Article

A Composite Mode Differential Gene Regulatory Architecture based on Temporal Expression Profiles

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Exploring the complex interactive mechanism in a Gene Regulatory Network (GRN) developed using transcriptome data obtained from standard microarray and/or RNA-seq experiments helps us to understand the triggering factors in cancer research. The Transcription Factor (TF) genes generate protein complexes which affect the transcription of various target genes. However, considering the mode of regulation in a time frame such transcriptional activities are dependent on some specific activation time points only. It is also crucial to check whether the regulating capabilities are uniform across varied conditions, especially when periodicity is a big issue. In this context, we propose an algorithm called RIFT which helps to monitor the temporal differential regulatory pattern of a Differentially Expressed (DE) target gene either by a TF gene or a group of TF genes from a large time series (TS) data. We have tested our algorithm on HeLa cell cycle data and compared the result with its most advanced state of the art counterpart proposed so far. As our algorithm yields up stringent mode and target specific significant valid TF genes for a DE gene, we can expect to have new forms of genetic interactions.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Full-text available
BackgroundA gene regulatory network (GRN) represents interactions of genes inside a cell or tissue, in which vertexes and edges stand for genes and their regulatory interactions respectively. Reconstruction of gene regulatory networks, in particular, genome-scale networks, is essential for comparative exploration of different species and mechanistic investigation of biological processes. Currently, most of network inference methods are computationally intensive, which are usually effective for small-scale tasks (e.g., networks with a few hundred genes), but are difficult to construct GRNs at genome-scale. ResultsHere, we present a software package for gene regulatory network reconstruction at a genomic level, in which gene interaction is measured by the conditional mutual information measurement using a parallel computing framework (so the package is named CMIP). The package is a greatly improved implementation of our previous PCA-CMI algorithm. In CMIP, we provide not only an automatic threshold determination method but also an effective parallel computing framework for network inference. Performance tests on benchmark datasets show that the accuracy of CMIP is comparable to most current network inference methods. Moreover, running tests on synthetic datasets demonstrate that CMIP can handle large datasets especially genome-wide datasets within an acceptable time period. In addition, successful application on a real genomic dataset confirms its practical applicability of the package. Conclusions This new software package provides a powerful tool for genomic network reconstruction to biological community. The software can be accessed at http://www.picb.ac.cn/CMIP/.
Article
Full-text available
The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce the computational cost of BN due to much smaller sizes of local GRNs, but also identify the directions of the regulations.
Article
Full-text available
Combining path consistency (PC) algorithms with conditional mutual information (CMI) are widely used in reconstruction of gene regulatory networks. CMI has many advantages over Pearson correlation coefficient in measuring non-linear dependence to infer gene regulatory networks. It can also discriminate the direct regulations from indirect ones. However, it is still a challenge to select the conditional genes in an optimal way, which affects the performance and computation complexity of the PC algorithm. In this study, we develop a novel conditional mutual information-based algorithm, namely RPNI (Regulation Pattern based Network Inference), to infer gene regulatory networks. For conditional gene selection, we define the co-regulation pattern, indirect-regulation pattern and mixture-regulation pattern as three candidate patterns to guide the selection of candidate genes. To demonstrate the potential of our algorithm, we apply it to gene expression data from DREAM challenge. Experimental results show that RPNI outperforms existing conditional mutual information-based methods in both accuracy and time complexity for different sizes of gene samples. Furthermore, the robustness of our algorithm is demonstrated by noisy interference analysis using different types of noise.
