Hallmarks of Alzheimer disease are evolving relentlessly in Metropolitan Mexico City infants, children and young adults. APOE4 carriers have higher suicide risk and higher odds of reaching NFT stage V at ≤ 40 years of age

ArticleinEnvironmental Research 164:475-487 · March 2018with 3,499 Reads
Cite this publication

Do you want to read the rest of this article?

Request full-text
Request Full-text Paper PDF
  • Article
    Exposures to fine particulate matter PM2.5 and ozone O3 are associated with Alzheimer's disease (AD) risk. Mexico City residents have lifetime exposures to PM2.5 and O3 above annual USEPA standards and their brains contain high redox, combustion, and friction-derived magnetite nanoparticles. AD pathological changes with subcortical pre-tangle stages in infancy and cortical tau pre-tangles, NFT Stages I-II, and amyloid phases 1-2 are identified by the 2nd decade. Given their AD continuum, a reliable identification of cognitive impairment is of utmost importance. The Montreal Cognitive Assessment (MoCA) was administered to 517 urbanites, age 21.60±5.88 years, with 13.69±1.28 formal education years, in Mexican PM2.5 polluted cities. MoCA score was 23.92±2.82, and 24.7% and 30.3% scored ≤24 and ≤22, respectively (MCI≤24, AD≤22). Cognitive deficits progressively targeted Visuospatial, Executive, Language, and Memory domains, body mass index (BMI) impacting total scores negatively (p = 0.0008), aging driving down Executive, Visuospatial, and Language index scores (p < 0.0001, 0.0037, and 0.0045), and males performing better in Executive tasks. Average age for AD MoCA scores was 22.38±7.7 years. Residency in polluted cities is associated with progression of multi-domain cognitive impairment affecting 55% of Mexican seemingly healthy youth. Normal BMI ought to be a neuroprotection goal. MoCA provides guidance for further mandatory neuropsychological testing in young populations. Identifying and lowering key neurotoxicants impacting neural risk trajectories in the developing brain and monitoring cognitive performance would greatly facilitate multidisciplinary early diagnosis and prevention of AD in high risk young populations. Cognitive deficits hinder development of those representing the force moving the country in future years.
  • Article
    Exposures to fine particulate matter PM 2.5 and ozone O 3 are associated with Alzheimer's disease (AD) risk. Mexico City residents have lifetime exposures to PM 2.5 and O 3 above annual USEPA standards and their brains contain high redox, combustion, and friction-derived magnetite nanoparticles. AD pathological changes with subcortical pre-tangle stages in infancy and cortical tau pre-tangles, NFT Stages I-II, and amyloid phases 1-2 are identified by the 2nd decade. Given their AD continuum, a reliable identification of cognitive impairment is of utmost importance. The Montreal Cognitive Assessment (MoCA) was administered to 517 urbanites, age 21.60 ± 5.88 years, with 13.69 ± 1.28 formal education years, in Mexican PM 2.5 polluted cities. MoCA score was 23.92 ± 2.82, and 24.7% and 30.3% scored ≤24 and ≤22, respectively (MCI ≤ 24, AD ≤ 22). Cognitive deficits progressively targeted Visuospatial, Executive, Language, and Memory domains, body mass index (BMI) impacting total scores negatively (p = 0.0008), aging driving down Executive, Visuospatial, and Language index scores (p < 0.0001, 0.0037, and 0.0045), and males performing better in Executive tasks. Average age for AD MoCA scores was 22.38 ± 7.7 years. Residency in polluted cities is associated with progression of multi-domain cognitive impairment affecting 55% of Mexican seemingly healthy youth. Normal BMI ought to be a neuroprotection goal. MoCA provides guidance for further mandatory neuropsychological testing in young populations. Identifying and lowering key neurotoxicants impacting neural risk trajectories in the developing brain and monitoring cognitive performance would greatly facilitate multidisciplinary early diagnosis and prevention of AD in high risk young populations. Cognitive deficits hinder development of those representing the force moving the country in future years.
  • Article
    Full-text available
    Dust emissions from unpaved roads are one of the main pollutants affecting air quality around the world. As part of initial air quality studies in Tuxtla Gutiérrez (TGZ), Chiapas, Mexico, urban aeolian emission events from unpaved roads and simple meteorological inputs were measured in February 2014 at two different sites located within the city to characterize emissions for representative road conditions and to produce Industrial Source Complex (ISC3) model inputs. Emissions of particulate matter of aerodynamic diameter less than 10 µm (PM 10) were determined for eight wind erosion events. PM 10 concentrations were measured downwind from sites using a Minivol sampler during February and March 2014. Three high PM 10 concentration scenarios, associated with unstable conditions generated by cold fronts (CF) were selected to simulate dust plume dispersion to identify impacted areas. Results show that unpaved roads represent a potential source of dust that affect air quality of urban regions; in this study generating emissions ≥ 1.92 × 10 −3 g·m −2 ·s −1 when winds ≥6 m·s −1 were present. Air pollution events that exceed the Mexico national standard for 24-h average PM 10 concentration (≥75 µg·m −3) were observed, impacting different areas in the city, representing a risk to human health. This demonstrates the influence of CF over southern Mexico, generating high PM 10 concentrations in urban regions.
  • Article
    Full-text available
    Background: Recently, the field of gene-gene or gene-environment interaction research appears to have gained growing interest, although it is seldom investigated in Alzheimer's disease (AD). Hence, the current study aims to investigate interaction effects of the key genetic and environmental risks-the apolipoprotein ε4 allele (APOE4) and family history of late-onset AD (FH)-on AD-related brain changes in cognitively normal (CN) middle-aged and older adults. Methods: [11C] Pittsburg compound-B (PiB) positron emission tomography (PET) imaging as well as [18F] fluoro-2-deoxyglucose (FDG) PET that were simultaneously taken with T1-weighted magnetic resonance imaging (MRI) were obtained from 268 CNs from the Korean Brain Aging Study for Early Diagnosis and Prediction of AD (KBASE). Composite standardized uptake value ratios were obtained from PiB-PET and FDG-PET images in the AD signature regions of interests (ROIs) and analyzed. Voxel-wise analyses were also performed to examine detailed regional changes not captured by the ROI analyses. Results: A significant synergistic interaction effect was found between the APOE4 and FH on amyloid-beta (Aβ) deposition in the AD signature ROIs as well as other regions. Synergistic interaction effects on cerebral glucose metabolism were observed in the regions not captured by the AD signature ROIs, particularly in the medial temporal regions. Conclusions: Strong synergistic effects of APOE4 and FH on Aβ deposition and cerebral glucose metabolism in CN adults indicate possible gene-to-gene or gene-to-environment interactions that are crucial for pathogenesis of AD involving Aβ. Other unspecified risk factors-genes and/or environmental-that are captured by the positive FH status might either coexpress or interact with APOE4 to alter AD-related brain changes in CN. Healthy people with both FH and APOE4 need more attention for AD prevention.
  • Article
    Full-text available
    Background Airborne pollution, especially from diesel exhaust (DE), is known to have a negative effect on the central nervous system in exposed human populations. However, the consequences of gestational exposure to DE on the fetal brain remain poorly explored, with various effects depending on the conditions of exposure, as well as little information on early developmental stages. We investigated the short-term effects of indirect DE exposure throughout gestation on the developing brain using a rabbit model. We analyzed fetal olfactory tissues at the end of gestation and tested behaviors relevant to pups’ survival at birth. Pregnant dams were exposed by nose-only inhalation to either clean air or DE with a content of particles (DEP) adjusted to 1 mg/m³ by diluting engine exhaust, for 2 h/day, 5 days/week, from gestational day 3 (GD3) to day 27 (GD27). At GD28, fetal olfactory mucosa, olfactory bulbs and whole brains were collected for anatomical and neurochemical measurements. At postnatal day 2 (PND2), pups born from another group of exposed or control female were examined for their odor-guided behavior in response to the presentation of the rabbit mammary pheromone 2-methyl-3-butyn-2-ol (2MB2). Results At GD28, nano-sized particles were observed in cilia and cytoplasm of the olfactory sensory neurons in the olfactory mucosa and in the cytoplasm of periglomerular cells in the olfactory bulbs of exposed fetuses. Moreover, cellular and axonal hypertrophies were observed throughout olfactory tissues. Concomitantly, fetal serotoninergic and dopaminergic systems were affected in the olfactory bulbs. Moreover, the neuromodulatory homeostasis was disturbed in a sex-dependent manner in olfactory tissues. At birth, the olfactory sensitivity to 2MB2 was reduced in exposed PND2 pups. Conclusion Gestational exposure to DE alters olfactory tissues and affects monoaminergic neurotransmission in fetuses’ olfactory bulbs, resulting in an alteration of olfactory-based behaviors at birth. Considering the anatomical and functional continuum between the olfactory system and other brain structures, and due to the importance of monoamine neurotransmission in the plasticity of neural circuits, such alterations could participate to disturbances in higher integrative structures, with possible long-term neurobehavioral consequences.
  • Research Proposal
    Full-text available
    Este documento propone el trabajo técnico y científico necesario para crear un nuevo paradigma en la gestión ambiental de manera que México pueda contar con las herramientas que permitan diseñar e implementar las políticas ambientales que aseguren el derecho a la salud y un ambiente sano para todos los mexicanos. Se usa como referencia las acciones y avances logrados en la gestión de la calidad del aire en la Ciudad de México. Se revisan los aciertos y errores, así como las causas que han impedido un avance sostenido.
