regions,$infrastructure,$and$physical$resources$can$
also$cross$ State$boundaries;$ these$at$ regional$and$ political$ levels$are$ not$ necessarily$
coterminous.$ This$ fact$ has$ complicated$ consequences,$ but$ is$ not$ necessarily$
problematic.$It$has$been$posited$by$policy$and$management$experts$that$for$resources$
management$purposes,$administrative$boundaries$are$more$relevant$than$the$physical$
boundaries$ (Scott$ et$ al,$ 2011),$ and$ may$ be$ more$ appropriate$ for$ problem$ solving$
(Blomquist$and$Schlager,$2008).$ $
This$paper$evaluates$how$energy$and$water,$as$interdependent$and$shared$resources,$
could$be$characterized$in$the$coastal$US-Mexico$border$region,$in$particular$California$
and$Baja$California;$this$characterization$is$achieved$through$a$comparison$of$official$
statistics.$To$ achieve$ this$ objective$ this$paper$ is$divided$ into$ eight$sections;$the$ first$
reviews$ the$ current$ status$of$ the$ nexus$ between$ water$ and$ energy$ at$ Mexico;$ the$
second,$ third$ and$ fourth$ parts$describe$ the$ water$and$ energy$ sectors$ and$ their$
regulations$at$both$Baja$California$Mexico$and$California,$U.S.$The$fifth$and$sixth$section$
summarizes$energy$ and$water$ sectors’$impacts;$ and$influencing$ factors$ future$ water$
and$energy$demand$and$supplies$for$the$region.$The$seventh$section$provides$energy$
and$water$policy$options$in$particular$for$Baja$California.$Conclusions$are$given$in$the$
last$section.$
$
$
$
$
!
5!
$
,"-./%0&10$0&23-$04)5-+$-604+*'-/$(-%70-8"9"$
The$ nexus$ between$ water$ and$ energy$ in$ Mexico$ as$ well$ as$ in$ the$ U.S.$ is$ very$ much$
focused$on$the$role$of$water$for$energy$generation.$To$a$lesser$extent,$the$importance$
of$energy$is$recognized$for$the$operation$of$wastewater$treatment$facilities$and$water$
pumping.$Within$California,$because$of$its$elaborate$water$conveyance$system,$there$is$
also$significant$attention$to$energy$embedded$in$water$delivery.1$
In$the$ United$States,$the$thermoelectric$generating$industry$is$the$largest$withdrawal$
user$ of$ water.$ According$ to$ USGS,$ 349$ billion$ gallons$ (1.32$ billion$ cubic$ meters)$ of$
freshwater$ were$ withdrawn$ per$ day$ in$ the$ United$ States$ in$ 2005.$ This$ amount$
accounted$ for$ 41%$ of$ freshwater$ withdrawn.$ However,$ freshwater$ consumption$ for$
thermoelectric$purposes$is$low$(only$3%)$when$compared$to$other$use$categories$such$
as$irrigation,$which$was$responsible$for$81%$of$water$consumed.$Conversely,$American$
water$and$wastewater$ systems$ account$for$approximately$ 3-4%$of$energy$ use$in$the$
United$States.$Furthermore,$water$and$ wastewater$ treatment$plants$are$typically$the$
largest$energy$ consumers$of$ municipal$governments,$ accounting$for$ 30-40%$of$ total$
energy$ consumed,$ and$ is$ expected$ to$ increase$ 20%$ in$ the$ next$ 15$ years$ due$ to$
population$growth$and$tightening$drinking$water$regulations.$
In$California$about$50%$of$the$available$fresh$water$is$used$for$environmental$purposes$
(e.g.,$ maintaining$ and$ restoring$ of$ aquatic$ and$ riparian$ ecosystems,$ instream$ flows,$
managed$ wetlands).$ The$ rest,$ “consumptive$ use,”$ is$ used$ for$ agricultural$ operations$
and$for$urban$use.$Of$this$“consumptive”$use,$agriculture$uses$about$80%$of$the$total$
while$“urban”$consumption$is$disaggregated$as$shown$in$Figure$1.$The$sticking$message$
of$Figure$1$is$that$landscaping$(outdoor$use$in$the$residential$and$commercial$sectors)$
account$for$roughly$half$of$the$total$urban$water$use$(PPIC,$2015).$
$
$
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1$Reports$by$the$Baja$California$Water$Commission$suggests$that$the$highest$energy$use$for$water$in$Baja$
California$is$ for$ conveyance$ at$ the$ Colorado$ River-Tijuana$aqueduct,$without$ accounting$ for$ informal$
water$delivery$methods$like$water$tankers.$However,$a$full$discussion$of$the$embedded$energy$in$Baja$
California$is$beyond$the$scope$of$this$chapter.$
!
6!
$
In$Mexico,$the$thermoelectric$power$plants$are$the$third$withdrawal$users$of$water.$By$
2014,$11.37$million$cubic$meters/day$(3.0$billion$gallons/day)$were$consumed$by$this$
sector;$however,$this$amount$-of$which$89$%$was$from$freshwater$origin-$represented$
only$4.9$%$of$consumptive$use$in$the$country;$as$in$the$American$case,$this$amount$is$
low$when$compared$to$irrigation,$which$was$responsible$for$76.7%$of$water$consumed.$
The$ second$ most$ important$ water$ user$ with$ 14$ %$(29$ m3/day$ or$ 3.18$ billion$
gallons/day)$of$consumption$was$the$public$ sector$ that$includes$domestic$and$urban$
public$users$(Conagua,$2015).$Urban$water$uses$in$Mexico$are$distributed$as$follows;$
71$%$is$for$residential$users,$12$%$is$for$the$Industry,$15$%$is$for$commercial$costumers$
and$2$%$is$destined$for$public$services$(IMTA,$2002).$
$
:+2)&0-!"$Urban$Water$Use$in$California$
$$$
Source:$Modified$from$PPIC,$2015.$Data$from$the$California$Department$of$Water$Resources.$
$
In$Baja$California,$ of$the$ 3048.4$ million$cubic$ meters$assigned$ to$ consumptive$usage$
during$2014,$2.586$billion$cubic$meter$were$destined$to$Agriculture$(59%$of$these$were$
surface$water$withdrawals),$192$million$cubic$meter$were$consumed$by$thermoelectric$
centrals$(all$from$groundwater$origins),$188$million$cubic$meter$were$for$public$supply,$
and$ 83$ million$ cubic$ meter$ were$ used$ in$ the$ Industry$ (without$ considering$ power$
plants)$(Conagua,$2015).$(see$Figure$2).$ $
!!"
!#"
$"
%"
&"
'%"
()*+,)-.+/0123.,224*
()*+,)-.+/01+-,224*
5-)46716)-)4/.+2-
8-,3*.4+/0
92::)4;+/01/-,
+-*.+.3.+2-/0<1+-,224*
92::)4;+/01/-,
+-*.+.3.+2-/0<123.,224*
!
7!
$
There$are$not$urban$water$uses$records$for$Baja$California,$however$they$are$expected$
to$ follow$ the$ national$ trend,$ and$ be$ mainly$ allocated$ to$ residential$ consumers,$ and$
considering$prevailing$household$characteristics$in$Mexico;$it$is$likely$that$urban$water$
use$could$be$concentrated$on$residential$indoor$utilization.$ $
The$average$water$consumption$per$capita$in$the$State$is$215$liters/day.$Coastal$towns$
currently$host$77$%$of$the$State$population$-$and$are$estimated$to$growth$with$a$rapid$
pace$for$the$following$30$years-,$so$ far,$ their$water$supply$has$been$secured$through$
the$Colorado$ River-Tijuana$aqueduct.$ Tijuana$depends$ in$nearly$ 90$%$ of$ such$ water$
transferences.$
$
:+2)&0-,"$Water$Uses$in$Baja$California$
$
Source:$Conagua,$2015$
-
,"-;$0&23-50*%'&-*7/&/*%0&+5%+*5- -
Mexico$ and$ the$ U.S.$ have$ 18$ interconnection$ points$ to$ transport$Natural$ Gas$for$
importation$ to$ Mexico$ (SENER,$ 2016).$ There$ are$ two$ Liquefied$ Natural$ Gas$ (LNG)$
terminals$in$Mexico,$both$in$the$border$region;$one$is$the$Altamira$port$in$Tamaulipas;$
the$other$is$the$Costa$Azul$terminal$near$Ensenada$in$Baja$California.$ $
$
$
85%
6%
3%
6% Agriculture
Public!service
Industry
Thermoelectric!power!
plants
!
8!
$
Mexico$and$the$U.S.$also$have$nine$electricity$interconnections$with$varying$capacities$
and$voltages.$Five$operate$for$backup$purposes$in$the$event$of$supply$distortions$and$
system$blackouts$on$both$sides$of$the$border.$The$transfer$of$electric$energy$between$
the$U.S.$and$Mexico$is$controlled$by$the$Mexican$Electricity$System$(Sistema$Eléctrico$
MexicanoSEM)$ and$ two$ regional$ councils$ in$ the$ U.S.the$ Western$ Electricity$
Coordinating$ Council$ (WECC)$ and$ the$ Electric$ Reliability$ Council$ of$ Texas$ (ERCO)$
(SENER$2008a,$SENER,$2008b).$Under$the$energy$bill$that$was$passed$at$the$end$of$2013$
and$the$ regulatory$ measures$that$ were$enacted$ during$the$ first$half$ of$ 2014,$private$
investment$on$the$ Mexican$energy$sector$ is$possible;$this$ could$ bring$changes$ to$ the$
border$region$(Mexico$Gobierno$de$la$Republica).$
$
/"-;$0&23-50*%'&-'<-=/>/-?/@+<'&$+/-
$
+"-;@0*%&+*+%3$
Baja$California$is$a$State$with$one$of$the$highest-demand$for$electricity$in$Mexico,$this$
is$ for$ two$ main$ reasons,$ the$ first$ is$ climate$ conditions,$ in$ particular$ extremely$ high$
temperatures$ during$ summer;$ and$the$ second$ reason$ is$increasing$ electricity$
consumption$by$ economic$ activities,$ specially$ exporting$ industrial$ activities,$ such$ as$
“maquiladoras”$including$car$assembly$plants.$In$2016,$the$overall$annual$electricity$in$
Baja$ California$ was$13,122$ GWh,$ with$ a$ peak-demand$ of$ 2,374$ MWh$ driven$ by$ air$
conditioners’$use$during$summer$(PRODESEN,$2016).$
The$ current$ electricity$ infrastructure$ in$ Baja$ California$ consists$ of$ four$ main$ power$
generating$ plants,$ several$ small$ plants,$ and$ a$ system$ of$ transmission$ lines,$
concentrated$in$two$ zones$denominated$ the$ Valley$(Mexicali)$ and$the$Coast$ (Tecate-
Tijuana-Rosarito$and$Ensenada).$The$grid$is$not$connected$to$the$National$Electricity$
Grid;$instead$it$is$connected$to$San$Diego,$CA$in$the$United$States$by$way$of$three$lines$
of$230$kV.$One$ of$these$lines$is$ located$in$Tijuana,$and$ the$remainders$are$located$ in$
Mexicali.$The$transmission$lines$belong$to$the$U.S.$companies$of$Sempra,$InterGen,$and$
San$Diego$Gas$&$Electric.$Thus,$the$Baja$California$electricity$grid$provides$public$and$
export$services.$
!
9!
$
Energy$sources$to$generate$electricity$have$deeply$changed$during$the$last$fifteen$years.$
Before$2000,$ up$to$ 70$%$ of$ electricity$ generation$ was$ from$ geothermal$ sources$ (see$
Figure$3)$followed$by$about$ 25$ %$from$fuel$oil$and$in$ a$ minor$degree$from$diesel.$In$
2001,$natural$gas$to$generate$power$was$introduced$in$the$region,$and$only$five$years$
later$such$fuel$became$the$most$important$source$to$produce$power,$due$to$the$setting$
of$two$privately-owned$power$plants$in$Mexicali.$At$present,$power$generation$in$Baja$
California$is$dominated$by$power$plants$burning$natural$gas$(see$Figure$4).$Renewable$
sources$participation$in$particular$solar$and$wind-$is$still$incipient.$
By$2014,$the$total$effective$generation$capacity$in$Baja$California$was$3,929$MW,$with$
2,693$MW$of$interconnection$capacity$and$an$annual$gross$generation$of$19,482$GWh.$
The$ public$ suppliers$ provided$1,800$ MW;$ of$ these$ 1,300$ MW$ were$ operated$ by$the$
Mexican$Federal$Electricity$Commission$(Comisión$Federal$de$ElectricidadCFE),$with$
the$geothermal$plant$of$Cerro$Prieto$as$the$most$important$power$plant$on$the$Valley$
region,$and$the$natural$gas$combined$cycle$ (NGCC)$ station$ “Presidente$Juarez”$as$the$
principal$electricity$provider$for$the$coastal$cities.$The$remaining$500$MW--for$public$
supply--come$from$the$power$plant$owned$by$InterGen$“La$Rosita”$(with$ an$installed$
capacity$of$1,100$MW),$located$in$Mexicali.$Electricity$exportation$to$California$reached$
1,200$MW,$of$these$half$was$provided$by$the$NGCC$“La$Rosita”,$and$half$from$the$power$
plant$property$of$Sempra$Energy$(also$located$in$Mexicali).$
$
++"-A/%)&/@-2/5$
There$ is$ no$ Natural$ Gas$ (NG)$ production$ in$ Baja$ California.$ However,$ over$ the$ past$
decade$the$consumption$of$natural$gas$has$increased$considerably.$Demand$for$natural$
gas$rose$from$13.9$million$cubic$feet$per$day$(mcfpd)$in$2000$to$256.4$million$in$2009—
an$increment$of$38%$annually.$NG$consumption$is$up$300$percent$since$2010,$and$is$set$
to$double$again$by$2019$(Lobet,$2017).$
$
$
$
$
!
