ArticlePDF Available

Abstract

The hydrology of riparian areas changes rapidly these years because of climate change‐mediated alterations in precipitation patterns. In this study, we used a large‐scale in situ experimental approach to explore effects of drought and flooding on plant taxonomic diversity and functional trait composition in riparian areas in temperate Europe. We found significant effects of flooding and drought in all study areas, the effects being most pronounced under flooded conditions. In near‐stream areas, taxonomic diversity initially declined in response to both drought and flooding (although not significantly so in all years) and remained stable under drought conditions, whereas the decline continued under flooded conditions. For most traits, we found clear indications that the functional diversity also declined under flooded conditions, particularly in near‐stream areas, indicating that fewer strategies succeeded under flooded conditions. Consistent changes in community mean trait values were also identified, but fewer than expected. This can have several, not mutually exclusive, explanations. First, different adaptive strategies may coexist in a community. Second, intraspecific variability was not considered for any of the traits. For example, many species can elongate shoots and petioles that enable them to survive shallow, prolonged flooding but such abilities will not be captured when applying mean trait values. Third, we only followed the communities for 3 years. Flooding excludes species intolerant of the altered hydrology, whereas the establishment of new species relies on time‐dependent processes, for instance the dispersal and establishment of species within the areas. We expect that altered precipitation patterns will have profound consequences for riparian vegetation in temperate Europe. Riparian areas will experience loss of taxonomic and functional diversity and, over time, possibly also alterations in community trait responses that may have cascading effects on ecosystem functioning.
Ecology a nd Evolution . 201 8 ;1–1 6 .    
|
 1
www.ecolevol.org
Received:18May2017 
|
  Revised:3 0January2018 
|
  Accepted:9February2018
DOI:10.1002/ece3.3973
ORIGINAL RESEARCH
Structural and functional responses of plant communities
to climate change- mediated alterations in the hydrology of
riparian areas in temperate Europe
Annette Baattrup-Pedersen1| Annemarie Garssen2| Emma Göthe1,3|
Carl Christian Hoffmann1| Andrea Oddershede1| Tenna Riis4|
Peter M. van Bodegom5| Søren E. Larsen1| Merel Soons2
Thisisanop enaccessarticleundert hetermsoft heCreat iveCommonsAttr ibutionLicense ,whichpe rmitsuse,dist ributionandreproductioninanymedium,
provide dtheoriginalworkisproper lycited.
©2018TheAuthors.Ecology an d Evolutionpu blishedbyJohnWiley&SonsLtd.
1Depar tmentofBioscience,Aarhus
University,Silkeb org,Denmark
2Depar tmentofBiology,UtrechtUni versit y,
Utrecht,TheNetherlands
3SectionforEcologyand
Biodiversity,SwedishUniversityof
AgriculturalSciences,Uppsala,Sweden
4Depar tmentofBioscien ce,Aarhus
University,Aarhus,Denmark
5InstituteofEnvironmentalSciences,Leid en
University,Leide n,TheNetherlands
Correspondence
AnnetteBaattrup-Pedersen,Department
ofBioscience,AarhusUniversity,Silkeborg ,
Denmark.
Email:abp@bios.au.dk
Funding information
EuropeanUnion7thFr ameworkProjects
REFRESH,Grant/AwardNumb er:244121;
MARS,G rant/AwardNumber :603378
Abstract
The hydr o l og yof r iparia n areas c hange srapid l ythese y earsb e c a u seof clima t echa n ge-
mediated alterationsinprecipitationpatterns.In this study,weused alarge-scalein
situexperimentalapproachtoexploreeffectsofdroughtandfloodingonplanttaxo-
nomicdiversityandfunctionaltraitcompositioninriparianareasintemperateEurope.
Wefound significant effectsoffloodingand drought in all study areas, the effects
being most pronounced under flooded conditions. In near-stream areas, taxonomic
diversityinitiallydeclinedinresponsetobothdroughtandflooding(althoughnotsig-
nificantlysoinallyears)andremainedstableunderdroughtconditions,whereasthe
decline continued underflooded conditions. For most traits, we foundclear indica-
tionsthatthefunctionaldiversityalsodeclinedunderfloodedconditions,particularly
innear-streamareas,indicatingthatfewerstrategiessucceededunderfloodedcondi-
tions. Consistent changes in communitymean trait values were also identified, but
fewer than expected. This can have several, not mutually exclusive, explanations.
First,differentadaptivestrategiesmaycoexistina community.Second,intraspecific
variability was notconsideredfor any ofthe traits. Forexample, many species can
elongateshootsandpetiolesthatenablethemtosurviveshallow,prolongedflooding
butsuchabilitieswillnotbecapturedwhenapplyingmeantraitvalues.Third,weonly
followedthecommunitiesfor3years.Floodingexcludesspeciesintolerantoftheal-
teredhydrology,whereastheestablishmentofnewspeciesreliesontime-dependent
processes,forinstancethe dispersal and establishmentofspecies within the areas.