  • Article
    Air pollution is the main urban‐related environmental hazard and one of the major contributors to the global burden of disease based on its cardio‐vascular‐respiratory impacts. In children, exposure to urban air pollution is associated, among others, with decelerated neurodevelopment early in life and increased risk of neurodevelopmental problems such as attention deficit‐hyperactivity disorder, autism spectrum disorders, academic failure and the start of Alzheimer's pathogenesis. However, the evidence of the effects of air pollution on brain development is still inadequate, mainly due to the limitations in (i) characterizing brain development (most studies were based on subjective tools such as questionnaires or neuropsychological tests) and (ii) air pollution exposure (most studies only used residential levels based on geographical modelling and also overlooking the variation in the mixture of air pollutants as well as the composition and hence toxicity of particulate pollutants in different settings), (iii) the lack of studies during the most vulnerable stages of brain development (foetal and early life (first two years postnatally)), and (iv) the lack of structural and functional imaging data underlying these effects. In mice, in utero exposure to fine particles was linked to structural brain changes and there is a need to establish the generalizability of these findings in humans. Though scarce, current evidence in children supports the importance of the pre‐natal period as a susceptible window of exposure. Two studies in schoolchildren found that pre‐natal air pollution exposure might damage brain structure while exposure during childhood was not linked to any structural alteration. Another study showed that children with higher traffic‐related air pollution at school had lower functional integration in key brain networks, but no changes in brain structure, possibly partly because of the time window of air pollution exposure (in utero versus childhood exposure). A key development is to discover the windows of greatest sensitivity of structural brain changes to air pollution exposure by incorporating the recent advances in non‐invasive imaging to characterize natal and post‐natal brain developsment and exploring whether and to what extend placental dysfunction could mediate such an association. Studying pre‐natal life is important because effects at this time are of a potentially irreversible nature and because the largest preventive opportunities occur during these periods. This article is protected by copyright. All rights reserved.
  • Article
    Population-based clinic-pathological studies have established that the most common pathological substrate of dementia in community-dwelling elderly people is mixed, especially Alzheimer's disease (AD) and cerebrovascular ischemic disease (CVID), rather than pure AD. While these could be just two frequent unrelated comorbidities in the elderly, epidemiological research has reinforced the idea that mid-life (age <65 years) vascular risk factors increase the risk of late-onset (age ≥ 65 years) dementia, and specifically AD. By contrast, healthy lifestyle choices such as leisure activities, physical exercise, and Mediterranean diet are considered protective against AD. Remarkably, several large population-based longitudinal epidemiological studies have recently indicated that the incidence and prevalence of dementia might be decreasing in Western countries. Although it remains unclear whether these positive trends are attributable to neuropathologically definite AD versus CVID, based on these epidemiological data it has been estimated that a sizable proportion of AD cases could be preventable. In this review, we discuss the current evidence about modifiable risk factors for AD derived from epidemiological, preclinical, and interventional studies, and analyze the opportunities for therapeutic and preventative interventions.
  • Article
    Alzheimer's disease (AD) is a biological construct defined by abnormal deposits of hyperphosphorylated tau and amyloid-β. The 2050 projection for AD in the USA is 14 million. There is a strong association between AD, air pollution, and traffic. Early diagnosis is imperative for intervention in the initial disease stages. Hearing and, specifically, the ability to encode complex sounds are impaired in AD. Nuclei in the auditory brainstem appear to be sensitive to neurodevelopmental and neurodegenerative disorders. Specifically, sustained exposure to air pollution is harmful to the brainstem; young residents of Metropolitan Mexico City (MMC) exposed to fine particulate matter and combustion-derived nanoparticles develop AD pathology in infancy. MMC clinically healthy children and teens have significant central delays in brainstem auditory evoked potentials (BAEPs). Herein, we review evidence that the auditory pathway is a key site of AD early pathology associated with air pollution and is significantly involved in AD patients. We strongly suggest electrophysiological screening, including BAEPs, be employed to screen individuals for early delays and to monitor progressive decline in patients diagnosed with mild cognitive impairment and AD. Understanding auditory dysfunction in early AD in pediatric and young adult populations may clarify mechanisms of disease progression. Air pollution is a risk factor for the development of AD and as the number of Americans with AD continues to grow without a cure, we need to focus on preventable, early causes of this fatal disease and intervene appropriately.
  • Article
    Full-text available
    There are mounting evidences indicated that maternal exposure to outdoor air pollutants in pregnancy affects children’s neural development, but the researches on children’s behavioral difficulties are seldom. We explored the association between maternal exposure to outdoor air pollution during different trimesters of pregnancy and the prevalence of behavioral difficulties among 657 preschool children aged 3–4 from three kindergartens in Wuhan, China. This is a cross-sectional study. Children’s behavioral difficulties were assessed by the Strengths and Difficulties Questionnaire (SDQ) (reported by parents). Maternal exposure to outdoor air pollutants during pregnancy were estimated based on the daily average measured concentration levels from ground monitoring stations. Potential confounding factors including children-related, maternal, and socio-economic status (SES) were adjusted in the study. We calculated the prevalence of each type of behavioral difficulties and used binary logistic regression method to estimate the crude odds ratio (cOR), adjusted odds ratio (aOR), and corresponding 95% confidence intervals (95% CIs) for 1 μg/m³ increase in each air pollutant during every exposure window in single- and two-pollutant models. The prevalence of participants’ total behavioral difficulties was 9.6%. In single-pollutant models, during full gestation, positive associations were observed between exposure to NO2 (aOR = 1.204, 95% CI 1.042, 1.392), particle matter (PM)10 (aOR = 1.070, 95% CI 1.018, 1.125), PM2.5 (aOR = 1.095, 95% CI 1.021, 1.176) and total difficulties, exposure to PM10 (aOR = 1.040, 95% CI 1.001, 1.081), PM2.5 (aOR = 1.053, 95% CI 1.000, 1.109) and prosocial behavior, respectively. In the first trimester, exposure to SO2 (aOR = 1.047, 95% CI 1.009, 1.086), NO2 (aOR = 1.039, 95% CI 1.013, 1.066), PM10 (aOR = 1.013, 95% CI 1.004, 1.023), and PM2.5 (aOR = 1.016, 95% CI 1.004, 1.028) were all positively associated with total difficulties. The associations between second and third trimesters’ exposure to all pollutants and outcomes were not statistically significant. However, in the two-pollutant models, second trimester exposure to PM2.5 (aOR = 1.078, 95%CI 1.023, 1.137) was positively associated with total behavioral difficulties after adjusting for PM10. Exposure to outdoor air pollutants SO2, NO2, PM10, and PM2.5 during pregnancy may be associated with behavioral difficulties, especially in the first trimester.
  • Article
    Long-term exposure to fine particulate matter (PM2.5) and ozone (O3) above USEPA standards is associated with Alzheimer's disease (AD) risk. Metropolitan Mexico City (MMC) children exhibit subcortical pretangles in infancy and cortical tau pre-tangles, NFTs, and amyloid phases 1-2 by the 2nd decade. Given their AD continuum, we measured in 507 normal cerebrospinal fluid (CSF) samples (MMC 354, controls 153, 12.82±6.73 y), a high affinity monoclonal non-phosphorylated tau antibody (non-P-Tau), as a potential biomarker of AD and axonal damage. In 81 samples, we also measured total tau (T-Tau), tau phosphorylated at threonine 181 (P-Tau), amyloid-β1-42, BDNF, and vitamin D. We documented by electron microscopy myelinated axonal size and the pathology associated with combustion-derived nanoparticles (CDNPs) in anterior cingulate cortex white matter in 6 young residents (16.25±3.34 y). Non-P-Tau showed a strong increase with age significantly faster among MMC versus controls (p = 0.0055). Aβ1 - 42 and BDNF concentrations were lower in MMC children (p = 0.002 and 0.03, respectively). Anterior cingulate cortex showed a significant decrease (p = <0.0001) in the average axonal size and CDNPs were associated with organelle pathology. Significant age increases in non-P-Tau support tau changes early in a population with axonal pathology and evolving AD hallmarks in the first two decades of life. Non-P-Tau is an early biomarker of axonal damage and potentially valuable to monitor progressive longitudinal changes along with AD multianalyte classical CSF markers. Neuroprotection of young urbanites with PM2.5 and CDNPs exposures ought to be a public health priority to halt the development of AD in the first two decades of life.
  • Article
    Full-text available
    Background: Ambient particulate matter (PM) smaller than 2.5 µm in diameter (PM 2.5 ) undergoes diurnal changes in chemical composition due to photochemical oxidation. In this study we examine the relationships between oxidative activity and inflammatory responses associated with these diurnal chemical changes. Because secondary PM contains a higher fraction of oxidized PM species, we hypothesized that PM 2.5 collected during afternoon hours would induce a greater inflammatory response than primary, morning PM 2.5 . Methods: Time-integrated aqueous slurry samples of ambient PM 2.5 were collected using a direct aerosol-into-liquid collection system during defined morning and afternoon time periods. PM 2.5 samples were collected for 5 weeks in the late summer (August-September) of 2016 at a central Los Angeles site. Morning samples, largely consisting of fresh primary traffic emissions (primary PM), were collected from 6-9am (am-PM 2.5 ), and afternoon samples were collected from 12-4pm (pm-PM 2.5 ), when PM composition is dominated by products of photochemical oxidation (secondary PM). The two diurnally phased PM 2.5 slurries (am- and pm-PM 2.5 ) were characterized for chemical composition and BV-2 microglia were assayed in vitro for oxidative and inflammatory gene responses. Results: Contrary to expectations, the am-PM 2.5 slurry had more proinflammatory activity than the pm-PM 2.5 slurry as revealed by nitric oxide (NO) induction, as well as the upregulation of proinflammatory cytokines IL-1β, IL-6, and CCL2 (MCP-1), as assessed by messenger RNA production. Conclusions: The diurnal differences observed in this study may be in part attributed to the greater content of transition metals and water-insoluble organic carbon (WIOC) of am-PM 2.5 (primary PM) vs. pm-PM 2.5 (secondary PM), as these two classes of compounds can increase PM 2.5 toxicity.