10!
$
:+2)&0$B.$ Geothermal$ Electricity$ Generation$ Stations$ in$ Baja$ California,$ Mex.$ and$
Southern$California,$U.S.$
$
$
All$of$the$natural$gas$used$in$Baja$California$is$imported$from$the$United$States,$as$the$
State$is$not$connected$to$the$national$pipeline$network$in$Mexico.$SEMPRA$operates$the$
180$ miles$ Natural$ Gas$ pipeline$ for$ imports$ to$ Baja$ California.$ This$ NG$ pipeline$
interconnects$ with$ El$ Paso$ Natural$ Gas$ Co.$ near$ Ehrenberg,$ Arizona,$ traverses$
southeastern$ California,$ crosses$ the$ border$ and$ heads$ west$ across$ Baja$ California,$
Mexico$ near$ “Los$ Algodones”$ town,$ terminating$ at$ an$ interconnection$ with$ the$
Transportadora$de$Gas$Natural$(TGN)$Pipeline$which$runs$from$an$interconnect$with$
!@
!@
!@
!
@
!
@
!
@!
@
!
@
!
@
!
@
!
@
!
@
!
@
!
@
!
@
!
@
!
@
!
@
!
@
!
@
!
@
!
@
Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS
user community
0 40 8020 Miles
Ü
Mexicali Geothermal Power Plants
Legend
!
@0.01 - 74.3
!@74.3 - 265.44
!@265.44 - 689
!@689 - 1612.8
!@1612.8 - 2693.54
Los Angeles Boundary
San Diego Bounda ry
Baja California Boundaries
Mexican Urban Areas
Ensenada
Mexicali
Tecate
Tijuana
Los Angeles
San Diego
Tijuana
Tecate
Ensenada
Mexicali
!
11!
SDG&E$ at$ the$ US/Mexico$ border$ south$ of$ San$ Diego$ to$ the$ Presidente$ Juarez$ Power$
plant$in$Rosarito,$Baja$California.$Gasoducto$Rosarito$includes$a$lateral$that$connects$to$
the$Costa$Azul$LNG$terminal$(http://www.northbajapipeline.com/company_info/)$and$
since$2016$also$connects$the$new$NG$CC$power$plant$“La$Jovita”$in$Ensenada,$property$
of$Iberdrola$on$construction$at$the$moment$but$to$start$operations$later$this$year,$2017.$
By$ 2015,$ 333.8$ million$ cubic$ feet$ per$ day$ were$ imported$ through$ “Los$ Algodones”$
interconnection$point$(SENER,$2016).$
$
:+2)&0$C.$Energy$sources$of$Electricity$Generation$in$Baja$California$1990-2015,$units$
are$given$in$MWh$
$
Sources:$prepared$by$the$authors$using$data$from$INEGI,$1991$to$2014;$PRODESEN,$2016$and$CEC,$2015$
$
As$seen,$the$main$end-user$of$NG$is$the$electricity$sector.$In$2009$the$sector$consumed$
93%$of$the$total$NG$consumed$in$Baja$California.$One$potential$for$such$an$enormous$
share$of$natural$gas$could$be$because$in$1999$the$electricity$generation$in$the$Coastal$
region$ transitioned$ from$ fuel$ oil$ to$ natural$ gas.$ Meanwhile,$ in$ the$ Valley,$ the$ use$ of$
natural$gas$displaced$geothermal$vapor$(Campbell$et$al,$2006).$ $
$
$
$
0
2,000,000
4,000,000
6,000,000
8,000,000
10,000,000
12,000,000
14,000,000
16,000,000
1990 1995 2000 2005 2010 2015
Diesel
Fuel$oil
Geothermal
Natural$gas
Solar$photovoltaic
Wind
!
12!
$
$
+++"-D0%&'@0)E$
No$ oil-based$ fuels$ are$ processed$ in$ Baja$ California;$ thus$ there$ is$ no$ oil$ refinement$
infrastructure.$However,$oil-based$products$are$highly$consumed$goods,$and$the$State$
has$a$well-connected$distribution$network.$Transport$is$the$main$end-user$of$gasoline$
at$Baja$California;$its$demand$reached$75%$of$the$total$amount$supplied$to$the$whole$
of$ Baja$ California.$ The$ coastal$ towns$of$ Tijuana,$ Rosarito$and$ Ensenada$ consumed$
nearly$60%$of$the$total$gasoline$and$diesel$provided$to$the$State.$ $
In$2017,$Petróleos$Mexicanos$(Pemex)$ceased$to$be$the$only$oil-based$fuel$provider$in$
Mexico$as$a$result$of$the$Energy$Reform$implementation,$from$now$on$there$will$be$new$
providers$of$fuels,$in$particular$gasoline$and$diesel.$
$
F"-;$0&23-50*%'&-'<-?/@+<'&$+/$
The$energy$sector$of$California$is$extensive$and$very$well$integrated.$The$coastal$cities$
in$ Southern$ California$ are$ very$ well$ connected$ with$ the$ overall$ energy$ system$ in$
California$and,$for$ this$ reason;$we$provide$an$overall$view$of$the$energy$sector$in$the$
state$of$California$and$emphasize$certain$peculiarities$of$Southern$California.$
$
+"-;@0*%&+*+%3-G+$*@)(+$2-$/%)&/@-2/5-F/50(-0@0*%&+*+%3-20$0&/%+'$H-
The$overall$annual$electricity$demand$in$California$is$about$280,000$GWh$and$the$peak$
demand$can$be$more$than$60,000$MW$(CEC,$2015).$The$hours$of$peak$demand$occur$
during$ the$ hot$ summer$ hours$ during$ weekdays$ driven$ by$ the$ demand$ from$ air$
conditioning$units.$ Electricity$ generation$in$ California$ is$dominated$ by$ power$ plants$
burning$ natural$ gas.$ But$power$ generation$ is$ highly$ diversified$ with$ substantial$
amounts$ of$ renewable$ sources$ of$ energy-dominated$ by$ hydropower$ generation$ and$
geothermal$(See$Figure$5).$The$penetration$of$wind$and$solar$resources$are$increasing$
at$ a$ rapid$ rate$ driven$ by$ laws$ mandating$ that$ 33%$ of$ the$ electricity$ provided$ to$
customers$ must$ come$ from$ renewable$ sources$ of$ energy$ by$ 2020,$ which$ must$ be$
increased$ to$ 50%$ by$ 2030$ (CEC,$ 2015).$ However,$ the$legal$ definition$ of$ renewable$
excludes$large$hydropower$units$(capacity$larger$than$30$MW)$and$on-site$generation$
!
13!
(generation$ after$ the$ utility$ meters).$ Since$ hydropower$ is$ an$ important$ source$ of$
electricity$in$California$and$the$on-site$use$of$PV$units$is$becoming$more$prevalent,$the$
legal$ definition$ of$ renewables$ means,$ in$ practice,$ that$ the$ electricity$ consumed$ in$
California$in$2020$and$2030$will$have$a$much$higher$content$of$renewables$than$33%$
and$50%,$respectively.$
$
:+2)&0$I.$Energy$sources$of$Electricity$ Generation$in$California$1990-2015,$units$are$
given$in$MWh$
$ $
Source:$prepared$by$the$authors$using$U.S.$EIA,$2016$data$
$
California$also$imports$large$quantities$of$electricity$from$the$Pacific$Northwest$and$the$
Southwest$and$it$is$part$of$the$Western$Energy$Coordinating$Council$(WECC).$As$noted$
above,$the$ northern$part$ of$BC$ is$also$ part$of$ WECC$and$ not$ physically$ connected$to$
others$ part$ of$ Mexico.$ California$ imports$ most$ of$ its$ hydropower$ from$ the$ Pacific$
Northwest.$ Its$ fossil$ based$ electricity$ mostly$ comes$ from$ the$ Southwest.$ By$ law$ the$
import$of$“coal$by$wire”$is$vanishing$ with$ the$mandate$to$eliminate$all$the$ long-term$
contracts$from$out-of-state$coal$burning$power$plants$(CEC,$2015).$However,$keeping$
track$ of$ the$ sources$ of$ electricity$ sending$ power$ to$ California$ is$ challenging$ and$ an$
almost$impossible$technical$task$given$the$strong$interconnections$in$the$WECC$and$the$
0
50,000,000
100,000,000
150,000,000
200,000,000
250,000,000
300,000,000
1990 1995 2000 2005 2010 2015
Natural$Gas
Hydroelectric$
Conventional
Geothermal
Nuclear
Wind,$Solar$Thermal$
and$PVs
Other
!
14!
fact$that$the$actual$flow$of$electrons$in$a$network$follows$the$laws$of$nature$ignoring$
“mandates”$from$contracts$and$human$laws.$ $
Some$argue$that$a$mandate$from$clean$electricity$from$out-of-state$power$plants$could$
encourage$ an$ apparent$ reduction$ of$ carbon$ dioxide$ emissions$ from$ consumption$ in$
California$ accompanied$ by$ an$ increase$ in$ emissions$ in$ other$ parts$ of$ the$ WECC$
(Bushnell$et$al.,$2014).$The$contribution$of$coal$to$electricity$ generation$ in$ the$ WECC$
has$decreased.$But,$this$may$have$been$mostly$due$to$the$retirement$of$old$coal$burning$
power$plants$that$ were$replaced$ with$natural$gas$ power$plants.$ The$ change$came$ in$
response$to$the$availability$of$low$cost$natural$gas$and$the$increase$efficiency$of$natural$
gas$burning$power$plants$using$ combined$ cycle.$The$California$mandate$should$ have$
also$ had$ an$ effect$ in$ this$ transition$ but$ the$ real$ magnitude$ of$ the$ impact$ remains$
unclear.$ $
At$the$same$time,$due$to$the$relatively$unexpected$high$methane$ emission$rates$from$
the$natural$gas$system,$the$climate$benefits$of$natural$gas$are$diminished$in$relation$to$
other$fossil$fuels$(Alvarez$et$al,$2012).$The$magnitude$of$these$emissions$have$been$a$
matter$ of$ scientific$ dispute$ but$ recent$ comprehensive$ studies$ demonstrate$ that$
counting$the$emissions$from$“super-emitters”$brings$the$estimated$emissions$close$to$
the$ range$ estimated$ using$ aircrafts,$ instrumented$ towers$ and$ other$ so$ called$ “top-
down”$ methods.$ These$ methods$ are$ characterized$ by$ their$ ability$ to$detect$ overall$
methane$emissions$from$natural$gas$fields,$the$distribution$network,$and$other$parts$of$
the$natural$gas$system,$but$are$unable$to$identify$and$quantified$individual$sources$(e.g.,$
and$individual$natural$gas$well)$for$the$most$part$(Lyon$et$al.,$2016).$It$is$unclear$at$this$
time$how$successful$and$ at$ what$costs$efforts$ to$ reduce$methane$emissions$from$ the$
natural$gas$system$will$be$because$the$identification$of$super-emitters$may$be$difficult$
hampering$emission$reduction$efforts.$At$the$same$time,$if$their$identification$is$found$
to$be$straightforward,$controlling$them$and$because$they$represent$a$small$fraction$of$
the$potential$sources$of$emissions$may$lower$compliance$costs.$At$the$same$time,$any$
methane$leaks$will$reduce$the$comparative$advantage$of$natural$gas$from$other$fossil$
fuels$and$may$compromise$its$perceived$role$as$a$bridge$fuel$for$the$next$decades.$
$
$
!
15!