Weexpect thataltered precipitation patternswill have profound consequences for
riparian vegetationintemperateEurope.Riparianareaswillexperience lossoftaxo-
nomicandfunctionaldiversityand,overtime,possiblyalsoalterationsincommunity
traitresponsesthatmayhavecascadingeffectsonecosystemfunctioning.
KEY WORDS
climatechange,drought,flooding,lowland,plant,trait,vegetation
2 
|
   BAATTRUP- PEDERSEN E T Al.
1 | INTRODUCTION
Intemperateregions,suchasNor thernandCentralEurope,climate
change-associatedalterationsinprecipitationpatterns,withhigher
thanaverageprecipitationandlesssnow accumulationduringwin-
terandlowerthan averageprecipitationduringsummer,likelyme-
diate significant alterations in the hydrological characteristics of
lowland streams.Inwinterandearly spring,anincreaseinthefre-
quency,magnitu de,a nddurationofflowev entswillocc ur(Kar lsson,
Sonnenborg, Seaby, Jensen, & Refsgaard, 2015; van Roosmalen,
Sonnen borg, & Jensen , 2009; Thodse n etal., 2014), whereas the
freque ncyanddurationofdroug htperiodsareexp ec tedtoincrease
duringsummer(Andersenetal.,2006;Christensen&Christensen,
2007). Higher temperatures will likely intensify deficits in water
budgetsduringsummerthroughenhancedevaporationandevapo-
transpiration, both of which will intensif y water stress (Douville
etal.,20 02).Furthermore,highertemperaturesmayextendtheac-
tive growth period of plants as growth maystar t earlier in spring
and continue for a longer time,therebypossiblyexacerbating the
effects of flooding and droughts on natural ecosystems (Zwicke
etal.,2013).
Climatechangeef fectsonthestruc turalandfunctionalprop-
ertiesofriparianecosystemsremaintobemorefullyelucidated.
In cre asi ng awa re n essof theim por t a nceofwe tla ndsfo ranum b er
ofecosystemservices such as flood protection, water purifica-
tion, water availability via groundwater recharge, and biodiver-
sity has s purred new studi es into the funct ioning of wetlands
ina changingclimate (see Catfordetal., 2013;Kominoski etal.,
2013; Garsse n, Verhoeven, & So ons, 2014; Garssen, B aattrup-
Pedersen,Voesenek,Verhoeven,&Soons,2015foranoverview).
Most of the studies conducted so far investigate the effectsof
climatechangesonriparian community compositionwith focus
ontheresponseofasinglespeciesorrestrictedspeciesassem-
blages(Catfordetal.,2013;Garssenetal.,2014,2015).Arecent
extensive review of plant communit y responses showed that
prolonged flooding and increasedinundation depth of riparian
areas tri gger signifi cant shif ts in specie s composition t hat may
leadtoeither increased or decreased riparian species richness,
depending on the environmental characteristics of the areas
(Garsse n etal., 2015).In Gar ssen etal. (2015), sp ecies richnes s
was obser ved to genera lly decline at fl ooded sites in n utrient-
rich catchments and at sites previously exhibiting relatively
stable hydrographs (forinstance rain-fed lowland streams; see
e.g., Beltman, Willems, & Güsewell, 20 07; Baattrup-Pedersen,
Jensen,etal.,2013),whereasanincreaseinspeciesrichnesswas
detectedat floodedsitesin dryareas(e.g.,in deser ts andsemi-
arid climate regions where manys treams areintermit tent; see
e.g.,Stromberg,Hazelton, &White,2009;Horner,Cunningham,
Thomson, Baker, & Mac Nally, 2012). In contrast, almost all
studie s of the effect s of increased drou ght episodes on ri par-
ianplantcommunit yresponseshave showna declinein species
richness, particularly for herbaceous species (e.g., Stromberg,
Bagstad, Leenhouts, Lite,&Makings,2005; Westwood, Teeuw,
Wade, Holmes, & Guyard, 2006; reviewed in Garssen etal.,
2014).A>30-daydroughtperiodthreatensthesurvivalofmany
species a nd usually ent ails a strong re duction in ri parian plant
biomass,andahigh droughtintensity(i.e.,a3–4cmwatertable
decline per day)may impair riparian seedlingsur vival,thereby
producingrelatively rapid changes in riparian species composi-
tion(Garssenetal.,2014).