  • Article
    Exposures to fine particulate matter (PM2.5 ) and ozone (O3 ) ≥US EPA standards are associated with Alzheimer’s disease (AD) risk. The projection of 13.8 million AD cases in the US by the year 2050 obligate us to explore early environmental exposures as contributors to AD risk and pathogenesis. Metropolitan Mexico City children and young adults have lifetime exposures to PM2.5 and O3 , and AD starting in the brainstem and olfactory bulb is relentlessly progressing in the first two decades of life. Magnetite combustion and friction-derived nanoparticles reach the brain and are associated with early and progressive damage to the neurovascular unit and to brain cells. In this review: 1) we highlight the interplay environment/genetics in the AD development in young populations; 2) comment upon ApoE ɛ 4 and the rapid progression of neurofibrillary tangle stages and higher suicide risk in youth; and 3) discuss the role of combustion-derived nanoparticles and brain damage. A key aspect of this review is to show the reader that air pollution is complex and that profiles change from city to city with common denominators across countries. We explore and compare particulate matter profiles in Mexico City, Paris, and Santiago in Chile and make the point of why we should invest in decreasing PM2.5 to at least our current US EPA standard. Multidisciplinary intervention strategies are critical for prevention or amelioration of cognitive deficits and AD progression and risk of suicide in young individuals. AD pathology evolving from childhood is threating the wellbeing of future generations
  • Article
    Full-text available
    Background: Ambient particulate matter (PM) smaller than 2.5 µm in diameter (PM 2.5 ) undergoes diurnal changes in chemical composition due to photochemical oxidation. In this study we examine the relationships between oxidative activity and inflammatory responses associated with these diurnal chemical changes. Because secondary PM contains a higher fraction of oxidized PM species, we hypothesized that PM 2.5 collected during afternoon hours would induce a greater inflammatory response than primary, morning PM 2.5 . Methods: Time-integrated aqueous slurry samples of ambient PM 2.5 were collected using a direct aerosol-into-liquid collection system during defined morning and afternoon time periods. PM 2.5 samples were collected for 5 weeks in the late summer (August-September) of 2016 at a central Los Angeles site. Morning samples, largely consisting of fresh primary traffic emissions (primary PM), were collected from 6-9am (am-PM 2.5 ), and afternoon samples were collected from 12-4pm (pm-PM 2.5 ), when PM composition is dominated by products of photochemical oxidation (secondary PM). The two diurnally phased PM 2.5 slurries (am- and pm-PM 2.5 ) were characterized for chemical composition and BV-2 microglia were assayed in vitro for oxidative and inflammatory gene responses. Results: Contrary to expectations, the am-PM 2.5 slurry had more proinflammatory activity than the pm-PM 2.5 slurry as revealed by nitric oxide (NO) induction, as well as the upregulation of proinflammatory cytokines IL-1β, IL-6, and CCL2 (MCP-1), as assessed by messenger RNA production. Conclusions: The diurnal differences observed in this study may be in part attributed to the greater content of transition metals and water-insoluble organic carbon (WIOC) of am-PM 2.5 (primary PM) vs. pm-PM 2.5 (secondary PM), as these two classes of compounds can increase PM 2.5 toxicity.
  • Article
    There is growing evidence that air pollution is a risk factor for a number of neurodegenerative diseases, most notably Alzheimer's (AD) and Parkinson's (PD). It is generally assumed that the pathology of these diseases arises only later in life and commonly begins within olfactory eloquent pathways prior to the onset of the classical clinical symptoms. The present study demonstrates that chronic exposure to high levels of air pollution results in AD- and PD-related pathology within the olfactory bulbs of children and relatively young adults ages 11 months to 40 years. The olfactory bulbs (OBs) of 179 residents of highly polluted Metropolitan Mexico City (MMC) were evaluated for AD- and alpha-synuclein-related pathology. Even in toddlers, hyperphosphorylated tau (hTau) and Lewy neurites (LN) were identified in the OBs. By the second decade, 84% of the bulbs exhibited hTau (48/57), 68% LNs and vascular amyloid (39/57) and 36% (21/57) diffuse amyloid plaques. OB active endothelial phagocytosis of red blood cell fragments containing combustion-derived nanoparticles (CDNPs) and the neurovascular unit damage were associated with myelinated and unmyelinated axonal damage. OB hTau neurites were associated mostly with pretangle stages 1a and 1b in subjects ≤ 20 years of age, strongly suggesting olfactory deficits could potentially be an early guide of AD pretangle subcortical and cortical hTau. APOE4 versus APOE3 carriers were 6-13 times more likely to exhibit OB vascular amyloid, neuronal amyloid accumulation, alpha-synuclein aggregates, hTau neurofibrillary tangles, and neurites. Remarkably, APOE4 carriers were 4.57 times more likely than non-carriers to die by suicide. The present findings, along with previous data that over a third of clinically healthy MMC teens and young adults exhibit low scores on an odor identification test, support the concept that olfactory testing may aid in identifying young people at high risk for neurodegenerative diseases. Moreover, results strongly support early neuroprotective interventions in fine particulate matter (PM2.5) and CDNP's exposed individuals ≤ 20 years of age, and the critical need for air pollution control.
  • Article
    Full-text available
    Ambient particulate matter (PM) smaller than 2.5 µm in diameter (PM2.5) undergoes diurnal changes in chemical composition due to photochemical oxidation. In this study we examine the relationships between oxidative activity and inflammatory responses associated with these diurnal chemical changes. Because secondary PM contains a higher fraction of oxidized PM species, we hypothesized that PM2.5 collected during afternoon hours would induce a greater inflammatory response than primary, morning PM2.5. Time-integrated aqueous slurry samples of ambient PM2.5 were collected using a direct aerosol-into-liquid collection system during defined morning and afternoon time periods. PM2.5 samples were collected for 5 weeks in the late summer (August-September) of 2016 at a central Los Angeles site. Morning samples, largely consisting of fresh primary traffic emissions (primary PM), were collected from 6-9am (am-PM2.5), and afternoon samples were collected from 12-4pm (pm-PM2.5), when PM composition is dominated by products of photochemical oxidation (secondary PM). The two diurnally phased PM2.5 slurries (am- and pm-PM2.5) were characterized for chemical composition and BV-2 microglia were assayed in vitro for oxidative and inflammatory gene responses. Contrary to expectations, the am-PM2.5 slurry had more proinflammatory activity than the pm-PM2.5 slurry as revealed by nitric oxide (NO) induction, as well as the upregulation of proinflammatory cytokines IL-1β, IL-6, and CCL2 (MCP-1), as assessed by messenger RNA production. The diurnal differences observed in this study may be in part attributed to the greater content of transition metals and water-insoluble organic carbon (WIOC) of am-PM2.5 (primary PM) vs. pm-PM2.5 (secondary PM), as these two classes of compounds can increase PM2.5 toxicity.
  • Article
    Mexico City (MC) young residents are exposed to high levels of fine particulate matter (PM2.5), have high frontal concentrations of combustion-derived nanoparticles (CDNPs), accumulation of hyperphosphorylated aggregated α-synuclein (α-Syn) and early Parkinson's disease (PD). Swallowed CDNPs have easy access to epithelium and submucosa, damaging gastrointestinal (GI) barrier integrity and accessing the enteric nervous system (ENS). This study is focused on the ENS, vagus nerves and GI barrier in young MC v clean air controls. Electron microscopy of epithelial, endothelial and neural cells and immunoreactivity of stomach and vagus to phosphorylated ɑ-synuclein Ser129 and Hyperphosphorylated-Tau (Htau) were evaluated and CDNPs measured in ENS. CDNPs were abundant in erythrocytes, unmyelinated submucosal, perivascular and intramuscular nerve fibers, ganglionic neurons and vagus nerves and associated with organelle pathology. ɑSyn and Htau were present in 25/27 MC gastric,15/26 vagus and 18/27 gastric and 2/26 vagus samples respectively. We strongly suggest CDNPs are penetrating and damaging the GI barrier and reaching preganglionic parasympathetic fibers and the vagus nerve. This work highlights the potential role of CDNPs in the neuroenteric hyperphosphorylated ɑ-Syn and tau pathology as seen in Parkinson and Alzheimer's diseases. Highly oxidative, ubiquitous CDNPs constitute a biologically plausible path into Parkinson's and Alzheimer's pathogenesis.
  • Representative 3rd and 4th decades of life immunohistochemistry and modified Bielschowsky's silver sections. A. Thirty seven year old female, APOE 3/3 upper pons. Locus coeruleus neurons + Htau neurites (arrows)
    • Fig
    Fig. 12. Representative 3rd and 4th decades of life immunohistochemistry and modified Bielschowsky's silver sections. A. Thirty seven year old female, APOE 3/3 upper pons. Locus coeruleus neurons + Htau neurites (arrows). Scale bar 20 µm. B. Twenty eight year old female frontal cortex with Bielschowsky's neurofibrillary tangles (NFT) in pyramidal neurons (arrows). Scale bar 50 µm. C. Twenty-seven year old male, APOE 3/4, frontal cortex pyramidal neurons with + Htau (arrow). Scale bar 10 µm. D. Twenty-seven year old male, APOE 3/3
    • G G Kovacs
    Kovacs, G.G., 2017. Tauopathies. Handb. Clin. Neurol. 145, 355-368.