$
In$Southern$California$the$generation$is$also$dominated$by$natural$gas$but$also$includes$
a$coastal$nuclear$power$plant$and$large$recent$additions$of$solar$and$wind$farms$in$the$
desert$Mojave.$
$
++"-A/%)&/@-2/5-
The$production$of$natural$gas$in$California$is$dominated$by$associated$wells”,$which$
are$ wells$that$ produce$ both$ crude$ oil$ and$ natural$ gas.$ Natural$ gas$ production$ in$
California$has$declined.$In$more$recent$years$California$imports$from$other$parts$of$the$
United$States$about$90%$of$its$consumption.$Southern$California$is$served$by$a$network$
of$transmission$pipelines$bringing$natural$gas$from$producing$basins$in$New$Mexico,$
Texas,$ Utah,$ Colorado$ and$ Wyoming.$ There$ is$ also$ an$ interstate$ transmission$ line$
bringing$natural$gas$from$the$western$part$of$Canada.$An$intrastate$transmission$line$
connects$Southern$California$with$this$supply$source$from$the$north.2.$
Natural$ gas$ is,$ by$ far,$the$ dominant$ fossil$ fuel$ consumed$ in$ California$ in$ all$ sectors$
excluding$ transportation,$ which$ is$ dominated$ by$ petroleum$ based$ products$ such$ as$
gasoline.$ The$ transition$ to$ natural$ gas$ in$ the$ residential,$ industrial,$ and$ commercial$
sectors$has$been$due$to$multiple$factors$including$air$quality$considerations.$Emissions$
of$oxide$of$nitrogen,$particulate$matter,$oxides$of$sulfur,$and$carbon$monoxide$tend$to$
be$much$lower$in$units$burning$natural$gas$in$comparison$with$other$fossil$fuel$based$
fuels.$ $
$
+++"-D0%&'@0)E-
Fuels$derived$ from$crude$ oil$dominate$ the$ transportation$ sector$ mainly$due$ to$their$
high$energy$content$per$unit$of$volume.$Several$oil$refineries$are$located$in$Southern$
California$serving$it$ natural$ market$but$also$ exporting$products$to$ the$other$parts$ of$
western$United$ States.$ As$ with$ natural$gas$ most$of$ the$crude$ oil$that$ is$processed$ in$
California$refineries$is$imported$from$other$regions.$For$example,$in$2015$the$imports$
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2!
https://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/ngpipelines_map.htm
l$
!
16!
came$in$descending$order$of$amount$supplied$from$Saudi$Arabia,$ Ecuador,$ Colombia,$
Kuwait,$Iraq,$Brazil,$Angola,$Canada,$and$other$regions.3$$$$$
-
B"-./%0&-50*%'&-*7/&/*%0&+5%+*5- -
Mexico$and$the$United$States$ use$ in$common$three$ watersheds:$ Bravo,$Colorado$and$
Tijuana,$of$these,$the$last$two$are$shared$between$California$and$Baja$California,$being$
the$ Colorado$ River$ the$ most$ important,$ as$ it$ provides$ nearly$ 60$ %$ of$ water$ to$ Baja$
California,$given$the$importance$a$brief$explanation$about$the$binational$management$
is$ provided.$ The$1944$ Water$ Treaty$ entails$that$ the$ U.S.$ provides$ Mexico$ with$ 1.5$
million$acre-feet$(AF)$of$Colorado$River$water$per$year,$which$represents$about$10%$of$
the$ river’s$ average$ flow.$ Under$ the$ Treaty,$ binational$ disputes$over$ water$ quantity,$
quality,$and$conservation$can$be$resolved$through$amendments,$called$“minutes.”$For$
example,$the$last$amendment:$Minute$319,$agreed$ to$ in$ 2012,$provides$for$a$bilateral$
basin$water$management,$storage,$ and$ environmental$enhancement$effort.$(Carter$ et$
al,$2015).$
Figure$ 6$ shows$ the$ topographic$ features$ of$ California$ and$ Baja$ California$ but$ more$
importantly$ clearly$ presents$ the$ semiarid$ characteristics$ of$ the$ southern$ part$ of$
California$and$the$entire$Baja$California,$where$water$scarcity$is$likely$event.$ $
-
:+2)&0-J"$Topography$and$Average$Precipitation$in$California$and$Baja$California-
-
-
-
-
-
-
-
Sources:$ $ Google$Earth$and$adaptation$from$Livneh$et$al.,$2015.$
-
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3!http://www.energy.ca.gov/almanac/petroleum_data/statistics/2015_foreign_crude_sources.html$
!
17!
-
-
/"-./%0&-50*%'&-+$-=/>/-?/@+<'&$+/$
The$water$resources$available$in$Baja$ California$ are$3,250$million$cubic$meters$cubic$
(Mm3)$per$ year,$of$ theses$ 2,950$ Mm3$are$ concentrated$ in$ the$ Mexicali$ Valley,$ where$
1,850$Mm3$come$from$surface$waters$(57%$from$the$Colorado$River)$and$1,100$Mm3$
are$ withdrawn$ from$ underground$ sources.$ The$ remaining$ 300$ Mm3$ comes$ from$
aquifers$in$the$Coast.$Baja$California$has$an$average$rainfall$rate$of$68$mm$per$year$in$
most$ of$ its$ territory;$ due$ to$ this$ the$ “renewable$ water”$ contribution$ is$ considered$
negligible,$thus$the$infiltration$of$water$to$underground$aquifers$is$slow$(GobBC,$2015).!
When$it$ does$ rain,$these$ could$be$ copious$ and$continuous,$ an$in$ the$ past$has$ caused$
flooding$ at$ coastal$ cities.$ Baja$ California$ does$ not$ have$ infrastructure$ to$ collect$ and$
store$rain$water,$this$generally$drains$to$the$sea.$
Given$the$situation$described$before,$is$but$appropriate$to$enquire$about$the$status$of$
local$ watersheds$ in$ a$ water-stress$ location.$ By$ December$ 2010$ seven$ aquifers$ were$
considered$ to$ be$ overexploited,$ three$ of$ them$ with$ saline$ intrusion.$ The$ region$ is$
considered$to$be$very$dry$and$with$a$tendency$towards$drought.$
Regarding$ the$ water$ end-users,$ of$ the$ 3004.4$ Mm3$of$ freshwater$ allocated$ in$ 2012;$
2556.6$Mm3$were$destined$to$Agriculture,$170.3$Mm3$were$for$public$supply,$and$82.3$
Mm3$were$used$in$the$Industry$(without$considering$power$plants)$(Conagua,$2013a).$
As$ seen,$ agriculture$ is$ the$ most$ important$ end-user.$ However,$ water$ losses$ in$ that$
sector$could$reach$up$to$500$million$cubic$meter$per$year$(Department$of$Agriculture$
Statistics$ of$ the$ National$ Water$ Commission-Irrigation$ district$ 014-Colorado$ River).$
This$ is$ a$ factor$ for$ the$ increasing$ degree$ of$ pressure$ on$ the$ water$ resources$ (the$
proportion$of$ water$available$ that$ could$ be$ extracted),$ such$ indicator$is$ classified$as$
“strong”$(<$40%)$for$Baja$California.$As$well,$it$should$be$noted$that$the$average$water$
consumption$per$capita$in$the$State$is$215$liters/day.$
$
$
$
$
!
18!
$
$
To$ face$ water$ scarcity,$ Baja$ California$ had$ opted$ for$ developing$ infrastructure;$ in$
relation$to$water$infrastructure,$the$storage$capacity$provided$by$dams$is$127.40$Mm3.$
Additionally,$there$are$12$aqueducts;$of$these$the$“Colorado$River-Tijuana”$is$the$most$
important$because$it$provides$the$most$populated$city$(Tijuana)$in$BC$with$nearly$80%$
of$its$water$supply.$The$aqueduct$is$135.3$km$long$and$has$a$transport$capacity$of$5333$
liters$per$second.$ $
On$the$other$hand$and$in$relation$to$additional$sources$of$water,$in$Baja$California$the$
use$of$ treated$ wastewater$reached$ 30$%$at$ state$ level,$although$ there$are$ important$
regional$differences.$The$use$of$recycled$water$is$near$80$%$in$the$Mexicali$Valley,$ in$
contrast$the$coastal$cities$of$Ensenada,$Tijuana$and$Rosarito$do$not$use$more$than$10$
%$ of$ treated$ wastewater$(GobBC,$ 2016).$Finally,$ desalination$ of$ seawater$ is$ still$
incipient,$ the$ construction$ of$ a$ desalination$ plant$ of$ 4.4$ m3/s$started$ in$Rosarito$on$
2016.$ $
$
F"-./%0&-K05')&*05-+$-?/@+<'&$+/-
-Precipitation$ in$ coastal$ California$ is$ highly$ variable$ from$ year$ to$ year.$ Paleo$
records,$including$analysis$of$tree$rings,$dating$back$1,200$years$indicate$that$the$region$
is$prone$to$multidecadal$droughts$linked$with$warmer$temperatures$(Woodhouse$et$al.$
2009).$But$ the$ aridity$ of$ the$ region$ is$ also$ punctuated$ by$ wet$ years$ and$ flooding$
associated$with$storms$from$atmospheric$rivers$(Dettinger$2011).$ $
Strong$ inter-annual$ and$ decadal$ variability$ does$ not$ mean$ that$ coastal$ cities$
have$necessarily$ lacked$reliable$freshwater$resources.$Over$the$last$century$powerful$
and$ populous$ coastal$ cities$ in$ California$ have$ developed$ water$ supplies$ that$ reach$
beyond$ the$ physical$ limits$ of$ the$ water$ resources$ within$ the$ city$ boundaries.$San$
Francisco,$Los$Angeles,$and$San$Diego$for$example$have$dammed$and$redirected$water$
from$the$snow$covered$mountains$and$other$water$rich$areas$(Reisner$1993;$Worster$
1985).$ With$ the$ advent$ of$ new$ groundwater$ pumping$ technologies$ in$ the$ mid$ 20th$
century,$ agricultural$ lands$ and$ cities$ were$ able$ to$ exploit$ underground$ aquifers,$
!
19!
frequently$at$unsustainable$rates$(c.f.$Ostrom$1990).$And$finally,$“new”$sources$of$water$
are$provided$through$water$recycling$and$desalination.$ $
$When$it$does$rain,$about$2/3rds$of$precipitation$falls$in$Northern$California,$but$
about$2/3rds$of$ the$population$lives$ in$Southern$California$(Hanak$ et$al.$ 2011).$This$
geographic$mismatch$is$managed$by$a$complex$system$of$ dams,$ canals,$ and$pumping$
stations$that$divert$surface$water$from$major$rivers$near$the$Sacramento-San$Joaquin$
Delta—pumping$the$water$to$an$elevation$of$nearly$2,000$feet$and$along$700$miles$of$
the$ California$ aqueduct$ (DWR,$ 2008).$Surface$ water$ is$ further$ connected$ to$
groundwater,$ and$ recycled$or$ desalinized$ water$through$ local$ and$ state-level$
conjunctive$ management$ projects.$ Recycled$ water,$ for$ example$ is$ injected$
underground$ in$ San$ Diego$ to$ help$ form$ a$ barrier$ against$ saltwater$ intruding$ into$
freshwater$ aquifers.$ Surface$ water$is$ used$ to$ recharge$ overdrawn$ aquifers,$ and$
groundwater$is$ used$ to$augment$ dwindling$surface$ water$supplies$(Sugg$ et$al.$ 2016,$
DWR,$2015).$ $
$ Coastal$California$uses$approximately$29.9$million$acre$feet$annually$for$human$
purposes—in$ other$ words,$ excluding$ ecosystem$ management$ and$ maintenance$ of$
instream$flows$in$rivers$(Hanak$et$al.$2011).$The$region$has$about$9.1$million$acre$feet$
of$surface$storage$and$another$197.6$million$acre$feet$of$groundwater$storage$(Hanak$
et$al.$2011).$ $
$ The$largest$share$of$water$in$California$has$gone$to$agriculture,$which$consumes$
approximately$80%$(PPIC$2014),$most$of$this$ consumption$ takes$place$in$land$in$the$
state’s$ central$ valley.$ Urban$ consumption$ though$ is$ dominated$ by$ coastal$ cities$ in$
California.$ For$ the$ past$ two$ decades,$ even$ though$ population$ has$ increased,$ urban$
water$use$has$ held$steady.$And$ per$capita$use$ has$declined$from$ over$200$gallons$ of$
water$per$day$in$1990$to$178$gallons$per$day$in$2010$(PPIC$2014).$Landscape$irrigation$
though$remains$the$single$largest$residential$use$of$water$(Id.).$ $
-
-
-
-
-
!
20!