Article
Full-text available
The reconstruction of transcriptional regulatory networks (TRNs) is a long-standing challenge in human genetics. Numerous computational methods have been developed to infer regulatory interactions between human transcriptional factors (TFs) and target genes from high-throughput data, and their performance evaluation requires gold-standard interactions. Here we present a database of literature-curated human TF-target interactions, TRRUST (transcriptional regulatory relationships unravelled by sentence-based text-mining, http://www.grnpedia.org/trrust), which currently contains 8,015 interactions between 748 TF genes and 1,975 non-TF genes. A sentence-based text-mining approach was employed for efficient manual curation of regulatory interactions from approximately 20 million Medline abstracts. To the best of our knowledge, TRRUST is the largest publicly available database of literature-curated human TF-target interactions to date. TRRUST also has several useful features: i) information about the mode-of-regulation; ii) tests for target modularity of a query TF; iii) tests for TF cooperativity of a query target; iv) inferences about cooperating TFs of a query TF; and v) prioritizing associated pathways and diseases with a query TF. We observed high enrichment of TF-target pairs in TRRUST for top-scored interactions inferred from high-throughput data, which suggests that TRRUST provides a reliable benchmark for the computational reconstruction of human TRNs.
Article
Full-text available
Mutual information (MI), a quantity describing the nonlinear dependence between two random variables, has been widely used to construct gene regulatory networks (GRNs). Despite its good performance, MI cannot separate the direct regulations from indirect ones among genes. Although the conditional mutual information (CMI) is able to identify the direct regulations, it generally underestimates the regulation strength, i.e. it may result in false negatives when inferring gene regulations. In this work, to overcome the problems, we propose a novel concept, namely conditional mutual inclusive information (CMI2), to describe the regulations between genes. Furthermore, with CMI2, we develop a new approach, namely CMI2NI (CMI2-based network inference), for reverse-engineering GRNs. In CMI2NI, CMI2 is used to quantify the mutual information between two genes given a third one through calculating the Kullback-Leibler divergence between the postulated distributions of including and excluding the edge between the two genes. The benchmark results on the GRNs from DREAM challenge as well as the SOS DNA repair network in Escherichia coli demonstrate the superior performance of CMI2NI. Specifically, even for gene expression data with small sample size, CMI2NI can not only infer the correct topology of the regulation networks but also accurately quantify the regulation strength between genes. As a case study, CMI2NI was also used to reconstruct cancer-specific GRNs using gene expression data from The Cancer Genome Atlas (TCGA). CMI2NI is freely accessible at http://www.comp-sysbio.org/cmi2ni. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Article
Full-text available
Gene regulatory network (GRN) is a fundamental topic in systems biology. The dynamics of GRN can shed light on the cellular processes, which facilitates the understanding of the mechanisms of diseases when the processes are dysregulated. Accurate reconstruction of GRN could also provide guidelines for experimental biologists. Therefore, inferring gene regulatory networks from high-throughput gene expression data is a central problem in systems biology. However, due to the inherent complexity of gene regulation, noise in measuring the data and the short length of time-series data, it is very challenging to reconstruct accurate GRNs. On the other hand, a better understanding into gene regulation could help to improve the performance of GRN inference. Time delay is one of the most important characteristics of gene regulation. By incorporating the information of time delays, we can achieve more accurate inference of GRN. In this paper, we propose a method to infer time-delayed gene regulation based on cross-correlation and network deconvolution (ND). First, we employ cross-correlation to obtain the probable time delays for the interactions between each target gene and its potential regulators. Then based on the inferred delays, the technique of ND is applied to identify direct interactions between the target gene and its regulators. Experiments on real-life gene expression datasets show that our method achieves overall better performance than existing methods for inferring time-delayed GRNs. By taking into account the time delays among gene interactions, our method is able to infer GRN more accurately. The effectiveness of our method has been shown by the experiments on three real-life gene expression datasets of yeast. Compared with other existing methods which were designed for learning time-delayed GRN, our method has significantly higher sensitivity without much reduction of specificity.
Article
Full-text available
Living cells are realized by complex gene expression programs that are moderated by regulatory proteins called transcription factors (TFs). The TFs control the differential expression of target genes in the context of transcriptional regulatory networks (TRNs), either individually or in groups. Deciphering the mechanisms of how the TFs control the expression of target genes is a challenging task, especially when multiple TFs collaboratively participate in the transcriptional regulation. We model the underlying regulatory interactions in terms of the directions (activation or repression) and their logical roles (necessary and/or sufficient) with a modified association rule mining approach, called mTRIM. The experiment on Yeast discovered 670 regulatory interactions, in which multiple TFs express their functions on common target genes collaboratively. The evaluation on yeast genetic interactions, TF knockouts and a synthetic dataset shows that our algorithm is significantly better than the existing ones. mTRIM is a novel method to infer TF collaborations in transcriptional regulation networks. mTRIM is available at http://www.msu.edu/~jinchen/mTRIM.