    • L Calderón-Garcidueñas
    L. Calderón-Garcidueñas et al. Environmental Research 164 (2018) 475-487
  • Cerebrospinal fluid biomarkers in highly exposed PM ⁠ 2.5 urbanites: the risk of
    • L Calderón-Garcidueñas
    • J Ávila-Ramírez
    • A Calderón-Garcidueñas
    Calderón-Garcidueñas, L., Ávila-Ramírez, J., Calderón-Garcidueñas, A., et al., 2016. Cerebrospinal fluid biomarkers in highly exposed PM ⁠ 2.5 urbanites: the risk of
  • Article
    The concept of the neurovascular unit (NVU), formalized at the 2001 Stroke Progress Review Group meeting of the National Institute of Neurological Disorders and Stroke, emphasizes the intimate relationship between the brain and its vessels. Since then, the NVU has attracted the interest of the neuroscience community, resulting in considerable advances in the field. Here the current state of knowledge of the NVU will be assessed, focusing on one of its most vital roles: the coupling between neural activity and blood flow. The evidence supports a conceptual shift in the mechanisms of neurovascular coupling, from a unidimensional process involving neuronal-astrocytic signaling to local blood vessels to a multidimensional one in which mediators released from multiple cells engage distinct signaling pathways and effector systems across the entire cerebrovascular network in a highly orchestrated manner. The recently appreciated NVU dysfunction in neurodegenerative diseases, although still poorly understood, supports emerging concepts that maintaining neurovascular health promotes brain health.
  • Article
    Importance A recent increase in suicide in the United States has raised public and clinical interest in determining whether a coincident national increase in suicide attempts has occurred and in characterizing trends in suicide attempts among sociodemographic and clinical groups. Objective To describe trends in recent suicide attempts in the United States. Design, Setting, and Participants Data came from the 2004-2005 wave 2 National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) and the 2012-2013 NESARC-III. These nationally representative surveys asked identical questions to 69 341 adults, 21 years and older, concerning the occurrence and timing of suicide attempts. Risk differences adjusted for age, sex, and race/ethnicity (ARDs) assessed trends from the 2004-2005 to 2012-2013 surveys in suicide attempts across sociodemographic and psychiatric disorder strata. Additive interactions tests compared the magnitude of trends in prevalence of suicide attempts across levels of sociodemographic and psychiatric disorder groups. The analyses were performed from February 8, 2017, through May 31, 2017. Main Outcomes and Measures Self-reported attempted suicide in the 3 years before the interview. Results With use of data from the 69 341 participants (42.8% men and 57.2% women; mean [SD] age, 48.1 [17.2] years), the weighted percentage of US adults making a recent suicide attempt increased from 0.62% in 2004-2005 (221 of 34 629) to 0.79% in 2012-2013 (305 of 34 712; ARD, 0.17%; 95% CI, 0.01%-0.33%; P = .04). In both surveys, most adults with recent suicide attempts were female (2004-2005, 60.17%; 2012-2013, 60.94%) and younger than 50 years (2004-2005, 84.75%; 2012-2013, 80.38%). The ARD for suicide attempts was significantly larger among adults aged 21 to 34 years (0.48%; 95% CI, 0.09% to 0.87%) than among adults 65 years and older (0.06%; 95% CI, −0.02% to 0.14%; interaction P = .04). The ARD for suicide attempts was also significantly larger among adults with no more than a high school education (0.49%; 95% CI, 0.18% to 0.80%) than among college graduates (0.03%; 95% CI, −0.17% to 0.23%; interaction P = .003); the ARD was also significantly larger among adults with antisocial personality disorder (2.16% [95% CI, 0.61% to 3.71%] vs 0.07% [95% CI, −0.09% to 0.23%]; interaction P = .01), a history of violent behavior (1.04% [95% CI, 0.35% to 1.73%] vs 0.00% [95% CI, −0.12% to 0.12%]; interaction P = .003), or a history of anxiety (1.43% [95% CI, 0.47% to 2.39%] vs 0.18% [95% CI, 0.04% to 0.32%]; interaction P = .01) or depressive (0.99% [95% CI, −0.09% to 2.07%] vs −0.08% [95% CI, −0.20% to 0.04%]; interaction P = .05) disorders than among adults without these conditions. Conclusions and Relevance A recent overall increase in suicide attempts among adults in the United States has disproportionately affected younger adults with less formal education and those with antisocial personality disorder, anxiety disorders, depressive disorders, and a history of violence.
  • Article
    Mexico City (MC) young residents are exposed to high levels of fine particulate matter (PM2.5), have high frontal concentrations of combustion-derived nanoparticles (CDNPs), accumulation of hyperphosphorylated aggregated α-synuclein (α-Syn) and early Parkinson's disease (PD). Swallowed CDNPs have easy access to epithelium and submucosa, damaging gastrointestinal (GI) barrier integrity and accessing the enteric nervous system (ENS). This study is focused on the ENS, vagus nerves and GI barrier in young MC v clean air controls. Electron microscopy of epithelial, endothelial and neural cells and immunoreactivity of stomach and vagus to phosphorylated ɑ-synuclein Ser129 and Hyperphosphorylated-Tau (Htau) were evaluated and CDNPs measured in ENS. CDNPs were abundant in erythrocytes, unmyelinated submucosal, perivascular and intramuscular nerve fibers, ganglionic neurons and vagus nerves and associated with organelle pathology. ɑSyn and Htau were present in 25/27 MC gastric,15/26 vagus and 18/27 gastric and 2/26 vagus samples respectively. We strongly suggest CDNPs are penetrating and damaging the GI barrier and reaching preganglionic parasympathetic fibers and the vagus nerve. This work highlights the potential role of CDNPs in the neuroenteric hyperphosphorylated ɑ-Syn and tau pathology as seen in Parkinson and Alzheimer's diseases. Highly oxidative, ubiquitous CDNPs constitute a biologically plausible path into Parkinson's and Alzheimer's pathogenesis.
  • Article
    Full-text available
    Background In the recent decade, iron oxide nanoparticles (IONPs) have been proposed for several applications in the central nervous system (CNS), including targeting amyloid beta (Aβ) in the arteries, inhibiting the microglial cells, delivering drugs, and increasing contrast in magnetic resonance imaging. Conversely, a notable number of studies have reported the role of iron in neurodegenerative diseases. Therefore, this study has reviewed the recent studies to determine whether IONPs iron can threaten the cellular viability same as iron. Results Iron contributes in Fenton’s reaction and produces reactive oxygen species (ROS). ROS cause to damage the macromolecules and organelles of the cell via oxidative stress. Iron accumulation and oxidative stress are able to aggregate some proteins, including Aβ and α-synuclein, which play a critical role in Alzheimer’s and Parkinson’s diseases, respectively. Iron accumulation, oxidative stress, and protein aggregation make a positive feedback loop, which can be toxic for the cell. The release of iron ions from IONPs may result in iron accumulation in the targeted tissue, and thus, activate the positive feedback loop. However, the levels of IONPs induced toxicity depend on the size, concentration, surface charge, and the type of coating and functional groups of IONPs. Conclusion IONPs depending on their properties can lead to iron accumulation, oxidative stress and protein aggregation in the neural cells. Therefore, in order to apply IONPs in the CNS, the consideration of IONPs properties is crucial.
  • Article
    Millions of children and young adults are exposed to fine particulate matter (PM2.5) and ozone, associated with Alzheimer's disease (AD) risk. Mexico City (MC) children exhibit systemic and brain inflammation, low cerebrospinal fluid (CSF) Aβ1-42, breakdown of nasal, olfactory, alveolar-capillary, duodenal, and blood-brain barriers, volumetric and metabolic brain changes, attention and short-term memory deficits, and hallmarks of AD and Parkinson's disease. Airborne iron-rich strongly magnetic combustion-derived nanoparticles (CDNPs) are present in young urbanites' brains. Using transmission electron microscopy, we documented CDNPs in neurons, glia, choroid plexus, and neurovascular units of young MC residents versus matched clean air controls. CDNPs are associated with pathology in mitochondria, endoplasmic reticulum (ER), mitochondria-ER contacts (MERCs), axons,and dendrites. There is a significant difference in size and numbers between spherical CDNPs (>85%) and the angular, euhedral endogenous NPs (<15%). Spherical CDNPs (dogs 21.2±7.1 nm in diameter versus humans 29.1±11.2 nm, p = 0.002) are present in neurons, glia, choroid plexus, endothelium, nasal and olfactory epithelium, and in CSF at significantly higher in numbers in MC residents (p < 0.0001). Degenerated MERCs, abnormal mitochondria, and dilated ER are widespread, and CDNPs in close contact with neurofilaments, glial fibers, and chromatin are a potential source for altered microtubule dynamics, mitochondrial dysfunction, accumulation and aggregation of unfolded proteins, abnormal endosomal systems, altered insulin signaling, calcium homeostasis, apoptotic signaling, autophagy, and epigenetic changes. Highly oxidative, ubiquitous CDNPs constitute a novel path into AD pathogenesis. Exposed children and young adults need early neuroprotection and multidisciplinary prevention efforts to modify the course of AD at early stages.