C"- ./%0&10$0&23- &02)@/%+'$5- /%- <0(0&/@- /$(- 9%/%0- @0L0@- +$- ?/@+<'&$+/- /$(- =/>/-
?/@+<'&$+/-
A$review$on$laws$governing$the$nexus$between$water$and$energy$at$Mexico-U.S.$border$
region$revealed$that$by$2014$in$the$U.S.$only$nine$states—Arizona,$California,$Colorado,$
Connecticut,$Nevada,$ South$ Dakota,$Washington,$ West$Virginia$ and$ Wisconsinhave$
statutes$that$recognize$the$nexus$between$water$ and$ energy.$Arizona,$California,$and$
Nevada$have$laws$considering$the$water$use$for$generating$electricity$(NCSL,$2015).$On$
the$other$hand,$in$Mexico$since$2015,$the$Water$Act$(LNA,$2012)$considers$the$water-
energy$link$in$its$section$six,$chapter$III.$Water$for$Electricity$generation.$In$addition,$
there$ are$ Mexican$ regulations$ (Normas$ Oficiales$ Mexicanas-NOM)$ that$ take$ into$
account$ the$ nexus$ between$ water$ and$ energy;$ for$ example,$ those$ related$ to$ energy$
efficiency$standards$for$washing$machines$and$to$increase$pump$proficiency.$The$latter$
is$particularly$relevant$given$that$the$electricity$consumption$of$water$pumping$(water,$
wastewater$and$agricultural$irrigation)$reached$13,000$GWh/year$or$6.5%$of$the$total$
electricity$consumed$in$the$country$(Conuee,$2013).$These$numbers$indicate$that$there$
are$several$other$water-energy$linkages$in$Mexico,$although$they$tend$to$be$examined$
in$a$piecemeal$way.$
In$ these$ American$ and$ Mexican$ laws,$ allocation$ of$ water$ volumes$ for$ electricity$
generation$ and$ priorities$ of$ end-users$ under$ scarcity$ conditions$are$ considered.$
Although$ at$ the$ federal-level,$ there$ is$ no$ comprehensive$ management$ of$ the$ water-
energy-climate$nexus,$within$California$management$has$been$more$involved.$The$state$
has$programs$aimed$at$improving$combined$water$and$energy$efficiency$such$as$water$
appliance$ standards$ to$ save$ both$ water$ and$ energy$
(http://www.energy.ca.gov/releases/2015_releases/2015-04-08_water_appliance_standards_nr.html),$
has$encouraged$the$ use$of$dry$cooling$ for$power$plants$ for$the$last$ decades,$and$has$
three$climate$adaptation$ bills.$For$example$ Senate$Bill$246$ (Wickski,$Climate$ Change$
Adaptation)$mandates$the$creation$of$a$Climate$Adaptation$and$Resilience$Program$in$
the$Governor’s$Office$of$Planning$and$Research$to$coordinate$adaptation$efforts$at$the$
local,$regional,$and$state$level.$Governor$Brown$signed$these$Bills$into$law$late$in$2015.$
Their$ implementation$ will$ facilitate$ the$ consideration$ of$ the$ interlinkages$ between$
water$and$energy$systems$within$California.$ $
!
21!
-
I"-./%0&-/$(-0$0&23-50*%'&5M-+EN/*%-'$-/+&-O)/@+%3-/$(-2&00$7')50-2/5-20$0&/%+'$-
/"-=/>/-?/@+<'&$+/-
+"-;$0&23-50*%'&-
Environmental$ impacts$ of$ the$ electricity$ sector$ in$ Baja$ California$ are$ primordially$
associated$ with$ atmospheric$ emissions$ due$ to$ fossil$ fuel$ combustion.$ Other$
environmental$impacts$are$1)$the$use$of$water,$2)$waste$generation,$and$3)$heat,$noise,$
and$subsidence$at$geothermal$fields.$
In$relation$to$Greenhouse$Gases$emissions$from$Power$Plants,$it$was$estimated$that$in$
1990$CO2$ emissions$ reached$1.8$ million$tonnes;$ of$ these$78%$ were$generated$ at$the$
Rosarito$ Power$ Plant$ (based$ on$ fuel$ oil)$located$ at$ the$ Baja$ California$ Coast.$The$
substitution$to$Natural$Gas$in$1991,$had$a$positive$effect$during$the$first$years,$however$
higher$electricity$demand$ended$up$increasing$the$CO2$emissions;$for$2010,$3.7$million$
tonnes$were$released,$ however,$ the$contribution$of$ power$plants$at$ the$Coast$region$
decreased$in$57%$(Muñoz$et$al,$2012a).$ $
Regarding$air$quality;$in$1990$19,000$tonnes$of$SO2$were$produced$at$Power$Plants,$of$
that$94%$came$from$the$fuel$oil$combustion$at$the$Coastal$region.$Since$2001,$sulphur$
dioxide$ decreased$ due$ to$ substitution$ of$ fuel$ oil$ for$ natural$ gas;$ thus$ in$ 2004$ SO2$
emission$were$8300$tonnes.$On$the$other$hand,$NOx$emissions$had$increased$from$2500$
tonnes$in$1990$to$6000$tonnes$in$2010;$63%$of$such$emissions$were$originated$at$the$
Coastal$region$(Muñoz$et$al,$2012a),$this$was$a$side$effect$of$the$transition$of$fuel$oil$to$
natural$ gas,$ and$ specially$ the$ exponential$ growth$ of$ consumption$ for$ the$ latter$(see$
Figure$4).$Natural$gas$is$the$cleanest$of$all$fossil$fuel$ but$by$all$means$is$not$emission$
free.$The$combustion$of$natural$gas,$releases$very$small$amounts$of$sulfur$dioxide$and$
nitrogen$ oxides,$ virtually$ no$ ash$ or$ particulate$ matter,$ and$ lower$ levels$ of$ carbon$
dioxide,$ carbon$ monoxide,$ and$ other$ reactive$ hydrocarbons$
(http://naturalgas.org/environment/naturalgas/).$
$
$
$
$
!
22!
$
The$energy$sector$is$the$dominant$source$of$GHG$emissions$in$California$contributing$
more$than$80%$of$the$in-state$emissions.$Here$we$use$the$IPCC$definition$of$the$energy$
sector$ that$ encompass$ all$ sources$ of$ energy$ services$ such$ as$ mobility,$ illumination,$
space$heating,$and$industrial$process$heat.$By$law$GHG$emissions$from$California$must$
be$ at$ or$ below$ what$ the$ state$ emitted$ in$ 1990$ by$ 2020$ (AB$ 32).$ The$ official$ GHG$
inventory$ of$ California,$ maintained$ by$ the$ California$ Air$ Resources$ Board,$ includes$
estimates$of$emissions$of$electric$power$ plants$serving$California.$In$terms$ of$ energy$
consumption$natural$gas$dominates$the$energy$consumed$from$fossil$fuels$in$California.$
However,$ in$ terms$ of$ GHG$ emissions,$ natural$ gas$ and$ gasoline$ have$ very$ similar$
contributions.$This$reduced$contribution$of$natural$gas$to$overall$GHG$emissions$is$due$
mainly$ to$ three$ factors:$ 1)$ the$ lower$ carbon$ content$ of$ natural$ gas$ per$ unit$ of$ heat$
released$during$combustion;$2)$an$incomplete$understanding$of$the$methane$emissions$
associated$with$the$natural$gas$system;$and,$3)$the$fact$that$methane$emissions$outside$
California$are$not$counted$in$the$official$ARB$inventory.$Since$California$imports$about$
90%$ of$ the$ natural$ gas$ that$ it$ consumes,$ not$ counting$ methane$ emissions$ outside$
California$ represents$ a$ serious$ shortcoming$ from$ an$ environmental$ perspective.$
However,$there$are$other$programs$such$as$the$Clean$Fuels$Standard$that$by$law$must$
take$into$ account$GHG$ emissions$ from$ a$ full$ fuel$ cycle$perspective,$ but$this$ program$
only$covers$transportation$fuels$(AB$32,$EO$S-01-07,$and$see,$Yeh$et$al.$2015).$ $
It$ is$ interesting$ to$ compare$ the$ main$ sources$ of$ carbon$ dioxide$ and$ NOx$ in-state$
emissions$normalized$to$total$emissions.$Statewide$emissions$from$different$sources$as$
a$fraction$of$their$contributions$to$total$emissions.$NOx$emissions$from$power$plants$
contribute$less$than$1%$of$the$NOx$emissions$in$California$but$they$are$a$major$source$
of$ carbon$ dioxide.$ Surprisingly,$ as$ NOx$ emissions$ have$ gone$ down$ in$ California,$
automobiles$are$no$longer$the$main$source$of$NOx,$which$is$a$successful$outcome$from$
years$of$efforts$aimed$at$reducing$their$emissions.$Nowadays$heavy$duty$and$off-road$
equipment$are$the$main$sources$of$NOx$pollution$in$California$(CEC,$2015).$
$
$
$
!
23!
$
++"-./%0&-50*%'&$
According$ to$ the$ National$ Inventory$ of$ Municipal$ Plants$ for$ Water$ and$ Wastewater$
Treatment$ in$ Operation$ (Conagua,$ 2011);$ there$ are$ 31$ water$ treatment$ plants$ in$
operations,$most$ of$them$ utilize$ direct$ filtration$ treatment.$ By$ 2012,$the$ coverage$of$
potable$ water$ in$ Baja$ California$ was$ of$ 95.6%$ (3,069,818$ inhabitants)$ (Conagua,$
2013b).$ On$ the$ hand,$ there$ are$ 36$ wastewater$ treatment$ plants;$ most$ of$ them$ use$
activated$sludge$treatment$(Conagua,$2011).$Sewage$service$coverage$is$83$%$at$State$
level,$however$this$percentage$changed$by$regions.$In$the$coastal$region,$Ensenada$has$
an$coverage$of$58$%,$while$in$Tijuana$and$Rosarito,$sewage$services$were$provided$for$
89$%$of$the$population.$By$mid-2016,$83,783,483$m3$of$wastewaters$were$generated$in$
Baja$California,$58$%$came$from$the$Costal$towns.$
The$GHG$emissions$generated$from$wastewater$treatment$plants$and$their$sludge$are$
primordially$methane;$is$reported$that$such$emissions$increased$in$43$%$from$2.7$Gg$
in$ 1990$ to$ 4.7$ Gg$ in$ 2005.$ By$ 2014,$ 5.3$ Gg$ methane$ were$ released,$ the$ amount$
represented$ a$ 49%$ increment$ from$ the$ 1990$ levels.$ In$ terms$ of$ CO2$equivalent,$ the$
volume$generated$went$from$57.2$Gg$in$1990$to$112.0$Gg$in$2010$(Muñoz$and$Vazquez,$
2012).$
Methane$emissions$from$the$water$system$are$complicated$to$calculate$because$about$
12%$ of$ the$ total$ energy$ consumed$ in$ California$ is$ associated$ with$ the$ use$ of$ water.$
About$ 19%$ of$ the$ electricity$ consumed$ in$ California$ is$ used$ to$ transport,$ clean,$ and$
disposed$ water.$ In$ this$ section,$ we$ do$ not$ discuss$ the$ GHG$ embedded$ emissions$
associated$with$the$use$of$energy$in$the$water$sector$and,$as$done$for$the$section$above$
covering$Mexico,$we$discuss$here$GHG$emissions$from$waste$water$treatment$plants.$
Methane$emissions$from$wastewater$treatment$plants$are$reported$to$have$gone$from$
2.47$in$2000$to$2.41$million$teragrams$of$CO2$equivalent$in$2013$(ARB,$2015).$This$is$a$
very$modest$decline$should$have$the$result$of$ programs$ designed$ to$reduce$methane$
emissions$using$multiple$options$such$as$the$use$of$digesters$to$produce$methane$and$
to$use$the$methane$to$generated$electricity$and/or$process$heat.$ $
!
24!
J"-:/*%'&5-+$<@)0$*+$2-<)%)&0-P/%0&-/$(-0$0&23-(0E/$(-/$(-5)NN@3-
J"!"-Q0'2&/N73- -
--+"-?@+E/%0-
Baja$ California$ is$ highly$ vulnerable$ to$ climate$ changes;$ according$ to$ IPCC$ climate$
scenarios,$the$ entire$ Northwestern$ region$of$ Mexico$ will$ have$ a$ reduction$ of$annual$
rainfall$rate$ between$10$ to$20%,$ while$the$ mean$temperature$ per$year$ will$increase$
between$1.5$and$2.5$centigrade$degree$in$the$next$50$years.$This$increment$will$change$
additional$climate$variables$that$together$will$impact$augmenting$the$hydrologic$cycle$
and$ possible$ phenomena$ such$ as$ El$ Niño,$ La$ Niña$ and$ tropical$ rains$ (Knutson$ and$
Tuleya,$2004).$El$Niño$effect$in$Baja$California$will$result$in$winter$flooding,$meanwhile$
in$summer$la$Niña$could$cause$drought,$heatwaves$(Meehl$and$Tebaldi,$2003)$and$fires$
(Westerling$et$al.,$2006).$The$increment$of$climate$phenomena$variability$has$already$
caused$ disasters$ such$ as$ flooding,$ mudslides$ and$ economic$ losses$ in$ coastal$ areas,$
canyons$and$lowlands$during$1993$and$1997-1998$El$Niño$events$in$California$and$Baja$
California$(Cavazos$and$Rivas,$2004).$ $
$ Studies$have$been$developed$to$assess$climate$change$impacts$in$Baja$California;$
results$have$ indicated$ that$ effects$ could$be$ highly$affect$ human$and$ natural$ systems$
alike.$ It$ has$ been$ reported$ that$ power$ plants$ at$ the$ Baja$ California$ Coast$ are$ very$
vulnerable$to$climate$ change$ impacts$(Sánchez$and$Martínez,$ 2004).$ It$has$been$ also$
recognised$ that$ the$ water$ infrastructure$ in$ Baja$ California$ is$ rapidly$ reaching$ its$
caapcity$ limit,$ this$ together$ with$ population$ growth$ and$ a$ decrease$ of$ the$ Colorado$
River$flows,$could$compromise$water$supplies$to$the$region$in$a$near$future;$and$may$
force$ to$ restructure$ water$ assigments$ from$ agricultural$ activities$ to$ urban$ uses$
(PEACCBC,$2012).$
$
$
$
$
$
$
!