Article
Full-text available
To date, Gene Set Analysis (GSA) approaches primarily focus on identifying differentially expressed gene sets (pathways). Methods for identifying differentially coexpressed pathways also exist but are mostly based on aggregated pairwise correlations, or other pairwise measures of coexpression. Instead, we propose Gene Sets Net Correlations Analysis (GSNCA), a multivariate differential coexpression test that accounts for the complete correlation structure between genes. In GSNCA, weight factors are assigned to genes in proportion to the genes' cross-correlations (intergene correlations). The problem of finding the weight vectors is formulated as an eigenvector problem with a unique solution. GSNCA tests the null hypothesis that for a gene set there is no difference in the weight vectors of the genes between two conditions. In simulation studies and the analyses of experimental data, we demonstrate that GSNCA, indeed, captures changes in the structure of genes' cross-correlations rather than differences in the averaged pairwise correlations. Thus, GSNCA infers differences in coexpression networks, however, bypassing method-dependent steps of network inference. As an additional result from GSNCA, we define hub genes as genes with the largest weights and show that these genes correspond frequently to major and specific pathway regulators, as well as to genes that are most affected by the biological difference between two conditions. In summary, GSNCA is a new approach for the analysis of differentially coexpressed pathways that also evaluates the importance of the genes in the pathways, thus providing unique information that may result in the generation of novel biological hypotheses. gvglazko@uams.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Article
Full-text available
Comparing the gene-expression profiles of sick and healthy individuals can help in understanding disease. Such differential expression analysis is a well-established way to find gene sets whose expression is altered in the disease. Recent approaches to gene-expression analysis go a step further and seek differential co-expression patterns, wherein the level of co-expression of a set of genes differs markedly between disease and control samples. Such patterns can arise from a disease-related change in the regulatory mechanism governing that set of genes, and pinpoint dysfunctional regulatory networks. Here we present DICER, a new method for detecting differentially co-expressed gene sets using a novel probabilistic score for differential correlation. DICER goes beyond standard differential co-expression and detects pairs of modules showing differential co-expression. The expression profiles of genes within each module of the pair are correlated across all samples. The correlation between the two modules, however, differs markedly between the disease and normal samples. We show that DICER outperforms the state of the art in terms of significance and interpretability of the detected gene sets. Moreover, the gene sets discovered by DICER manifest regulation by disease-specific microRNA families. In a case study on Alzheimer's disease, DICER dissected biological processes and protein complexes into functional subunits that are differentially co-expressed, thereby revealing inner structures in disease regulatory networks.
Article
Full-text available
Background A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them.
Article
Full-text available
Living cells are realized by complex gene expression programs that are moderated by regulatory proteins called transcription factors (TFs). The TFs control the differential expression of target genes in the context of transcriptional regulatory networks (TRNs), either individually or in groups. Deciphering the mechanisms of how the TFs control the differential expression of a target gene in a TRN is challenging, especially when multiple TFs collaboratively participate in the transcriptional regulation. To unravel the roles of the TFs in the regulatory networks, we model the underlying regulatory interactions in terms of the TF-target interactions' directions (activation or repression) and their corresponding logical roles (necessary and/or sufficient). We design a set of constraints that relate gene expression patterns to regulatory interaction models, and develop TRIM (Transcriptional Regulatory Interaction Model Inference), a new hidden Markov model, to infer the models of TF-target interactions in large-scale TRNs of complex organisms. Besides, by training TRIM with wild-type time-series gene expression data, the activation timepoints of each regulatory module can be obtained. To demonstrate the advantages of TRIM, we applied it on yeast TRN to infer the TF-target interaction models for individual TFs as well as pairs of TFs in collaborative regulatory modules. By comparing with TF knockout and other gene expression data, we were able to show that the performance of TRIM is clearly higher than DREM (the best existing algorithm). In addition, on an individual Arabidopsis binding network, we showed that the target genes' expression correlations can be significantly improved by incorporating the TF-target regulatory interaction models inferred by TRIM into the expression data analysis, which may introduce new knowledge in transcriptional dynamics and bioactivation.