  • Article
    Background: Emerging evidence suggests that living near major roads might adversely affect cognition. However, little is known about its relationship with the incidence of dementia, Parkinson's disease, and multiple sclerosis. We aimed to investigate the association between residential proximity to major roadways and the incidence of these three neurological diseases in Ontario, Canada. Methods: In this population-based cohort study, we assembled two population-based cohorts including all adults aged 20-50 years (about 4·4 million; multiple sclerosis cohort) and all adults aged 55-85 years (about 2·2 million; dementia or Parkinson's disease cohort) who resided in Ontario, Canada on April 1, 2001. Eligible patients were free of these neurological diseases, Ontario residents for 5 years or longer, and Canadian-born. We ascertained the individual's proximity to major roadways based on their residential postal-code address in 1996, 5 years before cohort inception. Incident diagnoses of dementia, Parkinson's disease, and multiple sclerosis were ascertained from provincial health administrative databases with validated algorithms. We assessed the associations between traffic proximity and incident dementia, Parkinson's disease, and multiple sclerosis using Cox proportional hazards models, adjusting for individual and contextual factors such as diabetes, brain injury, and neighbourhood income. We did various sensitivity analyses, such as adjusting for access to neurologists and exposure to selected air pollutants, and restricting to never movers and urban dwellers. Findings: Between 2001, and 2012, we identified 243 611 incident cases of dementia, 31 577 cases of Parkinson's disease, and 9247 cases of multiple sclerosis. The adjusted hazard ratio (HR) of incident dementia was 1·07 for people living less than 50 m from a major traffic road (95% CI 1·06-1·08), 1·04 (1·02-1·05) for 50-100 m, 1·02 (1·01-1·03) for 101-200 m, and 1·00 (0·99-1·01) for 201-300 m versus further than 300 m (p for trend=0·0349). The associations were robust to sensitivity analyses and seemed stronger among urban residents, especially those who lived in major cities (HR 1·12, 95% CI 1·10-1·14 for people living <50 m from a major traffic road), and who never moved (1·12, 1·10-1·14 for people living <50 m from a major traffic road). No association was found with Parkinson's disease or multiple sclerosis. Interpretation: In this large population-based cohort, living close to heavy traffic was associated with a higher incidence of dementia, but not with Parkinson's disease or multiple sclerosis. Funding: Health Canada (MOA-4500314182).
  • Article
    Exposure to fine particulate matter (PM2.5) and ozone (O3) above US EPA standards is associated with Alzheimer's disease (AD) risk, while Mn toxicity induces parkinsonism. Mexico City Metropolitan Area (MCMA) children have pre- and postnatal sustained and high exposures to PM2.5, O3, polycyclic aromatic hydrocarbons, and metals. Young MCMA residents exhibit frontal tau hyperphosphorylation and amyloid-β (Aβ)1 - 42 diffuse plaques, and aggregated and hyperphosphorylated α-synuclein in olfactory nerves and key brainstem nuclei. We measured total prion protein (TPrP), total tau (T-tau), tau phosphorylated at threonine 181 (P-Tau), Aβ1-42, α-synuclein (t-α-syn and d-α-synuclein), BDNF, insulin, leptin, and/or inflammatory mediators, in 129 normal CSF samples from MCMA and clean air controls. Aβ1-42 and BDNF concentrations were significantly lower in MCMA children versus controls (p = 0.005 and 0.02, respectively). TPrP increased with cumulative PM2.5 up to 5 μg/m3 and then decreased, regardless of cumulative value or age (R2 = 0.56). TPrP strongly correlated with T-Tau and P-Tau, while d-α-synuclein showed a significant correlation with TNFα, IL10, and IL6 in MCMA children. Total synuclein showed an increment in childhood years related to cumulated PM2.5, followed by a decrease after age 12 years (R2 = 0.47), while d-α-synuclein exhibited a tendency to increase with cumulated PM2.5 (R2 = 0.30). CSF Aβ1-42, BDNF, α-synuclein, and TPrP changes are evolving in young MCMA urbanites historically showing underperformance in cognitive processes, odor identification deficits, downregulation of frontal cellular PrP, and neuropathological AD and PD hallmarks. Neuroprotection of young MCMA residents ought to be a public health priority.
  • Article
    Full-text available
    Biologically formed nanoparticles of the strongly magnetic mineral, magnetite, were first detected in the human brain over 20 y ago [Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Proc Natl Acad Sci USA 89(16):7683–7687]. Magnetite can have potentially large impacts on the brain due to its unique combination of redox activity, surface charge, and strongly magnetic behavior. We used magnetic analyses and electron microscopy to identify the abundant presence in the brain of magnetite nanoparticles that are consistent with high-temperature formation, suggesting, therefore, an external, not internal, source. Comprising a separate nanoparticle population from the euhedral particles ascribed to endogenous sources, these brain magnetites are often found with other transition metal nano- particles, and they display rounded crystal morphologies and fused surface textures, reflecting crystallization upon cooling from an ini- tially heated, iron-bearing source material. Such high-temperature magnetite nanospheres are ubiquitous and abundant in airborne particulate matter pollution. They arise as combustion-derived, iron-rich particles, often associated with other transition metal parti- cles, which condense and/or oxidize upon airborne release. Those magnetite pollutant particles which are <∼200 nm in diameter can enter the brain directly via the olfactory bulb. Their presence proves that externally sourced iron-bearing nanoparticles, rather than their soluble compounds, can be transported directly into the brain, where they may pose hazard to human health.
  • Article
    Full-text available
    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and complementary instrumentation. Mass concentrations, diurnal cycles, and size distributions of inorganic and organic species are similar to results from the CENICA supersite in April 2003 with organic aerosol (OA) comprising about half of the fine PM mass. Positive Matrix Factorization (PMF) analysis of the high resolution OA spectra identified three major components: chemically-reduced urban primary emissions (hydrocarbon-like OA, HOA), oxygenated OA (OOA, mostly secondary OA or SOA), and biomass burning OA (BBOA) that correlates with levoglucosan and acetonitrile. BBOA includes several very large plumes from regional fires and likely also some refuse burning. A fourth OA component is a small local nitrogen-containing reduced OA component (LOA) which accounts for 9% of the OA mass but one third of the organic nitrogen, likely as amines. OOA accounts for almost half of the OA on average, consistent with previous observations. OA apportionment results from PMF-AMS are compared to the PM2.5 chemical mass balance of organic molecular markers (CMB-OMM, from GC/MS analysis of filters). Results from both methods are overall consistent. Both assign the major components of OA to primary urban, biomass burning/woodsmoke, and secondary sources at similar magnitudes. The 2006 Mexico City emissions inventory underestimates the urban primary PM2.5 emissions by a factor of ~4, and it is ~16 times lower than afternoon concentrations when secondary species are included. Additionally, the forest fire contribution is at least an order-of-magnitude larger than in the inventory.
  • Article
    Children's air pollution exposures are associated with systemic and brain inflammation and the early hallmarks of Alzheimer's disease (AD). The Apolipoprotein E (APOE) 4 allele is the most prevalent genetic risk for AD, with higher risk for women. We assessed whether gender, BMI, APOE and metabolic variables in healthy children with high exposures to ozone and fine particulate matter (PM2.5) influence cognition. The Wechsler Intelligence Scale for Children (WISC-R) was administered to 105 Mexico City children (12.32±5.4 years, 69 APOE 3/3 and 36 APOE 3/4). APOE 4v 3 children showed decrements on attention and short-term memory subscales, and below-average scores in Verbal, Performance and Full Scale IQ. APOE 4 females had higher BMI and females with normal BMI between 75-94% percentiles had the highest deficits in Total IQ, Performance IQ, Digit Span, Picture Arrangement, Block Design and Object Assembly. Fasting glucose was significantly higher in APOE 4 children p=0.006, while Gender was the main variable accounting for the difference in insulin, HOMA-IR and leptin (p<.05). Gender, BMI and APOE influence children's cognitive responses to air pollution and glucose is likely a key player. APOE 4 heterozygous females with >75% to <94% BMI percentiles are at the highest risk of severe cognitive deficits (1.5-2SD from average IQ). Young female results highlight the urgent need for gender-targeted health programmes to improve cognitive responses. Multidisciplinary intervention strategies could provide paths for prevention or amelioration of female air pollution targeted cognitive deficits and possible long-term AD progression.
  • Article
    The human brainstem is involved in the regulation of the sleep/waking cycle and normal sleep architectonics and is crucial for the performance of a variety of somatomotor, vital autonomic, oculomotor, vestibular, auditory, ingestive and somatosensory functions. It harbors the origins of the ascending dopaminergic, cholinergic, noradrenergic, serotonergic systems, as well the home base of the descending serotonergic system. In contrast to the cerebral cortex the affection of the brainstem in Alzheimer’s disease (AD) by the neurofibrillary or tau cytoskeletal pathology was recognized only approximately fourty years ago in initial brainstem studies. Detailed pathoanatomical investigations of silver stained or tau immunostained brainstem tissue sections revealed nerve cell loss and prominent ADrelated cytoskeletal changes in the raphe nuclei, locus coeruleus, and in the compact parts of the substantia nigra and pedunculopontine nucleus. An additional conspicuous AD-related cytoskeletal pathology was also detected in the auditory brainstem system of AD patients (i.e. inferior colliculus, superior olive, dorsal cochlear nucleus), in the oculomotor brainstem network (i.e. rostral interstitial nucleus of the medial longitudinal fascicle, Edinger-Westphal nucleus, reticulotegmental nucleus of pons), autonomic system (i.e. central and periaqueductal grays, parabrachial nuclei, gigantocellular reticular nucleus, dorsal motor vagal and solitary nuclei, intermediate reticular zone). The alterations in these brainstem nuclei offered for the first time adequate explanations for a variety of less understood disease symptoms of AD patients: Parkinsonian extrapyramidal motor signs, depression, hallucinations, dysfunctions of the sleep/wake cycle, changes in sleeping patterns, attentional deficits, exaggerated pupil dilatation, autonomic dysfunctions, impairments of horizontal and vertical saccades, dysfunctional smooth pursuits. The very early occurrence of the AD-related cytoskeletal pathology in some of these brainstem nuclei points to a major and strategic role of the brainstem in the induction and brain spread of the AD-related cytoskeletal pathology.