25!
California$has$experienced$an$increased$in$temperatures$of$above$1°C$since$18954$and$
the$statewide$ average$annual$temperature$is$expected$to$increase$from$1°C$to$3°C$by$
2050.$These$temperatures$are$estimated$to$increase$by$2$°C$to$5$°C$by$the$end$of$this$
century$depending$of$the$global$emissions$path$that$will$materialize$in$the$rest$of$this$
century$(Franco$et$al.,$2011).$Precipitation$has$not$changed$much$in$the$last$150$years$
but$the$warming$fingerprint$is$present$in$multiple$factors$such$as$the$tendency$for$the$
snowpack$in$the$Sierra$Nevada$ to$ melt$ earlier$ than$ before$ and$ more$ and$ more$ of$ the$
precipitation$falling$as$rain$instead$of$snow$in$the$Sierra$ Nevada.$ Additionally$higher$
temperatures$ have$ meant$ that$ effects$ of$ drought$ are$ exacerbated$ through$ the$
mechanism$ of$ evapotranspiration$ (Diffenbaugh$ et$ al.,$ 2015).$ The$ use$ of$ multiple$
statistical$and$dynamic$regional$climate$models$applied$to$California$using$as$a$starting$
point$AR4,$suggest$a$higher$probability$of$more$precipitation$in$the$northern$part$of$the$
state$and$the$opposite$for$the$southern$part$(Pierce$et$al.,$2013).$ $ $
There$are$multiple$studies$covering$ California$concluding$that$the$impacts$ of$climate$
change$can$be$severe$ (e.g.,$Moser,$Elkstrom,$and$ Franco,$2012)$and$differentiated$ by$
regions$ and$ sectors.$ However,$ efforts$ to$ adapt$ and$ to$ reduce$ the$ vulnerability$ to$ a$
changing$climate$can$substantially$reduce$the$economic$costs$to$human-made$system$
such$as$the$electricity$and$water$sectors$(Franco$et$al.,$2011).$The$same$cannot$be$said$
about$natural$ecosystems$that$will$suffer$the$combined$effect$of$an$increased$demand$
for$services$from$an$increased$human$population$and$a$changing$climate.$ $ $ -
-
- - ++"-./%0&-/L/+@/F+@+%3- -
Water$ availability$ for$ 2020$ in$ Baja$ California$ will$ be$ lower$ than$ 1,000$
m3/inhabitant/year$(a$figure$ close$to$ water$ scarcity);$ in$ addition$the$ Colorado$River$
runoffs$ are$ likely$ to$ decrease$ in$ 20%$ by$ 2050$ (Milly$ et$ al.$ 2008).$ This$ scenario$
complicates$ further$ when$ considering$ the$ degree$ of$ variability$ in$ rainfall$ and$
temperature,$ placing$ Baja$ California$ in$ a$ critical$ situation$ in$ relation$ to$ pressure$ on$
water$resources$going$from$the$current$strong$to$severe,$particularly$in$drylands$where$
water$stress$will$increase$by$30%.$ $
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4!http://www.wrcc.dri.edu/monitor/cal-mon/frames_version.html$
!
26!
$
The$snowpack$in$the$Sierra$Nevada$is$the$dominant$surface$natural$water$reservoir$in$
California$supplying$on$ average$ over$60%$of$the$ fresh$water$consumed$in$ California.$ $
Increased$temperatures$and$the$possibility$of$dry$manifestations$of$climate$change$in$
this$region$are$expected$to$result$in$drastic$reductions$of$the$snowpack$that$would$be$
available$at$the$end$of$the$winter.$Some$have$reported$reductions$of$up$to$80%$of$April$
1st$snowpack$levels$by$the$end$of$this$century.$What$would$be$the$net$effect$on$water$
supply$in$California?$This$is$unknown$at$this$time$because$it$depends$of$multiple$factors$
including$supply$management,$for$example$how$the$large$water$reservoirs$in$California$
are$ managed$ and$ the$ potential$ use$ of$ groundwater$ aquifers$ in$ the$ Central$ Valley$
(Langridge$ et$ al.,$ 2012),$ as$ well$ as$ changes$ in$ demand.$ Large$ water$ reservoirs$ are$
currently$ managed$ using$ old$ flood$ management$ rules$ that$ dictate$ the$ maximum$
amount$of$water$ that$can$ be$ stored$during$ winter$flood$months.$ These$“rule$ curves”$
were$formulated$ with$only$ a$small$ set$historical$ data,$and$ have$not$ been$updated$ in$
decades$(Willis$et$al.$2011).$It$has$been$shown$that$the$use$of$probabilistic$hydrologic$
forecasts$ and$ a$ modern$ computer-aided$ holistic$ management$ system$ could$
substantially$improve$the$availability$of$water$for$consumption$and$for$environmental$
purposes$ and$ increase$ hydropower$ generation$ under$ current$ and$ potential$
hydrological$ conditions.$ However,$ legal$ and$ institutional$barriers$ have,$ so$ far,$
hampered$its$ implementation$ for$ large$ reservoirs.$Underground$ aquifers$have$ about$
ten$ times$ the$ storage$ capacity$ of$ human$ made$ surface$ reservoirs,$ have$ the$ added$
benefit$of$not$losing$water$to$evaporation,$and$could$be$recharged$in$wet$years$or$in$the$
winter$ time$ and$ provide$ water$ in$ dry$ or$ in$ the$ dry$ parts$ of$ the$ year.$ A$ recent$ law$
requiring$ the$ sustainable$ management$ of$ groundwater$ may$ facilitate$ the$
implementation$of$this$option$(Sugg$et$al.$2016).$ $
$
$
$
$
$
$
!
27!
--+++"-;$0&23-/L/+@/F+@+%3-+$*@)(+$2-&0$0P/F@05$
The$current$fuel$ mix$ for$electricity$generation$ in$Baja$California$ is$shared$by$ 79%$ of$
fossil$ (of$ which$ 77$ %$ are$ provided$ by$ natural$ gas)$ and$ 21%$ of$ renewable$ sources$
[geothermal$(20$%),$solar$and$wind].$Renewable$penetration$in$the$State$started$on$late$
2009,$with$the$opening$of$the$10$MW$wind$farm$“La$Rumorosa”,$this$facility$in$owned$
by$the$Mexicali$municipality$and$provides$power$for$public$service.$By$June$2015,$the$
155$MW$wind$farm$“Energía$Sierra$Juarez”,$increased$the$renewables$installed$capacity$
in$Baja$California;$although$the$electricity$generated$is$solely$and$exclusively$destined$
for$exportation$to$California.$
The$ electricity$ system$ in$ California$ is$ changing$ very$ rapidly$ as$ explained$ before.$
Electricity$ generation$ from$ renewables$ is$ increasing$ at$ a$ very$ fast$ rate$ as$ shown$ in$
Figure$5.$In$addition,$because$the$California$market$is$so$big,$this$is$affecting$the$mix$of$
generation$outside$California$with$the$purpose$of$serving$the$lucrative$energy$market$
in$California.$Planning$is$also$on-going$for$transmission$lines$that$could$tap$into$large$
sources$of$wind$energy$in$the$Midwest$and$other$parts$in$the$WECC$region$with$large$
sources$of$potential$for$renewable$sources$of$energy.$
-
- - +L"-R+&-O)/@+%3-
California$and$Baja$California$share$airsheds;$and$the$San$Diego-Tijuana$metropolitan$
area,$alone,$accounts$for$nearly$40%$of$the$overall$population$of$the$border$region,$with$
over$ 4.5$ million$ people.$ Air$ quality$ monitoring$ in$ the$ shared$ region$ though$ is$ not$
coordinated.$This$has$posed$difficulties$in$forecasting$air$quality.$Thus$as$an$indicator$
of$the$border$region,$air$quality$forecasts$to$the$year$2020$were$based$on$the$California$
Almanac$ of$ Emissions$ and$ Air$ Quality$ (Cox$ et$ al.$ 2009).$ According$ to$ this,$ PM10$ and$
PM2.5$emissions$are$forecasted$to$increase$between$2010$and$2020.$Furthermore,$the$
increase$for$PM10$will$amount$to$nearly$85%$and$PM2.5$will$increase$67%$over$the$ten-
year$ period.$ The$ main$ particulate$ source,$ however,$ continues$ to$ be$ area$ sources.$ In$
forecasting$ozone,$this$is$expected$to$decrease$as$a$reduction$of$its$principal$precursors,$
NOx$ and$ VOCs$ by$ 2020.$ However,$ one$ must$ keep$ in$ mind$ that$ ozone$ can$ also$ be$
transported$over$long$distances$and,$thus,$binational$airsheds$could$be$quite$relevant$
(as$well,$perhaps,$as$intercontinental$transport$from$East$Asia).$
!
28!
$
It$ is$ unknown$ so$ far,$ if$ air$ quality$ in$ Baja$ California$ will$ behave$ as$ in$ California;$
however,$it$ seems$that$ in$ the$ future$ as$ currently$ many$ residents$ of$the$ U.S.-Mexican$
border$region$will$be$ exposed$ to$health-threatening$levels$of$ air$ pollution,$especially$
ozone$(O3),$ particulate$matter$ (PM),$and$ carbon$dioxide$ (CO2)$ (Munoz$ et$ al,$ 2012b);$
atmospheric$emissions$associated$mostly$to$the$Mexican$energy$sector.$ $
Air$ quality$ in$ California$ and$ in$ Southern$ California$ in$ particular$ has$ substantially$
improved$with$time$since$the$1950s.$However,$Southern$California$and$the$San$Joaquin$
Valley$(the$southern$portion$of$the$Central$Valley)$are$out-of-compliance$with$federal$
air$ quality$ standards$ for$ ozone$ and$ particular$ matter$ (PM).$ Electricity$ generation$
contributes$ less$ than$ 1%$ of$ the$ NOx$ budget$ in$ California.$ This$ together$ with$ the$
realization$that$deep$reduction$of$GHG$emissions$would$require$the$electrification$of$as$
many$energy$services$as$possible$(CARB,$2012),$suggest$that$electrification$can$also$be$
used$to$drastically$reduce$NOx$emissions.$
-
-J","-D'N)@/%+'$-2&'P%7-/$(-0*'$'E+*-(0L0@'NE0$%- -
Population$ projections$ for$ Baja$ California$ indicate$ that$ the$ 3252690$ inhabitants$ in$
2010$will$increase$to$5425676$inhabitants$in$2035,$this$is$the$growth$rate$for$the$next$
15$years$will$oscillate$around$2%$and$from$then$to$2050$will$fall$to$1.35$%$(CONAPO,$
2010).$
According$to$the$Energy$Secretary$(SENER,$2010)$the$electricity$consumption$for$Baja$
California$will$increase$at$a$media$growth$rate$of$3.7$per$year$going$from$12,280$GW$in$
2010$to$21,649$GW$in$2025.$Power$demand$is$expected$to$be$higher$in$the$Valley$Region$
(Mexicali).$In$ contrast,$the$ demand$of$ water$ is$ expected$ to$be$ higher$at$ Coastal$Baja$
California$(Tecate,$Tijuana,$Rosarito$and$Ensenada)$because$such$region$has$77.3%$of$
the$total$population$statewide$and$it$is$likely$to$continue.$The$current$water$supply$in$
coastal$cities$depends$ 54.4%$of$the$ aqueduct$Colorado$River–$ Tijuana;$and$ 45.6%$ of$
regional$ aquifers,$ that$ are$ currently$ overexploited$ or$ at$ equilibrium.$ For$ Tijuana,$ in$
particular,$ the$ Colorado$ River$ aqueduct$ provides$ 87.3$ %$ of$ its$ water$ supply;$the$
remaining$12.7$%$comes$from$local$aquifers.$
$
!
