Chapter

Optimization-Inspired Control Strategy for a Magnus Effect-Based Airborne Wind Energy System

Authors:
  • RealNetworks
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

An optimization study has been conducted and the corresponding control strategy developed for the lighter-than-air airborne wind energy system. The linchpin of the system is an airborne module in the form of a buoyant, rotating cylinder, whose rotation in a wind stream induces the Magnus effect-based aerodynamic lift, thereby facilitating traction power generation. The optimization is aimed at maximizing the average power produced at the ground-based generator during a continuously repeatable operating cycle. This chapter provides a recap of the optimization methodology, results, and their physical interpretation, and builds on this foundation to develop control strategies aimed at approaching the optimization results. Comparative analysis of the two proposed control strategies and the optimization results shows that the simpler and more robust strategy can approach the performance of the more sensitive strategy that closely matches the optimization results.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Abstract Among novel technologies for producing electricity from renewable resources, a new class of wind energy converters has been conceived under the name of Airborne Wind Energy Systems (AWESs). This new generation of systems employs flying tethered wings or aircraft in order to reach winds blowing at atmosphere layers that are inaccessible by traditional wind turbines. Research on AWESs started in the mid seventies, with a rapid acceleration in the last decade. A number of systems based on radically different concepts have been analyzed and tested. Several prototypes have been developed all over the world and the results from early experiments are becoming available. This paper provides a review of the different technologies that have been conceived to harvest the energy of high-altitude winds, specifically including prototypes developed by universities and companies. A classification of such systems is proposed on the basis of their general layout and architecture. The focus is set on the hardware architecture of systems that have been demonstrated and tested in real scenarios. Promising solutions that are likely to be implemented in the close future are also considered.
Article
Full-text available
This paper presents novel results related to an innovative airborne wind energy technology, named Kitenergy, for the conversion of high‐altitude wind energy into electricity. The research activities carried out in the last five years, including theoretical analyses, numerical simulations, and experimental tests, indicate that Kitenergy could bring forth a revolution in wind energy generation, providing renewable energy in large quantities at a lower cost than fossil energy. This work investigates three important theoretical aspects: the evaluation of the performance achieved by the employed control law, the optimization of the generator operating cycle, and the possibility to generate continuously a constant and maximal power output. These issues are tackled through the combined use of modeling, control, and optimization methods that result to be key technologies for a significant breakthrough in renewable energy generation. Copyright © 2011 John Wiley & Sons, Ltd.
Article
Full-text available
As the ground-based wind-turbine systems have steadily reached their performance peak due to turbine blade size limitations, generator size constraints, high investment costs, and relatively unpredictable nature of near-surface winds, the possibility of harnessing the energy of steady, high-altitude/high-speed winds has become increasingly attractive within the last decade. However, due to the intermittent nature of power production of a considered high-altitude wind energy system utilizing an airborne module tethered to a ground station, sufficiently large energy storage is required in order to provide steady power supply to the electrical power grid. This paper focuses on the sizing of typical low-to-medium scale energy storage systems (up to 10 MW), such as those based on flywheels, compressed air, batteries and ultracapacitors, considering the intermittent power production cycle, airborne module altitude range and ground-station generator power ratings. The assessment results are summarized in terms of investment/running costs, storage system size, and durability, thus providing practical guidelines for the selection of appropriate energy storage system.
Conference Paper
Full-text available
In the last decade, several research groups and companies around the world have been developing a new class of wind generators, aimed at harnessing the energy of winds blowing at high elevation above the ground. This kind of technology is usually referred to as Airborne Wind Energy (AWE) or High-Altitude Wind Energy. All of the proposed solutions exploit the high-speed flight of tethered wings, or aircrafts, and their operation heavily relies on automatic control. This paper provides a tutorial on the fundamental concepts of AWE and on the different technologies that are being investigated, with particular emphasis on control-related aspects, highlighting the accomplished results and the issues that still need to be solved.
Book
Full-text available
This reference offers an overview of the field of airborne wind energy. As the first book of its kind, it provides a consistent compilation of the fundamental theories, a compendium of current research and development activities as well as economic and regulatory aspects. In five parts, the book demonstrates the relevance of Airborne Wind Energy and the role that this emerging field of technology can play for the transition towards a renewable energy economy. Part I on "Fundamentals" contains seven general chapters explaining the principles of airborne wind energy and its different variants, of meteorology, the history of kites, and financing strategies. Part II on "System Modeling, Optimization and Control" contains eight contributions that develop and use detailed dynamic models for simulation, optimization, and control of airborne wind energy systems, while Part III on "Analysis of Flexible Kite Dynamics" collects four chapters that focus on the particularly challenging simulation problems related to flexible kites. Part IV "Implemented Concepts" contains eleven contributions each of which presents developed prototypes together with real-world experimental results obtained with the different concepts. Finally, in Part V on "Component Design", five papers are collected that address in detail the technical challenges for some of the components of airborne wind energy.
Article
Full-text available
In this paper we present optimization studies for kites that produce wind energy by periodically pulling a generator on the ground while flying fast in a crosswind di-rection. We derive a model for a single kite and formulate an optimal control problem with periodic boundary conditions and free cycle duration. The objective function is the average power at the generator. We solve this nonlinear and unstable optimal control problem numerically with a direct multiple shooting method. Here, the main result is that we can attain about 5MW with a 500m 2 -kite at 10 m s wind speed. Finally, we consider a system of two kites and show that such systems can further increase the efficiency.
Conference Paper
Full-text available