Article
Full-text available
Microarray data acquired during time-course experiments allow the temporal variations in gene expression to be monitored. An original postprandial fasting experiment was conducted in the mouse and the expression of 200 genes was monitored with a dedicated macroarray at 11 time points between 0 and 72 hours of fasting. The aim of this study was to provide a relevant clustering of gene expression temporal profiles. This was achieved by focusing on the shapes of the curves rather than on the absolute level of expression. Actually, we combined spline smoothing and first derivative computation with hierarchical and partitioning clustering. A heuristic approach was proposed to tune the spline smoothing parameter using both statistical and biological considerations. Clusters are illustrated a posteriori through principal component analysis and heatmap visualization. Most results were found to be in agreement with the literature on the effects of fasting on the mouse liver and provide promising directions for future biological investigations.
Article
Full-text available
Differential coexpression analysis (DCEA) is increasingly used for investigating the global transcriptional mechanisms underlying phenotypic changes. Current DCEA methods mostly adopt a gene connectivity-based strategy to estimate differential coexpression, which is characterized by comparing the numbers of gene neighbors in different coexpression networks. Although it simplifies the calculation, this strategy mixes up the identities of different coexpression neighbors of a gene, and fails to differentiate significant differential coexpression changes from those trivial ones. Especially, the correlation-reversal is easily missed although it probably indicates remarkable biological significance. We developed two link-based quantitative methods, DCp and DCe, to identify differentially coexpressed genes and gene pairs (links). Bearing the uniqueness of exploiting the quantitative coexpression change of each gene pair in the coexpression networks, both methods proved to be superior to currently popular methods in simulation studies. Re-mining of a publicly available type 2 diabetes (T2D) expression dataset from the perspective of differential coexpression analysis led to additional discoveries than those from differential expression analysis. This work pointed out the critical weakness of current popular DCEA methods, and proposed two link-based DCEA algorithms that will make contribution to the development of DCEA and help extend it to a broader spectrum.
Article
Full-text available
Alzheimer's disease (AD) is a progressive neurodegenerative disorder involving variations in the transcriptome of many genes. AD does not affect all brain regions simultaneously. Identifying the differences among the affected regions may shed more light onto the disease progression. We developed a novel method involving the differential topology of gene coexpression networks to understand the association among affected regions and disease severity. We analysed microarray data of four regions--entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC) and middle temporal gyrus (MTG) from AD affected and normal subjects. A coexpression network was built for each region and the topological overlap between them was examined. Genes with zero topological overlap between two region-specific networks were used to characterise the differences between the two regions. Results indicate that MTG shows early AD pathology compared to the other regions. We postulate that if the MTG gets affected later in the disease, post-mortem analyses of individuals with end-stage AD will show signs of early AD in the MTG, while the EC, HIP and PCC will have severe pathology. Such knowledge is useful for data collection in clinical studies where sample selection is a limiting factor as well as highlighting the underlying biology of disease progression.