  • Article
    Full-text available
    Severe air pollution exposures produce systemic, respiratory, myocardial, and brain inflammation and Alzheimer's disease (AD) hallmarks in clinically healthy children. We tested whether hippocampal metabolite ratios are associated with contrasting levels of air pollution, APOE, and body mass index (BMI) in paired healthy children and one parent sharing the same APOE alleles. We used 1H-MRS to interrogate bilateral hippocampal single-voxel in 57 children (12.45 ± 3.4 years) and their 48 parents (37.5 ± 6.78 years) from a low pollution city versus Mexico City (MC). NAA/Cr, Cho/Cr, and mI/Cr metabolite ratios were analyzed. The right hippocampus NAA/Cr ratio was significantly different between cohorts (p = 0.007). The NAA/Cr ratio in right hippocampus in controls versus APOE ɛ4 MC children and in left hippocampus in MC APOE ɛ4 parents versus their children was significantly different after adjusting for age, gender, and BMI (p = 0.027 and 0.01, respectively). The NAA/Cr ratio is considered reflective of neuronal density/functional integrity/loss of synapses/higher pTau burden, thus a significant decrease in hippocampal NAA/Cr ratios may constitute a spectral marker of early neurodegeneration in young urbanites. Decreases in NAA/Cr correlate well with cognitive function, behavioral symptoms, and dementia severity; thus, since the progression of AD starts decades before clinical diagnosis, our findings support the hypothesis that under chronic exposures to fine particulate matter and ozone above the standards, neurodegenerative processes start in childhood and APOE ɛ4 carriers are at higher risk. Gene and environmental factors are critical in the development of AD and the identification and neuroprotection of young urbanites at high risk must become a public health priority.
  • Article
    Abnormal tau lesions (non-argyrophilic pretangle material, argyrophilic neuropil threads, neurofibrillary tangles) in select types of neurons are crucial for the pathogenesis of sporadic Alzheimer's disease. Ongoing formation of these tau lesions persists into end-stage Alzheimer's disease and is not subject to remission. The early pretangle disease phase is a focus of increasing interest because only abnormal forms of the microtubule-associated protein tau are involved at that point and, in contrast to late-stage disease when amyloid-β deposition is present, this phase is temporally closer to the prevailing conditions that induce the pathological process underlying Alzheimer's disease. Extracellular and aggregated amyloid-β may only be produced under pathological conditions by nerve cells that contain abnormal tau. One potential trigger for tau protein hyperphosphorylation and conformational change in Alzheimer's disease may be the presence of a non-endogenous pathogen. Subsequently, a predictable regional distribution pattern of the tau lesions develops in phylogenetically late-appearing and ontogenetically late-maturing neurons that are connected via their axons. It is hoped that hypotheses drawn from these considerations, as well as from recent tau dissemination models, from studies of variant tau conformers, and from tau imaging will encourage the development of new preventative and disease-modifying strategies. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
  • Article
    Full-text available
    Children's urban air pollution exposures result in systemic and brain inflammation and the early hallmarks of Alzheimer's disease (AD). The apolipoprotein E (APOE) ε4 allele is the most prevalent genetic risk for AD. We assessed whether APOE in healthy children modulates cognition, olfaction, and metabolic brain indices. The Wechsler Intelligence Scale for Children (WISC-R) and the University of Pennsylvania Smell Identification Test were administered to 50 Mexico City Metropolitan Area children (13.4 ± 4.8 years, 28 APOE ε3 and 22 APOE ε4). N-acetylaspartate (NAA)/creatine (Cr), choline (Cho)/Cr, myo-inositol (mI)/Cr, and NAA/mI were calculated using proton magnetic resonance spectroscopy in the white matter of the frontal and parietal lobes, hippocampus, and pons. APOE ε4 versus ε3 children had a reduced NAA/Cr ratio in the right frontal white matter and decrements on attention, short-term memory, and below-average scores in Verbal and Full Scale IQ (>10 points). APOE modulated the group effects between WISC-R and left frontal and parietal white matter, and hippocampus metabolites. Soap was the predominantly failed odor AD-related item in urban children and in APOE ε4 versus ε3 carriers strongly correlated with left hippocampus mI/Cr ratio. APOE modulates responses to air pollution on the developing brain. APOE ε4 carriers could have a higher risk of developing early AD if they reside in a polluted environment. APOE, cognition, and olfaction testing and targeted magnetic resonance spectroscopy may contribute to the assessment of urban children and their results could provide new paths toward the unprecedented opportunity for early neuroprotection and AD prevention.
  • Urban Air Pollution and Forests: Resources at Risk in the Mexico City Air Basin Ecological Studies
    • H R Bravo-Alvarez
    • R J Torres-Jardón
    Bravo-Alvarez, H.R., Torres-Jardón, R.J., 2002. Air pollution levels and trends in the Mexico City metropolitan area. In: Fenn, M., Bauer, L., Hernández, T. (Eds.), Urban Air Pollution and Forests: Resources at Risk in the Mexico City Air Basin Ecological Studies. Springer-Verlag, New York, pp. 121-159.
  • Article
    Full-text available
    Several studies with animal research associate air pollution in Alzheimer's disease (AD) neuropathology, but the actual impact of air pollution on the risk of AD is unknown. Here, this study investigates the association between long-term exposure to ozone (O3) and particulate matter (PM) with an aerodynamic diameter equal to or less than 2.5 μm (PM2.5), and newly diagnosed AD in Taiwan. We conducted a cohort study of 95,690 individuals' age ≥ 65 during 2001-2010. We obtained PM10 and O3 data from Taiwan Environmental Protection Agency during 2000-2010. Since PM2.5 data is only accessible entirely after 2006, we used the mean ratio between PM2.5 and PM10 during 2006-2010 (0.57) to estimate the PM2.5 concentrations from 2000 to 2005. A Cox proportional hazards model was used to evaluate the associations between O3 and PM2.5 at baseline and changes of O3 and PM2.5 during the follow-up period and AD. The adjusted HR for AD was weakly associated with a raised concentration in O3 at baseline per increase of 9.63 ppb (adjusted HR 1.06, 95% confidence interval (CI) 1.00-1.12). Further, we estimated a 211% risk of increase of AD per increase of 10.91 ppb in O3 over the follow-up period (95% CI 2.92-3.33). We found a 138% risk of increase of AD per increase of 4.34 μg/m3 in PM2.5 over the follow-up period (95% CI 2.21-2.56). These findings suggest long-term exposure to O3 and PM2.5 above the current US EPA standards are associated with increased the risk of AD.
  • Article
    Alpha-synuclein (AS) is a small (140 amino acids), abundant presynaptic protein, which lacks a unique secondary structure in aqueous solution. Amyloid aggregates of AS in dopaminergic neurons of the midbrain are the hallmark of Parkinson's disease (PD). The process of aggregation involves a series of complex structural transitions from innocuous monomeric AS to oligomeric presumably neurotoxic forms and finally to fibril formation. In spite of its potential importance for the understanding PD pathobiology and devising rational, targeted therapeutic strategies, the details of the aggregation process remain largely unknown. Methodologies and reagents capable of controlling the aggregation kinetics are essential tools for the investigation of the molecular mechanisms of amyloid diseases. In this work we investigated the influence of citrate capped gold nanoparticles on the aggregation kinetics of AS using a fluorescent probe (MFC) sensitive to the polarity of the molecular microenvironment via an excited state intramolecular proton transfer (ESIPT). The particular effects on the half time, nucleation time and growth rate were ascertained. Gold nanoparticles produced a strong acceleration of protein aggregation, with an influence on both the nucleation and growth phases of the overall mechanism. The effects were dependent on the size and concentration of the nanoparticles, being strongest for nanoparticles 10 nm in diameter, which produced a 3-fold increase in the overall aggregation rate at concentrations as low as 20 nM.
  • Article
    Full-text available
    Pollutant emissions and their contribution to local and regional air quality at the industrial area of Tula were studied during a fourweek period as part of the MILAGRO initiative. A recurrent shallow stable layer was observed in the morning favoring air pollutants accumulation in the lower 100 m atmospheric layer. In the aernoon the mixing layer height reached 3000 m, along with a featuring low level jet which was responsible of transporting air pollutants at regional scales. Average PM10 at Jasso (JAS) and Tepeji (TEP) was 75.1 and 36.8 𝜇𝜇g/m3, respectively while average PM2.5 was 31.0 and 25.7 𝜇𝜇g/m3. JAS was highly impacted by local limestone dust, while TEP was a receptor of major sources of combustion emissions with 70% of the PM10 constituted by PM2.5. Average hourly aerosol light absorption was 22 Mm−1, while aerosol scattering (76 Mm−1) was higher compared to a rural site but much lower than at Mexico City. 𝛿𝛿13C values in the epiphyte Tillandsia recurvata show that the emission plume directly affects the SW sector of Mezquital Valley and is then constrained by a mountain range preventing its dispersion. Air pollutants may exacerbate acute and chronic adverse health effects in this region.
  • Article
    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8±8.5 years were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC/25 controls 21.2±2.7 years. MC subjects had significantly lower UPSIT scores: 34.24±0.42 versus controls 35.76±0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE ε 4 carriers failed 2.4±0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36±0.16 items, p=0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid βA42 (29/35) and/or α-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration.
  • Article
    Full-text available
    Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes, cognitive abilities (Wechsler Intelligence Scale for Children-Revised, WISC-R), and serum inflammatory mediators were collected in 20 Mexico City (MC) children (10 with white matter hyperintensities, WMH(+), and 10 without, WMH(-)) and 10 matched controls (CTL) from a low polluted city. There were significant differences in white matter volumes between CTL and MC children - both WMH(+) and WMH(-) - in right parietal and bilateral temporal areas. Both WMH(-) and WMH(+) MC children showed progressive deficits, compared to CTL children, on the WISC-R Vocabulary and Digit Span subtests. The cognitive deficits in highly exposed children match the localization of the volumetric differences detected over the 1 year follow-up, since the deficits observed are consistent with impairment of parietal and temporal lobe functions. Regardless of the presence of prefrontal WMH, Mexico City children performed more poorly across a variety of cognitive tests, compared to CTL children, thus WMH(+) is likely only partially identifying underlying white matter pathology. Together these findings reveal that exposure to air pollution may perturb the trajectory of cerebral development and result in cognitive deficits during childhood.