29!
Population$ growth$ with$ increasing$ energy$ demands$ on$ a$ water$ scarce$ area$ could$
become$vulnerable$ Coastal$ Baja$ California.$ However,$ the$ region$ is$ likely$to$ continue$
attracting$people$as$is$considered$a$land$of$opportunities.$The$perceived$prosperity$in$
the$ Mexican$ border$ region$ was$ based$ largely$ on$ industrial$ development,$ which$
increased$ even$ more$ with$ the$ implementation$ of$ the$ North$ American$ Free$ Trade$
Agreement$(NAFTA)$beginning$in$1994.$In$Mexico,$the$border$region$has$had$the$lowest$
unemployment$rate$and$ the$highest$salaries.$ Economic$ growth$clearly$ has$ generated$
jobs,$ but$ such$ growth$ has$ not$ been$ accompanied$ by$ a$ complementary$ increase$ in$
infrastructure$(such$as$water-related$facilities$and$roads)$and$pollution$control.$ $
The$ California$ Department$ of$ Finance$ projects$ that$ the$ population$ of$ California$ will$
grow$from$38.8$million$to$49.7$million$by$2050$(Schwarm$et$al.$2014).$In$the$counties$
in$ Southern$ California$ of$ Los$ Angeles,$ San$ Diego,$ the$ state$ populations$ projections$
envisage$an$increase$of$15.4%$by$2050$from$the$current$level$of$13.4$million$inhabitants$
(Schwarm$et$al.$2014).$ $
Electricity$ consumption$ in$ California$ was$ 227.575$ GWh$ (gigawatt-hours)$ in$ 1990$
which$increased$by$22%$in$2013$and$it$is$expected$to$increase$40%$from$the$1990$level$
of$ consumption$ in$ 2025$ (Kavalec,$ 2015).$ This$ rapid$ rate$ of$ consumption$ is$ driven$
mostly$ by$ population$ growth$ and$ the$ expended$ growth$ of$ economy$ activity.$ Water$
demand$for$agricultural$sector$and$for$urban$use$have$stabilized$since$the$ 1980s$and$
the$ 1990s,$ respectively.$ The$ demand$ for$ agriculture$ could$ decrease$ by$ 2.0$ to$ 5.9$
MAF/yr$(million$acre-feet$per$year)$by$2050$while$urban$demand$could$increase$by$1.0$
to$6.7$MAF/yr$(DWR,$2013).$The$net$effect$would$be$a$relatively$small$change$in$overall$
fresh$water$demand$in$California.$
$
S"-;$0&23-/$(-P/%0&-N'@+*3-'N%+'$5
$ As$seen$along$this$document,$water$and$energy$policies$are$developed$very$much$
in$isolation$from$one$another,$even$at$regions$that$share$water$and$energy$resources$
such$ as$ California/Baja$ California,$ furthermore$ this$ region$ also$ shares$ climate$
vulnerability$and$ althoug$this$ is$differenciated.$ Thus,$water$policy$ and$ energy$ policy$
should$be$amended$to$incorporate$integral,$feasible$solutions$at$short,$medium$and$long$
term.$Prior$to$ look$ for$critical$points$ of$ harmonization,$however,$problems$ that$have$
!
30!
been$dragging$ for$a$ long$time$ must$be$ attended,$in$ particular$in$ Baja$California;$ this$
Mexican$State$ urgently$needs$ to$improve$ conservation$and$ efficiency$ in$ both$ energy$
and$ water$ sectors;$ other$ reasonable$ solutions$ include$ widening$ the$ portfolio$ of$
alternatives$for$both$water$and$energy$supply$–including$renewables-.$
In$Baja$California$with$its$water$infrastructure$working$at$limit$capacity,$water$supply$
can$be$increased$without$the$need$of$further$sources$at$the$short$term$if$water$losses$
in$ irrigation$ are$ controlled,$ as$ detailed$ before$ agricultural$ activities$ at$ the$ Mexicali$
Valley$produce$water$losses$ due$ to$obsolete$practices,$such$a$ flooding$irrigation.$The$
water$saving$ could$ be$of$ the$order$ of$ 11,258$lts/sec,$ equivalent$to$ 355$ million$cubic$
meter$per$ year,$ such$amount$ could$ be$ distributed$ to$ coastal$ cities,$that$ also$ have$ to$
attend$their$ losses$a$distribution$pipelines$of$the$order$of$20%-.$At$the$medium$and$
long$term,$water$ portfolio$of$alternatives$ should$ increase$and$ consider$ reuse$of$grey$
waters$and$compel$coastal$cities$to$reach$the$percentage$of$use$of$treated$waste$water$
that$Mexicali$has$already.$Desalination$has$been$considered$for$a$long$time$a$solution$
to$provide$clean$and$reliable$water;$however$potential$environmental$aspects$must$be$
taken$into$account,$in$particular$two:$GHG$emissions$as$long$as$a$renewable$sources$
of$ energy$ are$ not$ used-$ and$ brine$ disposal$ (Nava,$ 2009);$ furthermore,$ when$ some$
desalination$plants$are$programed$to$be$installed$near$touristic$coastal$towns$such$as$
Ensenada$ and$ Rosarito.$ It$ has$ been$ speculated$ that$ desalination$ in$ Mexico$ could$
provide$ water$ for$ a$ binational$ market$ (http://otaywater.gov/about-otay/water-
information/desalination/rosarito-desalination/).$It$must$be$added$that$there$are$not$trade$
experiences$of$this$kind$in$Mexico,$and$that$currently$there$are$not$national$regulations$
on$desalination.$ $
In$relation$ to$Energy$ intensity,$ is$ recommendable$ to$design$ energy$saving$ programs$
with$specific,$achievable$and$legal-binding$targets$for$end-users;$for$example,$given$the$
energy$consumption$at$the$domestic,$commercial$and$services$and$industrial$sector$is$
possible$to$reduce$energy$demand$in$two$phases:$first$a$reduction$of$15%$at$the$short$
term$and$then$a$reduction$of$30%$at$the$medium$term,$by$incrementing$of$efficiency$at$
water$pumping,$street$lighting$and$maintenance.$ $
!
31!
8. Conclusions
Although$ in$ different$ countries,$ CA$ and$ BC$ share$ water$ resources$ under$ pressure,$
situation$that$is$likely$to$increase$under$climate$change$conditions.$In$addition,$rapid$
development$at$the$region$include$activities$that$are$energy$and$water$intensive.$Also,$
both$countries$share$energy$ infrastructure$and$trade,$although$ small$at$the$moment;$
these$could$ increase$ under$ the$ 2013$Mexican$ Energy$ Reform$ and$ Energy$Transition$
Law;$ and$ the$ California$ Renewables$ Portfolio$ Standard$ (RPS).$ Moreover,$ despite$ of$
independently$ set,$ both$ countries$ have$ regulations$ on$ climate$ change:$ the$ Global$
Warming$Solutions$Act,$or$AB$32$for$California$(CARB$ 2012)$ and$the$Climate$Change$
Act$for$BC$(PEACCBC,$2012).$ $
The$ advances$ in$ energy$ efficiency$ and$ water$ supply$ diversification$ in$ California$in$
recent$ years$ presents$ a$ model$ that$ Baja$ California$would$ do$ well$ to$ study,$ and$
collaboration$with$U.S.$agencies$would$be$of$great$benefit.$
It$should$be$ acknowledged,$however,$ that$ national$and$ state$law$ and$regulations$ for$
each$ country$ stop$ at$ the$ fence.$ Given$ the$ historical$ sharing$ of$ water$ resources$ and$
energy$ at$ the$ border$ region,$ as$ well$ as$ the$ many$ examples$ of$ cooperation$ on$ these$
topics$–$particularly$between$California$and$Baja$California-,$a$binational$collaborative$
initiative$ addressing$ the$ link$ between$ water$ and$ energy$ should$ be$ something$ to$
contemplate$developing.$
9. References
Allouche, J.; Middleton C. and Gyawali, D. [2015]. Technical veil, hidden politics:
Interrogating the power linkages behindthe nexus. Water Alternatives 8(1): 610-
626.
Alvarez, R. A., S. W. Pacala, J. J. Winebraker, W. L. Chameides, S. P. Hanburg
[2012]. Greater focus needed on methane leakage from natural gas
infrastructure. PNAS. Vol. 109.
Assembly Bill 32 (AB 32), [2006]. California Global Solutions Act of 2006.
http://www.arb.ca.gov/cc/docs/ab32text.pdf
Blanco H. [2012]. “Chapter 9. The Energy and Emissions Intensity of Urban Water
Supply Sources in Two Southern California Water Districts” in Blanco, H., J.
Newell; L. Stott; M. Alberti (eds.) (2012). Water Supply Scarcity in Southern
California: Assessing Water District Level Strategies. Los Angeles, CA: Center
for Sustainable Cities, Price School of Public Policy, University of Southern
California.
!
32!
Bennett, B., L. Park and R. Wilkinson [2010a]. “Embedded Energy in Water Studies:
Water Agency and Function Component Study and Embedded Energy Water
Load Profiles.” California Public Utilities Commission.
Bennett, B., L. Park and R. Wilkinson [2010b]. “Embedded Energy in Water Studies:
Statewide and Regional Water- Energy Relationship.” California Public Utilities
Commission.
Brears, Robert [2015]. The circular economy and the water-energy-food nexus. NFG
Policy Paper Series, No. 07, February 2015, NFG Research Group “Asian
Perceptions of the EU “Freie Universität Berlin.
California Air Resources Board (CARB) [2012]. Vision for Clean Air: A Framework
for Air Quality and Climate Planning. Public Review Draft. June 27th.
California Energy Commission (CEC) (Klein, G., M. Krebs, V. Hall, T. O’Brien and B.
Blevins)) [2005]. “California’s Water–Energy Relationship.” California Energy
Commission.
California Energy Commission (CEC) [2015]. Power Plant Statistical Information.
Available at:
http://www.energy.ca.gov/almanac/electricity_data/web_qfer/Power_Plant_
Statistical_Information.php
Bushnell, J., Y. Chen, M. Zaragoza-Watkins [2014]. Downstream regulation of CO2
emissions in California’s electricity sector. Energy Policy. Vol 64. January, Pages
313-323.
California Energy Commission. [2015]. 2015 Integrated Energy Policy Report.
Publication Number: CEC-100-2015-001-CMF.
Campbell Ramírez H., José Luis Benites Zamora, Gisela Montero Alpirez, René
Palacios Barrios, Carlos Pérez Tello y Jeseus Francisco Sosa Gordillo [2006].
Actualización de la Planificación Energética de las ciudades de Mexicali y
Tijuana, Baja California (Updating of the Energy Planning in Mexicali and
Tijuana, Baja California). Reporte Final del Contrato de Prestación de Servicios
Profesionales con el Centro de Productividad de la Industria Electrónica de Baja
California, A.C. Mexicali, Baja California.
Carter Nicole T., Clare Ribando Seelke and Daniel T. Shedd [2015]. U.S.-Mexico
Water Sharing: Background and Recent Developments. Congressional Research
Service, 7-5700, R43312. January 23, 2015. Available on line at:
https://www.fas.org/sgp/crs/row/R43312.pdf, last accessed on September 15,
2015.
Cavazos, T. and D. Rivas [2004]. Variability of extreme precipitation events in
Tijuana, Mexico. Climate Research, 25, 229-243.
Coppeland Claudia [2013]. Energy-Water Nexus: The Water Sector’s Energy Use.
Congressional Research Service, 7-5700. R43200. Pp. 12. Available online at:
http://aquadoc.typepad.com/files/crs_energy_water_nexus_water_sectors_e
nergy_use.pdf.
The Climate Registry [2015]. Water-Energy Greenhouse Gas, Technical Brief. Key
Issues for the Development of the Water-Energy Greenhouse Gas Guidance.
Creative Commons, California, 94041, USA.
Comisión Nacional del Agua (CONAGUA), [2015]. Estadísticas del Agua en México,
Edición 2015. Secretaría de Medio Ambiente y Recursos Naturales, México.
Comisión Nacional del Agua (CONAGUA), [2013a]. Estadísticas del Agua en México,
!
33!
Edición 2013. Secretaría de Medio Ambiente y Recursos Naturales, México.
Comisión Nacional del Agua (CONAGUA), [2013b]. Situación del Subsector Agua
Potable, Alcantarillado y Saneamiento. Edición 2013. Secretaría de Medio
Ambiente y Recursos Naturales, México.
Comisión Nacional del Agua (CONAGUA), [2011]. Inventario Nacional de Plantas
Municipales de Potabilización y de tratamiento de aguas residuales en
operación. Diciembre 2011. Secretaría de Medio Ambiente y Recursos
Naturales, México.