Article
Full-text available
Motivation: Although transcription factors (TF) play a central regulatory role, their detection from expression data is limited due to their low, and often sparse, expression. In order to fill this gap, we propose a regulatory impact factor (RIF) metric to identify critical TF from gene expression data. Results: To substantiate the generality of RIF, we explore a set of experiments spanning a wide range of scenarios including breast cancer survival, fat, gonads and sex differentiation. We show that the strength of RIF lies in its ability to simultaneously integrate three sources of information into a single measure: (i) the change in correlation existing between the TF and the differentially expressed (DE) genes; (ii) the amount of differential expression of DE genes; and (iii) the abundance of DE genes. As a result, RIF analysis assigns an extreme score to those TF that are consistently most differentially co-expressed with the highly abundant and highly DE genes (RIF1), and to those TF with the most altered ability to predict the abundance of DE genes (RIF2). We show that RIF analysis alone recovers well-known experimentally validated TF for the processes studied. The TF identified confirm the importance of PPAR signaling in adipose development and the importance of transduction of estrogen signals in breast cancer survival and sexual differentiation. We argue that RIF has universal applicability, and advocate its use as a promising hypotheses generating tool for the systematic identification of novel TF not yet documented as critical. Contact: [email protected] /* */ Supplementary information: Supplementary data are available at Bioinformatics online. © The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected] /* */
Article
Full-text available
The genome-wide program of gene expression during the cell division cycle in a human cancer cell line (HeLa) was characterized using cDNA microarrays. Transcripts of >850 genes showed periodic variation during the cell cycle. Hierarchical clustering of the expression patterns revealed coexpressed groups of previously well-characterized genes involved in essential cell cycle processes such as DNA replication, chromosome segregation, and cell adhesion along with genes of uncharacterized function. Most of the genes whose expression had previously been reported to correlate with the proliferative state of tumors were found herein also to be periodically expressed during the HeLa cell cycle. However, some of the genes periodically expressed in the HeLa cell cycle do not have a consistent correlation with tumor proliferation. Cell cycle-regulated transcripts of genes involved in fundamental processes such as DNA replication and chromosome segregation seem to be more highly expressed in proliferative tumors simply because they contain more cycling cells. The data in this report provide a comprehensive catalog of cell cycle regulated genes that can serve as a starting point for functional discovery. The full dataset is available at http://genome-www.stanford.edu/Human-CellCycle/HeLa/.
Article
Full-text available
Motivation: Multi-series time-course microarray experiments are useful approaches for exploring biological processes. In this type of experiments, the researcher is frequently interested in studying gene expression changes along time and in evaluating trend differences between the various experimental groups. The large amount of data, multiplicity of experimental conditions and the dynamic nature of the experiments poses great challenges to data analysis. Results: In this work, we propose a statistical procedure to identify genes that show different gene expression profiles across analytical groups in time-course experiments. The method is a two-regression step approach where the experimental groups are identified by dummy variables. The procedure first adjusts a global regression model with all the defined variables to identify differentially expressed genes, and in second a variable selection strategy is applied to study differences between groups and to find statistically significant different profiles. The methodology is illustrated on both a real and a simulated microarray dataset.
Article
Full-text available
Time series microarray experiments are widely used to study dynamical biological processes. Due to the cost of microarray experiments, and also in some cases the limited availability of biological material, about 80% of microarray time series experiments are short (3-8 time points). Previously short time series gene expression data has been mainly analyzed using more general gene expression analysis tools not designed for the unique challenges and opportunities inherent in short time series gene expression data. We introduce the Short Time-series Expression Miner (STEM) the first software program specifically designed for the analysis of short time series microarray gene expression data. STEM implements unique methods to cluster, compare, and visualize such data. STEM also supports efficient and statistically rigorous biological interpretations of short time series data through its integration with the Gene Ontology. The unique algorithms STEM implements to cluster and compare short time series gene expression data combined with its visualization capabilities and integration with the Gene Ontology should make STEM useful in the analysis of data from a significant portion of all microarray studies. STEM is available for download for free to academic and non-profit users at http://www.cs.cmu.edu/~jernst/stem.
Article
Full-text available
A considerable fraction of gene promoters are bound by multiple transcription factors. It is therefore important to understand how such factors interact in regulating the genes. In this paper, we propose a computational method to identify groups of co-regulated genes and the corresponding regulatory programs of multiple transcription factors from protein- DNA binding and gene expression data. The key concept is to characterize a regulatory program in terms of two properties of individual transcription factors: the function of a regulator as an activator or a repressor, and its direction of effectiveness as necessary or sufficient. We apply a greedy algorithm to find the regulatory models which best explain the available data. Empirical analysis indicates that the inferred regulatory models agree with known combinatorial interactions between regulators and are robust against various parameter choices.