  • Article
    Full-text available
    Two thousand three hundred and thirty two nonselected brains from 1- to 100-year-old individuals were examined using immunocytochemistry (AT8) and Gallyas silver staining for abnormal tau; immunocytochemistry (4G8) and Campbell-Switzer staining were used for the detection ofβ-amyloid. A total of 342 cases was negative in the Gallyas stain but when restaged for AT8 only 10 were immunonegative. Fifty-eight cases had subcortical tau predominantly in the locus coeruleus, but there was no abnormal cortical tau (subcortical Stages a-c). Cortical involvement (abnormal tau in neurites) was identified first in the transentorhinal region (Stage 1a, 38 cases). Transentorhinal pyramidal cells displayed pretangle material (Stage 1b, 236 cases). Pretangles gradually became argyrophilic neurofibrillary tangles (NFTs) that progressed in parallel with NFT Stages I to VI. Pretangles restricted to subcortical sites were seen chiefly at younger ages. Of the total cases, 1,031 (44.2%) had β-amyloid plaques. The first plaques occurred in the neocortex after the onset of tauopathy in the brainstem. Plaques generally developed in the 40s in 4% of all cases, culminating in their tenth decade (75%). β-amyloid plaques and NFTs were significantly correlated (p < 0.0001). These data suggest that tauopathy associated with sporadic Alzheimer disease may begin earlier than previously thought and possibly in the lower brainstem rather than in the transentorhinal region.
  • Article
    Full-text available
    Air pollution exposures have been linked to neuroinflammation and neuropathology. Autopsy samples of the frontal cortex from control (n = 8) and pollution-exposed (n = 35) children and young adults were analyzed by RT-PCR (n = 43) and microarray analysis (n = 12) for gene expression changes in oxidative stress, DNA damage signaling, NFκB signaling, inflammation, and neurodegeneration pathways. The effect of apolipoprotein E (APOE) genotype on the presence of protein aggregates associated with Alzheimer's disease (AD) pathology was also explored. Exposed urbanites displayed differential (>2-fold) regulation of 134 genes. Forty percent exhibited tau hyperphosphorylation with pre-tangle material and 51% had amyloid-β (Aβ) diffuse plaques compared with 0% in controls. APOE4 carriers had greater hyperphosphorylated tau and diffuse Aβ plaques versus E3 carriers (Q = 7.82, p = 0.005). Upregulated gene network clusters included IL1, NFκB, TNF, IFN, and TLRs. A 15-fold frontal down-regulation of the prion-related protein (PrP(C)) was seen in highly exposed subjects. The down-regulation of the PrP(C) is critical given its important roles for neuroprotection, neurodegeneration, and mood disorder states. Elevation of indices of neuroinflammation and oxidative stress, down-regulation of the PrP(C) and AD-associated pathology are present in young megacity residents. The inducible regulation of gene expression suggests they are evolving different mechanisms in an attempt to cope with the constant state of inflammation and oxidative stress related to their environmental exposures. Together, these data support a role for air pollution in CNS damage and its impact upon the developing brain and the potential etiology of AD and mood disorders.
  • Article
    The pathophysiological process of Alzheimer's disease (AD) is thought to begin many years before the diagnosis of AD dementia. This long "preclinical" phase of AD would provide a critical opportunity for therapeutic intervention; however, we need to further elucidate the link between the pathological cascade of AD and the emergence of clinical symptoms. The National Institute on Aging and the Alzheimer's Association convened an international workgroup to review the biomarker, epidemiological, and neuropsychological evidence, and to develop recommendations to determine the factors which best predict the risk of progression from "normal" cognition to mild cognitive impairment and AD dementia. We propose a conceptual framework and operational research criteria, based on the prevailing scientific evidence to date, to test and refine these models with longitudinal clinical research studies. These recommendations are solely intended for research purposes and do not have any clinical implications at this time. It is hoped that these recommendations will provide a common rubric to advance the study of preclinical AD, and ultimately, aid the field in moving toward earlier intervention at a stage of AD when some disease-modifying therapies may be most efficacious.
  • Article
    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3±8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p<0.0001) and wave V (t(50)=19.730; p<0.0001) but no delay in wave I (p=0.548). They also had significantly longer latencies than controls for interwave intervals I-III, III-V, and I-V (all t(50)>7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid(1-42). Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children's exposure to urban air pollution increases their risk for auditory and vestibular impairment.
  • Article
    Full-text available
    Brains of 42 individuals between the ages of 4 and 29 were examined with antibodies (AT8, 4G8) and silver stains for the presence of intraneuronal and extracellular protein aggregates associated with Alzheimer's disease. Thirty-eight of 42 (38/42) cases displayed abnormally phosphorylated tau protein (pretangle material) in nerve cells or in portions of their cellular processes, and 41/42 individuals showed no extracellular amyloid-β protein deposition or neuritic plaques-an individual with Down syndrome was the only exception. In 16/42 cases abnormal tau was found in the transentorhinal region, and in 3/42 cases this site was Gallyas-positive for isolated NFTs (NFT stage I). Of 26 cases that lacked abnormal tau in the transentorhinal region, 4 did not show pretangle material at subcortical sites. The remaining 22 of these same 26 cases, however, had subcortical lesions confined to non-thalamic nuclei with diffuse projections to the cerebral cortex, and, remarkably, in 19/22 individuals the pretangle material was confined to the noradrenergic coeruleus/subcoeruleus complex. Assuming the pretangle alterations are not transient and do not regress, these findings may indicate that the Alzheimer's disease-related pathological process leading to neurofibrillary tangle formation does not begin in the cerebral cortex but, rather, in select subcortical nuclei, and it may start quite early, i.e., before puberty or in early young adulthood.
  • Article
    Full-text available
    Tau, a neuronal protein involved in neurodegenerative disorders such as Alzheimer disease, which is primarily described as a microtubule-associated protein, has also been observed in the nuclei of neuronal and non-neuronal cells. However, the function of the nuclear form of Tau in neurons has not yet been elucidated. In this work, we demonstrate that acute oxidative stress and mild heat stress (HS) induce the accumulation of dephosphorylated Tau in neuronal nuclei. Using chromatin immunoprecipitation assays, we demonstrate that the capacity of endogenous Tau to interact with neuronal DNA increased following HS. Comet assays performed on both wild-type and Tau-deficient neuronal cultures showed that Tau fully protected neuronal genomic DNA against HS-induced damage. Interestingly, HS-induced DNA damage observed in Tau-deficient cells was completely rescued after the overexpression of human Tau targeted to the nucleus. These results highlight a novel role for nuclear Tau as a key player in early stress response.
  • Article
    Full-text available
    MILAGRO (Megacity Initiative: Local And Global Research Observations) is an international collaborative project to examine the behavior and the export of atmospheric emissions from a megacity. The Mexico City Metropolitan Area (MCMA) – one of the world's largest megacities and North America's most populous city – was selected as the case study to characterize the sources, concentrations, transport, and transformation processes of the gases and fine particles emitted to the MCMA atmosphere and to evaluate the regional and global impacts of these emissions. The findings of this study are relevant to the evolution and impacts of pollution from many other megacities. The measurement phase consisted of a month-long series of carefully coordinated observations of the chemistry and physics of the atmosphere in and near Mexico City during March 2006, using a wide range of instruments at ground sites, on aircraft and satellites, and enlisting over 450 scientists from 150 institutions in 30 countries. Three ground supersites were set up to examine the evolution of the primary emitted gases and fine particles. Additional platforms in or near Mexico City included mobile vans containing scientific laboratories and mobile and stationary upward-looking lidars. Seven instrumented research aircraft provided information about the atmosphere over a large region and at various altitudes. Satellite-based instruments peered down into the atmosphere, providing even larger geographical coverage. The overall campaign was complemented by meteorological forecasting and numerical simulations, satellite observations and surface networks. Together, these research observations have provided the most comprehensive characterization of the MCMA's urban and regional atmospheric composition and chemistry that will take years to analyze and evaluate fully. In this paper we review over 120 papers resulting from the MILAGRO/INTEX-B Campaign that have been published or submitted, as well as relevant papers from the earlier MCMA-2003 Campaign, with the aim of providing a road map for the scientific community interested in understanding the emissions from a megacity such as the MCMA and their impacts on air quality and climate. This paper describes the measurements performed during MILAGRO and the results obtained on MCMA's atmospheric meteorology and dynamics, emissions of gases and fine particles, sources and concentrations of volatile organic compounds, urban and regional photochemistry, ambient particulate matter, aerosol radiative properties, urban plume characterization, and health studies. A summary of key findings from the field study is presented.
  • Article
    Full-text available
    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and complementary instrumentation. Mass concentrations, diurnal cycles, and size distributions of inorganic and organic species are similar to results from the CENICA supersite in April 2003 with organic aerosol (OA) comprising about half of thefine PM mass. Positive Matrix Factorization (PMF) analysis of the high resolution OA spectra identified three major components: chemically-reduced urban primary emissions (hydrocarbon-like OA, HOA), oxygenated OA (OOA, mostly secondary OA or SOA), and biomass burning OA (BBOA) that correlates with levoglucosan and acetonitrile. BBOA includes several very large plumes from regional fires and likely also some refuse burning. A fourth OA component is a small local nitrogen-containing reduced OA component (LOA) which accounts for 9% of the OA mass but one third of the organic nitrogen, likely as amines. OOA accounts for almost half of the OA on average, consistent with previousobservations. OA apportionment results from PMF-AMS are compared to the PM2.5 chemical mass balance of organic molecular markers (CMB-OMM, from GC/MS analysis of filters). Results from both methods are overall consistent. Both assign the major components of OA to primary urban, biomass burning/woodsmoke, and secondary sources at similarmagnitudes. The 2006 Mexico City emissions inventory underestimates the urban primary PM2.5 emissions by a factor of ∼4, and it is ∼16 times lower than afternoon concentrations when secondary species are included. Additionally,the forest fire contribution is at least an order-of-magnitude larger than in the inventory.