Consejo Nacional de Población (CONAPO) (2010), Proyecciones de la Población
2010-2050, México, d.f., Secretaría de Gobernación, en
<http://www.conapo.gob.mx/es/CONAPO/Proyecciones_Datos>.
Cooley, H., J. Christian-Smith and P. Gleick [2008]. “More With Less: Agricultural
Water Conservation and Eficiency in California.” Pacific Institute.
Cooley, H. and R. Wilkinson [2012]. “Implications of Future Water Supply Sources
for Energy Demands.” WateReuse Research Foundation.
Cox, P., A. Delao, A. Komorniczak, and Weller R. [2009]. The California Almanac of
Emissions and Air Quality. Planning and Technical Support Division. California
Air Resources Board. Available on line at:
http://www.arb.ca.gov/aqd/almanac/almanac09/almanac2009all.pdf.
Diffenbaugh, N. S., Daniel L. Swain, Danielle Touma [2015]. Anthropogenic
Warming has Increased Drought Risk in California. Proceedings of the
National Academy of Sciences 112:3931-3936.
Department of Water Resources (DWR) [2008]. California Water Plan. Update 2008.
Department of Water Resources (DWR) [2013]. California Water Plan. Update 2013.
Department of Water Resources (DWR) [2015]. California Water Plan. Update 2015.
[EO S-01-07] Executive Order S-01-07. http://www.arb.ca.gov/fuels/lcfs/eos0107.pdf
Franco, G., Cayan, D. R., Moser, S., Hanemann, M., & Jones, M. A. [2011]. Second
California Assessment: integrated climate change impacts assessment of natural
and managed systems. Climatic Change, 109(1), 1-19.
Fundacion Observatorio de Prospectiva Tecnologica Industrial (OPTI) & Instituto de
Diversificación y Ahorro de la Energía (IDAE), [2010]. Estudio de Prospectiva—
Consumo Energético en el Sector del Agua (Prospective Study—Energy
consumption in the water sector). Instituto para la Diversificación y Ahorro de
Energía. Spanish Ministry of Industry, Tourism, and Commerce, Madrid, Spain.
Glassman Diane, Wucker Michele, Isaacman Tanushree and Champilou Corinne
[2011]. The Water Energy Nexus. Adding Water to the Energy Agenda. World
Policy Papers, World Policy Institute and EBG Capital.
Gleick Peter H. [1994]. Water and Energy. Annual Review of Energy and
Environment, 19: 267-299.
Gobierno del Estado de Baja California (GobBC) [2015].
(http://www.bajacalifornia.gob.mx/portal/nuestro_estado/recursos/hidrologi
a.jsp last accessed on September 15, 2015).
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [1992]. Anuario
Estadístico del Estado de Baja California. Edición 1992. Mexico. Pp. 266.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [1993]. Anuario
Estadístico del Estado de Baja California. Edición 1993. Mexico. Pp. 224.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [1994]. Anuario
!
34!
Estadístico del Estado de Baja California. Edición 1994. Mexico. Pp. 214.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [1995]. Anuario
Estadístico del Estado de Baja California. Edición 1995. Mexico. Pp. 205.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [1996]. Anuario
Estadístico del Estado de Baja California. Edición 1996. Mexico. Pp. 202.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [1997]. Anuario
Estadístico del Estado de Baja California. Edición 1997. Mexico. Pp. 266.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [1998]. Anuario
Estadístico del Estado de Baja California. Edición 1998. Mexico. Pp. 280.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [1999]. Anuario
Estadístico del Estado de Baja California. Edición 1999. Mexico. Pp. 305.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [2000]. Anuario
Estadístico del Estado de Baja California. Edición 2000. Mexico. Pp. 257.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [2001]. Anuario
Estadístico del Estado de Baja California. Edición 2001. Mexico. Pp. 257.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [2002]. Anuario
Estadístico del Estado de Baja California. Edición 2002. Mexico. Pp. 315.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [2003]. Anuario
Estadístico del Estado de Baja California. Edición 2003. Mexico. Pp. 335.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [2004]. Anuario
Estadístico del Estado de Baja California. Edición 2004. Mexico. Pp. 409.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [2005]. Anuario
Estadístico del Estado de Baja California. Edición 2005. Mexico. Pp. 397.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [2006]. Anuario
Estadístico del Estado de Baja California. Edición 2006. Mexico. Pp. 427.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [2007]. Anuario
Estadístico del Estado de Baja California. Edición 2007. Mexico. Pp. 467.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [2008]. Anuario
Estadístico del Estado de Baja California. Edición 2008. Mexico. Pp. 399.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [2009]. Anuario
Estadístico del Estado de Baja California. Edición 2009. Mexico. Pp. 409.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [2010]. Anuario
Estadístico del Estado de Baja California. Edición 2010. Mexico. Pp. 317.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [2011]. Anuario
Estadístico del Estado de Baja California. Edición 2011. Mexico. Pp. 409.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [2012]. Anuario
Estadístico del Estado de Baja California. Edición 2004. Mexico. Pp. 366.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [2013]. Anuario
Estadístico del Estado de Baja California. Edición 2013. Mexico. Excell file.
Instituto Nacional de Estadística, Geografía e Informática (INEGI) [2014]. Anuario
Estadístico del Estado de Baja California. Edición 2014. Mexico. Pp. 305.
Instituto Mexico de Tecnología del Agua (IMTA), [2002]. Uso urbano del agua en
México (video). Available at:
https://www.youtube.com/watch?v=XOSlfB4BjhM
Kavalec, Chris [2015]. California Energy Demand Updated Forecast, 2015-2025.
California Energy Commission, Electricity Supply Analysis Division. Publication
Number: CEC-2002014-009-CMF.
!
35!
Knutson, T. R., and R. E. Tuleya [2004]. Impact of CO2-induced warming on
simulated hurricane intensity and precipitation: Sensitivity to the choice of
climate model and convective parameterization. J. Climate, 17, 3477-3495.
Langridge, R., A. Fisher, et al., [2012]. Climate Change and Water Supply Security:
Reconfiguring Groundwater Management to Reduce Drought Vulnerability.
Publication # CEC-500-2012-017.
Livneh, B., T. J. Bohn, D. W. Pierce, F. Muñoz-Arriola, B. Nijssen, R. Vose, D. R.
Cayan, L. Brekke [2015]. A spatially comprehensive hydrometeorological data
set for Mexico, the U.S., and Southern Canada 1950-2013. Nature Scientific
Data.
Ley Nacional de Aguas LNA [2012].. Diario Oficial de la Federación, 1ro de enero de
1992, última reforma publicada el 8 de junio de 2012, artículos 78, 17, 80 y 81.
México.
Lobet Ingrit [2017]. U.S. natural gas to Mexico skyrockets, now some worry about
dependence. http://inewsource.org/2017/03/27/natural-gas-mexico-
skyrockets/.
Lyon, D.R., R.A. Alvarez, D. Zavala-Araiza, A. R. Brandt, R. B. Jackson, S. P.
Hamburg [2016]. Aerial surveys of elevated hydrocarbon emissions from oil and
gas production sites. Environmental Science & Technology.
Meehl G. A. and C. Tebaldi [2003]. More intense, more frequent, and longer lasting
heat waves in the 21st Century. Science, 305, 994-997.
México, Gobierno de la República (s/f), Reforma Energética.
http://cdn.reformaenergetica.gob.mx/explicacion.pdf
Milly, P. C. D., J. Betancourt, M Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P.
Lettenmaier, and R. J. Stouffer [2008]. Stationarity is dead: Whither water
management. Science, 319, 573-574.
Moser, S., J. Ekstrom, G. Franco [2012]. Our Changing Climate 2012. Vulnerability
& Adaptation to the Increasing Risks from Climate Change in California. CEC-
500-2012-007.
Muñoz Meléndez G., Díaz González Eliseo, Campbell Ramírez Hector y Quintero
Nuñez Margarito [2012a]. Perfil Energético 2010-2020 para Baja California:
Propuesta y Análisis de Indicadores Energéticos para el Desarrollo de
Prospectivas Estatales. Reporte Final preparado por la Comisión Estatal de
Energía de Baja California. USAID.
MunozMelendez G., QuinteroNunez M. and Pumfrey R. [2012b]. Chapter
IX. Air quality at the U.S. Mexican border: current state and future
considerations towards sustainability in Lee E. & Ganster P (eds.) The U.S.
Mexican border environment: Progress and Challenges for Sustainability.
SCERP Monograph Series, no. 16. San Diego State University press. U.S.A. pg.
219266.
Muñoz Melendez G. y Vázquez G. L. B. [2012]. Inventario de Gases de Efecto
Invernadero para el estado de Baja California. El Colegio de la Frontera Norte y
la Secretaría de Protección al Ambiente del Gobierno de Baja California.
National Conference of State Legislatures (NCSL) [2015]. Overview of the Water-
Energy Nexus in the United States. Available on
http://www.ncsl.org/research/environment-and-natural-
!
36!
resources/overviewofthewaterenergynexusintheus.aspx. Last accessed on
September 14, 2015
Nava Escudero César [2009]. Agua y Desalación en México: del Engaño al
Oscurantismo Jurídico. En Nava Escudero “Estudios Ambientales”. Instituto de
Investigaciones Jurídicas. Universidad Nacional Autónoma de México. Pp. 265-
284.
Newell, B., D. M. Marsh, and D. Sharma [2011]. Enhancing the resilience of the
Australian National Electricity Market: taking a systems approach in policy
development. Ecology and Society 16(2):15. [online] URL:
http://www.ecologyands ociety.org/vol16/iss2/art15/.
Pierce, D. W., T. Das, D. R. Cayan, E. P. Maurer, N. L. Miller, Y. Bao, M. Kanamitsu,
K. Yoshimura, M. A. Snyder, L. C. Sloan, G. Franco, M. Tyree, [2013].
Probabilistic estimates of future changes in California temperature and
precipitation using statistical and dynamical downscaling. Climate Dynamics, v.
40, 839-856. doi 10.1007/s00382-012-1337-9.
Public Policy Institute of California (PPIC) [2015]. California’s Water. PPIC Water
Policy Center. Item 7.
Programa Estatal de Accion ante el Cambio Climatico (PEACCBC) [2012]. Gobierno
del Estado de Baja California.
Programa de Desarrollo del Sistema Eléctrico Nacional, PRODESEN, [2016],
Secretaría de Energía (SENER), Subsecretaría de Electricidad. Dirección
General de Generación y Transmisión de Energía Eléctrica. Dirección General
de Distribución y Comercialización de Energía Eléctrica y Vinculación Social.
Poder Ejecutivo Federal, México.
Sánchez S. M. T., Martínez. G. M. (2004). La Vulnerabilidad en la Industria y los
sistemas energéticos ante el cambio climático global en México: una visión hacia
el siglo XXI. El cambio climático en México. Editado por UNAM, Semarnat, US
Country Studies Program . México, D.F.
Schwarm, Walter, and California Department of Finance Demographic Research
Unit [2014]. State and County Population Projections. Report no. P-1 (Total
Population). Available at:
http://www.dof.ca.gov/research/demographic/reports/projections/P-1/
Scott Christopher A., Pierce Suzanne A., Pasqualetti Martin J., Jones Alice L., Montz
Burrell E., Joseph H. Hoover. [2011]. Policy and institutional dimensions of the
waterenergy nexus. Energy Policy, 39: 6622-6630.
Secretaría de Energía (SENER). [2008a]. Prospectiva del Mercado de Gas Natural
2008–2017. México, DF: SENER.
Secretaría de Energía (SENER). [2008b]. Prospectiva del Sector Eléctrico 20080–
2017. México, DF: SENER.
Secretaría de Energía. [2010]. Prospectiva del Sector Eléctrico 2010-2025, Primera
Edición, México. Available at:
http://www.sener.gob.mx/webSener/res/PE_y_DT/pub.
Secretaría de Energía (SENER), [2016]. Prospectiva de Gas Natural 2016-2030.
SENER, 2016. Mexico.
!
37!
Siddiqi Afreen and Diaz Anadon Laura [2011]. The water–energy nexus in Middle
East and North Africa. Energy Policy. 39: 4529-4540.
Stillwell, A.S., C.W. King, M.E. Webber, J. Duncan and A. Hardberger [2010]. “The
Energy-Water Nexus in Texas.” Ecology and Society 16 (1).
Stockholm Environmental Institute (SEI). [2011], “Understanding the Nexus.
Background paper for the Bonn2011 Nexus Conference - The Water, Energy
andFood Security Nexus: Solutions for the Green Economy”.
Sugg, Zachary, Sonya Ziaja, Edella Schlager [2016], “Conjunctive groundwater
management as a response to socio-ecological disturbances: a comparison of 4
western US states” Texas Water Journal v.7.1.