Article
Full-text available
Even simple organisms have the ability to respond to internal and external stimuli. This response is carried out by a dynamic network of protein-DNA interactions that allows the specific regulation of genes needed for the response. We have developed a novel computational method that uses an input-output hidden Markov model to model these regulatory networks while taking into account their dynamic nature. Our method works by identifying bifurcation points, places in the time series where the expression of a subset of genes diverges from the rest of the genes. These points are annotated with the transcription factors regulating these transitions resulting in a unified temporal map. Applying our method to study yeast response to stress, we derive dynamic models that are able to recover many of the known aspects of these responses. Predictions made by our method have been experimentally validated leading to new roles for Ino4 and Gcn4 in controlling yeast response to stress. The temporal cascade of factors reveals common pathways and highlights differences between master and secondary factors in the utilization of network motifs and in condition-specific regulation.
Article
Full-text available
We introduce a model-based analysis technique for extracting and characterizing rhythmic expression profiles from genome-wide DNA microarray hybridization data. These patterns are clues to discovering rhythmic genes implicated in cell-cycle, circadian, or other biological processes. The algorithm, implemented in a program called RAGE (Rhythmic Analysis of Gene Expression), decouples the problems of estimating a pattern's wavelength and phase. Our algorithm is linear-time in frequency and phase resolution, an improvement over previous quadratic-time approaches. Unlike previous approaches, RAGE uses a true distance metric for measuring expression profile similarity, based on the Hausdorff distance. This results in better clustering of expression profiles for rhythmic analysis. The confidence of each frequency estimate is computed using Z-scores. We demonstrate that RAGE is superior to other techniques on synthetic and actual DNA microarray hybridization data. We also show how to replace the discretized phase search in our method with an exact (combinatorially precise) phase search, resulting in a faster algorithm with no complexity dependence on phase resolution.
Article
There are fundamental limitations in inferring the functional interaction structure of a gene (regulatory) network only from sequence information such as binding motifs. To overcome such limitations, various approaches have been developed to infer the functional interaction structure from expression profiles. However, most of them have not been so successful due to the experimental limitations and computational complexity. Hence, there is a pressing need to develop a simple but effective methodology that can systematically identify the functional interaction structure of a gene network from time-series expression profiles. In particular, we need to take into account the different time delay effects in gene regulation since they are ubiquitously present. We have considered a new experiment that measures the overall expression changes after a perturbation on a specific gene. Based on this experiment, we have proposed a new inference method that can take account of the time delay induced while the perturbation affects its primary target genes. Specifically, we have developed an algebraic equation from which we can identify the subnetwork structure around the perturbed gene. We have also analyzed the influence of time delay on the inferred network structure. The proposed method is particularly useful for identification of a gene network with small variations in the time delay of gene regulation.
Article
Inferring gene regulatory network (GRN) from the microarray expression data is an important problem in Bioinformatics, because knowing the GRN is an essential first step in understanding the inner workings of the cell and the related diseases. Time delays exist in the regulatory effects from one gene to another due to the time needed for transcription, translation and to accumulate a sufficient number of needed proteins. Also, it is known that the delays are important for oscillatory phenomenon. Therefore, it is crucial to develop a causal gene network model, preferably as a function of time. In this paper, we propose an algorithm CLINDE to infer causal directed links in GRN with time delays and regulatory effects in the links from time-series microarray gene expression data. It is one of the most comprehensive in terms of features compared to the state-of-the-art discrete gene network models. We have tested CLINDE on synthetic data, the in vivo IRMA (On and Off) datasets and the [1] yeast expression data validated using KEGG pathways. Results show that CLINDE can effectively recover the links, the time delays and the regulatory effects in the synthetic data, and outperforms other algorithms in the IRMA in vivo datasets.