In this paper we present a challenging application of periodic optimal control. A kite that is towing a ship into a given target direction should fly optimal loops. We show how to find the maximum average tractive force by controlling the roll angle of the towing kite taking into account that the wind is increasing with the altitude over the sea. The optimal control problem for this highly nonlinear and unstable system has periodicity constraints, free initial values, and a free cycle duration. For its solution, we use MUSCOD-II, an optimal control package based on the direct multiple shooting method. Finally, we discuss the influence of an important design parameter, the effective glide ratio of the kite
Conference Paper
Full-text available
In this paper we formulate and solve optimal control problems for power generating kite systems. Here, the kite generates energy by periodically pulling a generator on the ground while flying fast in a crosswind direction. We are searching for an intrinsically open-loop stable trajectory such that the kite generates as much power as possible without needing feedback, while neither the kite nor the cable should touch the ground in the presence of wind turbulence. As the wind turbulences are unknown, robustness aspects need to be taken into account. The formulation of the associated optimal control problem makes use of periodic Lyapunov differential equations in order to guarantee local open-loop stability while robustness aspects are regarded in a linear approximation. The main result of this paper is that open-loop stable kite orbits exist and that open-loop stability only costs approximately 23% compared to the power-optimal unstable orbit.
Chapter
Airborne Wind Energy tethers are a critical component in many AWE systems. There are many diverse systems that are currently under development, this chapter focusses on tethers for the so called pumping Yo-Yo system. In these systems the tether is the critical component for transfer of kinetic energy from kite to ground station. Given the desired hardware and performance expectations, this chapter provides a first estimation of the tether dimensions for a tether made of HMPE fibers. Especially creep and bending fatigue considerations are described for long term performance checks. Other conditions that may in uence the longevity of the tether are briefly mentioned, but since firm testing data is lacking, it is recommended to perform these checks on case by case basis.
Article
Energy is the basis of any technical and industrial development. As long as only human and animal labour is available, a main prerequisite for social progress and general welfare is lacking. The energy consumption per capita in a country is thus an indicator of its state of technical development, exhibiting differences of more than two orders of magnitude between highly industrialised and not yet developed countries.
Chapter
This contribution describes a technology for harnessing energy from high altitude wind through a pumping cycle, in a two-dimensional vertical trajectory, executed by a hybrid lighter-than-air tethered rotating cylinder, which generates dynamic lift through the Magnus effect. The historical development of the concept leading to an operational cycle is described. Specifications of the current system are given and are used to extrapolate a multi-stack configuration of four cylinders yielding an average cycle power of 80 kw in a pre-commercial unit.
Article
This paper presents a multibody approach to dynamics modelling of a variable-length tether moving through air, in a system where an airborne module generates aerodynamic lift and uses the tether to cyclically drive the winch-generator unit fixed on the ground. The rope is modelled as a series of straight, massless, elastic segments with the rope mass fragments lumped to the segment joints. Individual segment length is constant, with the exception of segment being wound out from the winch, while the number of segments is variable. For the segment being wound out, a special modelling approach is derived. The forces acting on the rope are also concentrated at the joints, thus simplifying computations and facilitating rope aerodynamic drag modelling. The proposed tether dynamics model is integrated into the overall model of controlled power production system and verified by computer simulation. The model is compared with two simpler tether dynamics models also proposed in the paper.
Article
The paper presents a control variables optimization study for an airborne wind energy production system. The system comprises an airborne module in the form of a buoyant, rotating cylinder, whose rotation in a wind stream induces the Magnus effect-based aerodynamic lift. Through a tether, the airborne module first drives the generator fixed on the ground, and then the generator becomes a motor that lowers the airborne module. The optimization is aimed at maximizing the average power produced at the generator during a continuously repeatable operating cycle. The control variables are the generator-side rope force and the cylinder rotation speed. The optimization is based on a multi-phase problem formulation, where operation is divided into ascending and descending phases, with free boundary conditions and free cycle duration. The presented simulation results show that significant power increase can be achieved by using the obtained optimal operating cycle instead of the initial, empirically based operation control strategy. A brief analysis is also given to provide a physical interpretation of the optimal cycle results.
Book
Practically all modern control systems are based upon microprocessors and complex microcontrollers that yield high performance and functionality. This volume focuses on the design of computer-controlled systems, featuring computational tools that can be applied directly and are explained with simple paper-and-pencil calculations. The use of computational tools is balanced by a strong emphasis on control system principles and ideas. Extensive pedagogical aids include worked examples, MATLAB macros, and a solutions manual (see inside for details). The initial chapter presents a broad outline of computer-controlled systems, followed by a computer-oriented view based on the behavior of the system at sampling instants. An introduction to the design of control systems leads to a process-related view and coverage of methods of translating analog designs to digital control. Concluding chapters explore implementation issues and advanced design methods.
Book
Electrical drives play an important role as electromechanical energy convert- ers in transportation, material handling and most production processes. The ease of controlling electrical drives is an important aspect for meeting the in- creasing demands by the user with respect to flexibility and precision, caused by technological progress in industry as well as the need for energy conser- vation. At the same time, the control of electrical drives has provided strong incentives to control engineering in general, leading to the development of new control structures and their introduction to other areas of control. This is due to the stringent operating conditions and widely varying specifications - a drive may alternately require control of torque, acceleration, speed or position - and the fact that most electric drives have - in contrast to chem- ical or thermal processes - well defined structures and consistent dynamic characteristics. During the last years the field of controlled electrical drives has undergone rapid expansion due mainly to the advances of semiconductors in the form of power electronics as well as analogue and digital signal electronics, eventu- ally culminating in microelectronics and microprocessors. The introduction of electronically switched solid-state power converters has renewed the search for adjustable speed AC motor drives, not subject to the limitations of the mechanical commutator of DC drives which dominated the field for a century.
Vibration-based techniques for measuring the elastic properties of ropes and the added mass of submerged objects
  • J M Hamilton