United Nations Economic and Social Commission for Asia and the Pacific
(UNESCAP) [2013]. Water, Food and Energy Nexus in Asia and the Pacific.
United Nation publication, Thailand
United States Energy Information Agency (USEIA) [2016]. Annual Net Generation
for California, 1990-2015. Available at:
https://www.eia.gov/electricity/
Velazquez Esther, Madrid Cristina and Beltrán María J. [2011]. Rethinking the
Concepts of Virtual Water and Water Footprint in Relation to the Production–
Consumption Binomial and the Water–Energy Nexus. Water Resources
Management. 25:743-761.
Wang Jinxia, Rothausen Sabrina G. S. A., Conway Declan, Zhang Lijuan, Xiong Wei,
Holman Ian P. and Li Yumin [2012]. China’s water–energy nexus: greenhouse-
gas emissions from groundwater use for agriculture. Environmental Research
Letters 7: 014035 (10 pp)
Water in the West [2013]. Water and Energy Nexus. A literature Review. Stanford
University. Stanford, CA.
Westerling, A. L., H. G. Hidalgo, D. R. Cayan, T. W. Swetnam [2006]. Warming and
Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science, 313, No.
5789, 940-943.
Wilkinson, R. [2000]. Methodology for analysis of the energy intensity of California's
water systems, and an assessment of multiple potential benefits through
integrated water-energy efficiency measures.
Wilkinson, R. [2007]. Analysis of the Energy Intensity of Water Supplies for West
Basin Municipal Water District
Willis, A. Jay Lund, Edwin Townsley, Beth Faber. [2011]. Climate Change and Flood
Operations in the Sacramento Basin, California, San Francisco Estuary &
Watershed Science, 9(2). !
Yeh, Sonia, Julie Witcover, James Bushnell [2015] Status Review of California's Low
Carbon Fuel Standard - April 2015 Issue (Revised Version). Institute of
Transportation Studies, University of California, Davis, Research Report UCD-
ITS-RR-15-07 https://its.ucdavis.edu/californias-low-carbon-fuel-standard/
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
A data set of observed daily precipitation, maximum and minimum temperature, gridded to a 1/16° (~6 km) resolution, is described that spans the entire country of Mexico, the conterminous U.S. (CONUS), and regions of Canada south of 53° N for the period 1950-2013. The dataset improves previous products in spatial extent, orographic precipitation adjustment over Mexico and parts of Canada, and reduction of transboundary discontinuities. The impacts of adjusting gridded precipitation for orographic effects are quantified by scaling precipitation to an elevation-aware 1981-2010 precipitation climatology in Mexico and Canada. Differences are evaluated in terms of total precipitation as well as by hydrologic quantities simulated with a land surface model. Overall, orographic correction impacts total precipitation by up to 50% in mountainous regions outside CONUS. Hydrologic fluxes show sensitivities of similar magnitude, with discharge more sensitive than evapotranspiration and soil moisture. Because of the consistent gridding methodology, the current product reduces transboundary discontinuities as compared with a commonly used reanalysis product, making it suitable for estimating large-scale hydrometeorologic phenomena.
Technical Report
Full-text available
The Low Carbon Fuel Standard (LCFS) is an integral part of the overall strategy to reduce greenhouse gas (GHG) emissions in California. Administered by the California Air Resources Board (ARB), it sets an increasingly stringent carbon intensity standard (measured in gCO2e/MJ) that limits the total lifecycle GHG emissions intensity from the transportation sector. In addition to the LCFS, starting on January 1, 2015, GHG emissions from on-road transportation fuels including gasoline, diesel and natural gas became covered under the state’s Cap-and-Trade Program, which sets caps for emissions from a broad range of sectors throughout the state economy. More about the Cap-and-Trade Program appears in Section 5. To meet the LCFS, regulated parties can supply low-carbon fuels to generate credits, purchase LCFS credits generated by other producers of low carbon fuels, or both. The standard requires a reduction of 1 percent in GHG emissions intensity (or carbon intensity, CI) for gasoline and diesel fuel pools in 2015 from 2010 levels, and of 10 percent in 2020. Credits can be banked for use later, allowing over compliance in early years to aid compliance as the standard grows more stringent. The standard has remained at 1 percent reduction since 2013 due to a court ruling (see Section 6), and is expected to be at 2 percent reduction in 2016 after a formal re-adoption of the rule by the ARB in July 2015. This issue reviews LCFS compliance metrics from 2011 through 2014: credits and deficits generated and transport fuel energy (Section 1), fuel carbon intensity (Section 2), and credit trading and prices (Section 3). We take a special look at California in-state biofuel production and consumption (Section 4), and revisit fuel price impacts of the LCFS and the Cap-and-Trade Program, and interactive effects of the two (Section 5). We also briefly summarize the proposed changes in the LCFS re-adoption (Section 6).
Article
Full-text available
Previous studies have found that idealized hurricanes, simulated under warmer, high-CO2 conditions, are more intense and have higher precipitation rates than under present-day conditions. The present study explores the sensitivity of this result to the choice of climate model used to define the CO2-warmed environment and to the choice of convective parameterization used in the nested regional model that simulates the hurricanes. Approximately 1300 five-day idealized simulations are performed using a higher-resolution version of the GFDL hurricane prediction system (grid spacing as fine as 9 km, with 42 levels). All storms were embedded in a uniform 5 m s-1 easterly background flow. The large-scale thermodynamic boundary conditions for the experiments--- atmospheric temperature and moisture profiles and SSTs---are derived from nine different Coupled Model Intercomparison Project (CMIP2+) climate models. The CO2-induced SST changes from the global climate models, based on 80-yr linear trends from +1% yr-1 CO2 increase experiments, range from about +0.8° to +2.4°C in the three tropical storm basins studied. Four different moist convection parameterizations are tested in the hurricane model, including the use of no convective parameterization in the highest resolution inner grid. Nearly all combinations of climate model boundary conditions and hurricane model convection schemes show a CO2-induced increase in both storm intensity and near-storm precipitation rates. The aggregate results, averaged across all experiments, indicate a 14% increase in central pressure fall, a 6% increase in maximum surface wind speed, and an 18% increase in average precipitation rate within 100 km of the storm center. The fractional change in precipitation is more sensitive to the choice of convective parameterization than is the fractional change of intensity. Current hurricane potential intensity theories, applied to the climate model environments, yield an average increase of intensity (pressure fall) of 8% (Emanuel) to 16% (Holland) for the high-CO2 environments. Convective available potential energy (CAPE) is 21% higher on average in the high-CO2 environments. One implication of the results is that if the frequency of tropical cyclones remains the same over the coming century, a greenhouse gas induced warming may lead to a gradually increasing risk in the occurrence of highly destructive category-5 storms.
Article
Full-text available
Energy and water are interlinked. The development, use, and waste generated by demand for both resources drive global change. Managing them in tandem offers potential for global-change adaptation but presents institutional challenges. This paper advances understanding of the water–energy nexus by demonstrating how these resources are coupled at multiple scales, and by uncovering institutional opportunities and impediments to joint decision-making. Three water–energy nexus cases in the United States are examined: (1) water and energy development in the water-scarce Southwest; (2) conflicts between coal development, environmental quality, and social impacts in the East; and (3) tensions between environmental quality and economic development of shale natural gas in the Northeast and Central U.S. These cases are related to Eastern, Central, and Western regional stakeholder priorities collected in a national effort to assess energy–water scenarios. We find that localized challenges are diminished when considered from broader perspectives, while regionally important challenges are not prioritized locally. The transportability of electricity, and to some extent raw coal and gas, makes energy more suitable than water to regionalized global-change adaptation, because many of the impacts to water availability and quality remain localized. We conclude by highlighting the need for improved coordination between water and energy policy.Highlights►Water–energy nexus construct considers institutions not just resource inputs. ► Energy policy offers more scope for global-change adaptation than does water policy. ► U.S. scenarios highlight water impacts and policy choices of energy development. ► Water–energy policy tradeoffs may be mitigated across scales of resource use.
Article
The global economy is based on a take-make-consume and dispose model where natural resources are turned into products and the waste disposed of instead of being reused as a resource. In the Asia-Pacific region climate change along with rapid population and economic growth is resulting in increased demand for water and food, potentially leading to economic and political instability. Europe has developed policy and technological innovations that can facilitate the transition towards a circular economy where waste becomes a resource. By using existing instruments Europe can transfer its circular economy knowledge and technology to the Asia-Pacific region to increase security of supply of scarce resources. This can help ensure global security, influence climate change negotiations and create jobs in Europe.
Article
Oil and gas (O&G) well pads with high hydrocarbon emission rates may disproportionally contribute to total methane and volatile organic compound (VOC) emissions from the production sector. In turn, these emissions may be missing from most bottom-up emission inventories. We performed helicopter-based infrared camera surveys of more than 8,000 O&G well pads in seven U.S. basins to assess the prevalence and distribution of high-emitting hydrocarbon sources (detection threshold ~1-3 g s(-1)) . The proportion of sites with such high-emitting sources was 4% nationally but ranged from 1% in the Powder River (Wyoming) to 14% in the Bakken (North Dakota). Emissions were observed three times more frequently at sites in the oil-producing Bakken and oil-producing regions of mixed basins (p<0.0001, Χ(2) test). However, statistical models using basin and well pad characteristics explained 14% or less of the variance in observed emission patterns, indicating that stochastic processes dominate the occurrence of high emissions at individual sites. Over 90% of almost 500 detected sources were from tank vents and hatches. Although tank emissions may be partially attributable to flash gas, observed frequencies in most basins exceed those expected if emissions were effectively captured and controlled, demonstrating that tank emission control systems commonly underperform. Tanks represent a key mitigation opportunity for reducing methane and VOC emissions.
Article
As the complexity and interconnectedness of present-day social-ecological systems become steadily more apparent, there is increasing pressure on governments, policy makers, and managers to take a systems approach to the challenges facing humanity. However, how can this be done in the face of system complexity and uncertainties? In this paper we briefly discuss practical ways that policy makers can take up the systems challenge. We focus on resilience thinking, and the use of influence diagrams, causal-loop diagrams, and system archetypes. As a case study, set in the context of the climate-energy-water nexus, we use some of these system concepts and tools to carry out an initial exploration of factors that can affect the resilience of the Australian National Electricity Market. We stress the need for the electricity sector to prepare for the impacts of global change by encouraging innovation and diversity, supporting modularity and redundancy, and embracing the need for a policy making approach that takes account of the dynamics of the wider social-ecological system. Finally, taking a longer term view, we conclude by recommending that policy makers work to reduce reliance on conventional market mechanisms, institute continuing crosssector dialogue, and promote basic education in system dynamics.
Article
Available online: http://www.ecologyandsociety.org/vol16/iss1/art2/ http://www.ecologyandsociety.org/vol16/iss1/art2/ES-2010-3781.pdf Understanding the nexus between energy and water - water used for energy and energy used for water - has become increasing important in a changing world. As growing populations demand more energy supplies and water resources, research aims to analyze the interconnectedness of these two resources. Our study sought to quantify the energy-water relationship in Texas, specifically the relationship between electricity generation and water resources as it pertains to policy and society. We examined the water requirements for various types of electricity generating facilities, for typical systems both nationwide and in Texas. We also addressed the energy requirements of water supply and wastewater treatment systems, comparing national averages with Texas-specific values. Analysis of available data for Texas reveals that approximately 595,000 megaliters of water annually - enough water for over three million people for a year - are consumed by cooling the state's thermoelectric power plants while generating approximately 400 terawatt-hours of electricity. At the same time, each year Texas uses an estimated 2.1 to 2.7 terawatthours of electricity for water systems and 1.8 to 2.0 terawatt-hours for wastewater systems - enough electricity for about 100,000 people for a year. In preparing our analysis, it became clear that substantially more site-specific data are necessary for a full understanding of the nature of the energy-water nexus and the sustainability of economic growth in Texas. We recommend that Texas increase efforts to collect accurate data on the withdrawal and consumption of cooling and process water at power plants, as well as data on electricity consumption for public water supply and wastewater treatment plants and distribution systems. The overarching conclusion of our work is that increased efficiency advances the sustainable use of both energy and water. Improving water efficiency will reduce power demand, and improving energy efficiency will reduce water demand. Greater efficiency in usage of either energy or water will help stretch our finite supplies of both, as well as reduce costs to water and power consumers.
Article
This paper examines the implications of alternative forms of cap-and-trade regulations on the California electricity market. Specific focus is given to the implementation of a downstream form of regulation known as the first-deliverer policy. Under this policy, importers (i.e., first-deliverers) of electricity into California are responsible for the emissions associated with the power plants from which the power originated, even if those plants are physically located outside of California. We find that, absent strict non-economic barriers to changing import patterns, such policies are extremely vulnerable to reshuffling of import resources. The net impact implies that the first-deliverer policies will be only marginally more effective than a conventional source-based regulation.