Article
Current methods for reconstructing dynamic regulatory networks are focused on modeling a single response network using model organisms or cell lines. Unlike these models or cell lines, humans differ in their background expression profiles due to age, genetics and life factors. In addition, there are often differences in start and end times for time series human data and in the rate of progress based on the specific individual. Thus, new methods are required to integrate time series data from multiple individuals when modeling and constructing disease response networks. We developed SMARTS, a method integrating static and time series data from multiple individuals to reconstruct condition specific response networks in an unsupervised way. Using probabilistic graphical models, SMARTS iterates between reconstructing different regulatory networks and assigning individuals to these networks taking into account varying individual start times and response rates. These models can be used to group different sets of patients and to identify transcription factors that differentiate the observed responses between these groups. We applied SMARTS to analyze human response to influenza and mouse brain development. In both cases, it was able to greatly improve baseline groupings while identifying key relevant TFs that differ between the groups. Several of these groupings and TFs are known to regulate the relevant processes while others represent novel hypotheses regarding immune response and development. Availability: Software & supplementary information are available at: http://sb.cs.cmu.edu/smarts/ CONTACT: zivbj@cs.cmu.edu. © The Author (2014). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Conference Paper
Transcriptional regulations in eukaryotes occur through the coordinated regulations of multiple transcription factors (TF). These transcriptional regulations are responsible for changes in expression levels between different environmental conditions or developmental stages of many genes. Some recent microarray studies have focused on the combinational nature of TF interactions. In this work we have developed a novel correlative procedure to find out the pairs of TFs, which can work together, based upon their actions (regulations) on target genes. In this context we have also found the best regulated targeted genes corresponding to a pair of TFs. In the result section we have shown that our approach is capable to find out the significant interaction networks among the TFs and target genes and between the TFs also.
Book
Probablistic models are becoming increasingly important in analyzing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analyzing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it is accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time presents the state of the art in this new and important field.
Article
Motivation: Time series expression experiments are an increasingly popular method for studying a wide range of biological systems. However, when analyzing these experiments researchers face many new computational challenges. Algorithms that are specifically designed for time series experiments are required so that we can take advantage of their unique features (such as the ability to infer causality from the temporal response pattern) and address the unique problems they raise (e.g. handling the different non-uniform sampling rates). Results: We present a comprehensive review of the current research in time series expression data analysis. We divide the computational challenges into four analysis levels: experimental design, data analysis, pattern recognition and networks. For each of these levels, we discuss computational and biological problems at that level and point out some of the methods that have been proposed to deal with these issues. Many open problems in all these levels are discussed. This review is intended to serve as both, a point of reference for experimental biologists looking for practical solutions for analyzing their data, and a starting point for computer scientists interested in working on the computational problems related to time series expression analysis.
Article
Motivation: The expressions of many genes associated with certain periodic biological and cell cycle processes such as circadian rhythm regulation are known to be rhythmic. Identification of the genes whose time course expressions are synchronized to certain periodic biological process may help to elucidate the molecular basis of many diseases, and these gene products may in turn represent drug targets relevant to those diseases. Results: We propose in this paper a statistical framework based on a shape-invariant model together with a false discovery rate (FDR) procedure for identifying periodically expressed genes based on microarray time-course gene expression data and a set of known periodically expressed guide genes. We applied the proposed methods to the alpha-factor, cdc15 and cdc28 synchronized yeast cell cycle data sets and identified a total of 1010 cell-cycle-regulated genes at a FDR of 0.5% in at least one of the three data sets analyzed, including 89 (86%) of 104 known periodic transcripts. We also identified 344 and 201 circadian rhythmic genes in vivo in mouse heart and liver tissues with FDR of 10 and 2.5%, respectively. Our results also indicate that the shape-invariant model fits the data well and provides estimate of the common shape function and the relative phases for these periodically regulated genes.
DCGL v2.0: An R package for unveiling differential regulation from differential co-expression
  • J Yang
  • B.-H Yu
  • Z Liu
  • L Zhao
  • L.-X Liu
  • Y.-X Ma
  • Y.-Y. Li
  • Li
Identifying periodically expressed transcripts in microarray time series data
  • S Wichert
  • K Fokianos
  • K Strimmer
GeneCycle: Identification Periodically Expressed Genes
  • M Ahdesmäki
  • K Fokianos
  • Strimmer