  • Article
    Full-text available
    Levels of PM<sub>10</sub>, PM<sub>2.5</sub> and PM<sub>1</sub> and chemical speciation of PM<sub>10</sub> and PM<sub>2.5</sub> were measured during the MILAGRO campaign (1st to 31st March 2006, but extended in some cases until 6th April) at four urban, one suburban, two rural background and two rural sites, with different degree of industrial influence, in the Mexico City Metropolitan Area (MCMA) and adjacent regions. PM<sub>10</sub> and PM<sub>2.5</sub> daily levels varied between 50–56μg/m<sup>3</sup> and 24–46μg/m<sup>3</sup> at the urban sites, 22–35μg/m<sup>3</sup> and 13–25μg/m<sup>3</sup> at the rural sites, and 75μg/m<sup>3</sup> and 31μg/m<sup>3</sup> at the industrial hotspot, lower than those recorded at some Asian mega-cities and similar to those recorded at other Latin American cities. At the urban sites, hourly PM<sub>2.5</sub> and PM<sub>1</sub> concentrations showed a marked impact of road traffic emissions (at rush hours), with levels of coarse PM remaining elevated during daytime. At the suburban and rural sites different PM daily patterns were registered according to the influence of the pollution plume from MCMA, and also of local soil resuspension. The speciation studies showed that mineral matter accounted for 25–27% of bulk PM<sub>10</sub> at the urban sites and a higher proportion (up to 43%) at the suburban and rural sites. This pattern is repeated in PM<sub>2.5</sub>, with 15% at urban and 28% at suburban and rural sites. Carbonaceous compounds accounted for a significant proportion at the urban and industrial sites (32–46% in PM<sub>10</sub>, and 51–55% in PM<sub>2.5</sub>), markedly reduced at the suburban and rural sites (16–23% in PM<sub>10</sub>, and 30% in PM<sub>2.5</sub>). The secondary inorganic aerosols accounted for 10–20% of bulk PM<sub>10</sub> at urban, suburban, rural and industrial sites, with a higher proportion (40%) at the industrial background site. A relatively high proportion of nitrate in rural sites was present in the coarse fraction. Typically anthropogenic elements (As, Cr, Zn, Cu, Pb, Sn, Sb, Ba, among others) showed considerably high levels at the urban sites; however levels of particulate Hg and crustal trace elements (Rb, Ti, La, Sc, Ga) were generally higher at the suburban site. Principal component analysis identified three major common factors: crustal, regional background and road traffic. Moreover, some specific factors were obtained for each site.
  • Article
    Full-text available
    Understanding sources, concentrations, and transformations of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere is important because of their potent mutagenicity and carcinogenicity. The measurement of particle-bound PAHs by three different methods during the Mexico City Metropolitan Area field campaign in April 2003 presents a unique opportunity for characterization of these compounds and intercomparison of the methods. The three methods are (1) collection and analysis of bulk samples for time-integrated gas- and particle-phase speciation by gas chromatography/mass spectrometry; (2) aerosol photoionization for fast detection of PAHs on particles' surfaces; and (3) aerosol mass spectrometry for fast analysis of size and chemical composition. This research represents the first time aerosol mass spectrometry has been used to measure ambient PAH concentrations and the first time that fast, real-time methods have been used to quantify PAHs alongside traditional filter-based measurements in an extended field campaign. Speciated PAH measurements suggest that motor vehicles and garbage and wood burning are important sources in Mexico City. The diurnal concentration patterns captured by aerosol photoionization and aerosol mass spectrometry are generally consistent. Ambient concentrations of particle-phase PAHs typically peak at ~110 ng m<sup>-3</sup> during the morning rush hour and rapidly decay due to changes in source activity patterns and dilution as the boundary layer rises, although surface-bound PAH concentrations decay faster. The more rapid decrease in surface versus bulk PAH concentrations during the late morning suggests that freshly emitted combustion-related particles are quickly coated by secondary aerosol material in Mexico City's atmosphere and may also be transformed by heterogeneous reactions.
  • Article
    Full-text available
    There is much variability between individuals in the response to inhaled toxins, but it is not known why certain people develop disease when challenged with environmental agents and others remain healthy. To address this, we investigated whether TLR4 (encoding the toll-like receptor-4), which has been shown to affect lipopolysaccharide (LPS) responsiveness in mice, underlies the variability in airway responsiveness to inhaled LPS in humans. Here we show that common, co-segregating missense mutations (Asp299Gly and Thr399Ile) affecting the extracellular domain of the TLR4 receptor are associated with a blunted response to inhaled LPS in humans. Transfection of THP-1 cells demonstrates that the Asp299Gly mutation (but not the Thr399Ile mutation) interrupts TLR4-mediated LPS signalling. Moreover, the wild-type allele of TLR4 rescues the LPS hyporesponsive phenotype in either primary airway epithelial cells or alveolar macrophages obtained from individuals with the TLR4 mutations. Our findings provide the first genetic evidence that common mutations in TLR4 are associated with differences in LPS responsiveness in humans, and demonstrate that gene-sequence changes can alter the ability of the host to respond to environmental stress.
  • Article
    Full-text available
    The pigmented neurones of the substantia nigra are typically lost in Parkinson's disease; however, the possible relation between neuronal vulnerability and the presence of neuromelanin has not been elucidated. Early histological studies revealed the presence of increasing amounts of neuromelanin in the substantia nigra with aging in higher mammals, showed that the neuromelanin granules are surrounded by a membrane, and comparatively evaluated the pigmentation of the substantia nigra in different animal species. Histochemical studies showed the association of neuromelanin with lipofuscins. However, systematic investigations of the structure, synthesis, and molecular interactions of neuromelanin have been undertaken only during the past decade. In these later studies, neuromelanin was identified as a genuine melanin with a strong chelating ability for iron and an affinity for compounds such as lipids, pesticides, and MPP(+). The affinity of neuromelanin for a variety of inorganic and organic toxins is consistent with a postulated protective function for neuromelanin. Moreover, the neuronal accumulation of neuromelanin during aging and the link between its synthesis and a high cytosolic concentration of catechols suggest a protective role. However, its putative neuroprotective effects could be quenched in conditions of toxin overload.
  • Article
    Full-text available
    Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.
  • Article
    The deposition of the amyloid beta protein (Abeta) is a histopathologic hallmark of AD. The regions of the medial temporal lobe (MTL) are hierarchically involved in Abeta-deposition. To clarify whether there is a hierarchical involvement of the regions of the entire brain as well and whether there are differences in the expansion of Abeta-pathology between clinically proven AD cases and nondemented cases with AD-related pathology, the authors investigated 47 brains from demented and nondemented patients with AD-related pathology covering all phases of beta-amyloidosis in the MTL (AbetaMTL phases) and four control brains without any AD-related pathology. Abeta deposits were detected by the use of the Campbell-Switzer silver technique and by immunohistochemistry in sections covering all brain regions and brainstem nuclei. It was analyzed how often distinct regions exhibited Abeta deposits. In the first of five phases in the evolution of beta-amyloidosis Abeta deposits are found exclusively in the neocortex. The second phase is characterized by the additional involvement of allocortical brain regions. In phase 3, diencephalic nuclei, the striatum, and the cholinergic nuclei of the basal forebrain exhibit Abeta deposits as well. Several brainstem nuclei become additionally involved in phase 4. Phase 5, finally, is characterized by cerebellar Abeta-deposition. The 17 clinically proven AD cases exhibit Abeta-phases 3, 4, or 5. The nine nondemented cases with AD-related Abeta pathology show Abeta-phases 1, 2, or 3. Abeta-deposition in the entire brain follows a distinct sequence in which the regions are hierarchically involved. Abeta-deposition, thereby, expands anterogradely into regions that receive neuronal projections from regions already exhibiting Abeta. There are also indications that clinically proven AD cases with full-blown beta-amyloidosis may be preceded in early stages by nondemented cases exhibiting AD-related Abeta pathology.
  • Article
    Full-text available
    Air pollution is a serious environmental problem. We investigated whether residency in cities with high air pollution is associated with neuroinflammation/neurodegeneration in healthy children and young adults who died suddenly. We measured mRNA cyclooxygenase-2, interleukin-1beta, and CD14 in target brain regions from low (n = 12) or highly exposed residents (n = 35) aged 25.1 +/- 1.5 years. Upregulation of cyclooxygenase-2, interleukin-1beta, and CD14 in olfactory bulb, frontal cortex, substantia nigrae and vagus nerves; disruption of the blood-brain barrier; endothelial activation, oxidative stress, and inflammatory cell trafficking were seen in highly exposed subjects. Amyloid beta42 (Abeta42) immunoreactivity was observed in 58.8% of apolipoprotein E (APOE) 3/3 < 25 y, and 100% of the APOE 4 subjects, whereas alpha-synuclein was seen in 23.5% of < 25 y subjects. Particulate material (PM) was seen in olfactory bulb neurons, and PM < 100 nm were observed in intraluminal erythrocytes from lung, frontal, and trigeminal ganglia capillaries. Exposure to air pollution causes neuroinflammation, an altered brain innate immune response, and accumulation of Abeta42 and alpha-synuclein starting in childhood. Exposure to air pollution should be considered a risk factor for Alzheimer's and Parkinson's diseases, and carriers of the APOE 4 allele could have a higher risk of developing Alzheimer's disease if they reside in a polluted environment.