The functionaltrait characteristics of plant species will likely
determinewhetherthespeciesareabletosurviveunderchanged
environm ental condi tions (Cornwel l & Ackerly, 2009; Ju ng etal.,
2014).Hence, trait-based predictions of the response ofriparian
communities to climatechange arevaluable.In contrast to taxo-
nomicapproaches,trait-basedmethodsenablegeneralizations(i.e.,
identif ication of common re sponses) to be made a cross regions
(Catfordetal.,2013;Diazetal.,20 04).Awiderangeoftraits can
beusedtodescribetheresponsesofspeciestotheirenvironment,
anddifferenttraitsmaycapturedifferentaspect sofresourceuse,
habitat requirements, and stress responses (e.g., Suding etal.,
2006; Thuiller, Albert, Dubuis, Randin, & Guisan, 2010). Traits
related to li fe form charac teristics, gr owth forms, gr owth rates,
photosyntheticpathways,leafmorphology,andchemistryhaveall
beenusedtoidentifyplantresponsestoenvironmentalconditions
as they af fect speciesgrowth, survival, and reproductiveoutput
(deBello&Mudrak, 2013;Violle etal.,20 07;Westoby& Wright,
2006).
Inthisstudy,we exploredthe effects of an experimentally
alteredhydrologyonthetaxonomicandfunctionaltraitcharac-
ter is ti cs oft heveget at ionan ddeposite dseedsi nriparian areas.
To increase the predictive potential, we used a large-scale
experimental approach in which we manipulated water levels
to disentangle the ef fects of specific environmental changes
fromco-occurring environmentalcharacteristicsthatmay oth-
erwiseblur the responses (see Ackerly,2004;Douma, Bardin,
Bart holomeus, & Bode gom, 2012; Wright, Reich , & Westoby,
2003). Anadditionalstrengthofthisapproachwasthatthedi-
rectlarge-scalewaterlevel manipulationsappliedpermits cre-
ation of groundwater–surface water interactions resembling
those likely to occur in riparian areas under current and ex-
pectedratesofclimaticchange.Toidentifycross-regionalcon-
sistentpatternsresponses inthe vegetation,theexperimental
siteswerelocatedinDenmark, Germany,andtheNetherlands.
Insomepart softhesites,weexperimentallyincre asedf looding
inthewinter/springandinotherpartsofthesitesweincreased
droughtsinsummer.
We analyzed r egenerative t raits and veget ative trait s that
we expected would change under altered hydrological con-
ditions (F igure1). The selec tion of traits w as based on theo-
retical considerations: Hydrological alterations are likely to
affec t traits asso ciated with the a bility to incre ase the water
uptake and/orconservewateras well astraitsassociated with
the ability to survive conditions with water surplus (Douma
etal.,2012;Hough-Snee etal., 2015). Thevegetativetraitsin-
cluded leaf trait s(specific leaf area,size, and mass),roottraits
    
|
 3
BAATTR UP- PEDERSEN E T Al.
(rooting depth and porosity), and canopy (maximum height)
that may show a n adaptive respo nse to cope with an al tered
hydrology. Under drought conditions, we expected that the
abun da nc eofspe ci es wi th ex tensiverootingdepthsandspec ie s
withdense stems,smalland thick leaves,andlowspecificleaf
areas woul d increase in ab undance. The se traits c an serve to
maximizewateruptakeandatthesametime reduce waterloss
asthe rate of transpiration generally decreases withdeclining
specific leaf area and leafmass (Wright etal.,2005; Swenson
& Enquist , 2007; Poorter & Mar kesteijn, 200 8; Douma etal.,
2012; Figure1). Under flooded conditions, we expecte d that
the abundance of species withtraits associated with the abil-
ity to lower the metabolic activity (the “quiescence strategy”)
oravoidunfavorableconditions (the “escapestrategy”;Bailey-
Serres & Voesenek,20 08)would increase. Therefore, we an-
ticipatedthat the abundance of tall specieswould increase as
thesehavemoreeasyaccesstoatmosphericoxygenthanshor t
species. Additionally, we expected that species able to form
porous roots or aerenchyma inadventitious rootstofacilitate
oxygentransporttotheapicalrootzone(Armstrong,Brandle,&
Jackson,1994)wouldincreaseinabundance,asthesetraitscan
be critic ally impor tant to mai ntain the exch ange of gas unde r
flooded conditions(Bailey-Serres & Voesenek,2008; Garssen
etal.,2015).Wealsoconsideredregenerativetraits associated
with theabilityto disperse under droughtand flooded condi-
tions,respectively,includingseedmass,volume,andbuoyancy.
Specifically, we expected that species witha high seed mass
would dec line in abundan ce with enhanced f looding conco m-
itantl y with an incre ase in specie s with a high se ed buoyanc y
an dvol ume,ref lec tingt he adapt ivev alu eofp ro duc in gl owmass
buthighvolumebuoyantseedsthat candisperseefficientlyby
water(Doumaetal.,2012).
Thespecifichypothesestestedwerethatfloodinganddrought
mediatethefollowing:(1)adeclineinthetaxonomicandfunctional
diversityoftraitsand(2)ashiftinthemeanfunctionaltraitvalues
asdepicted inFigure1. Theseresponses will expectedly bestron-
gest in nea r-stream a reas where the hydrol ogical alterati ons are
most pronounced and willintensify over time.Additionally,itwas
testedif(3)thetaxonomicdiversityandfunctionaldiversityofthe
seed poo l were higher in fl ooded areas th an in drought area s as
theregional speciespoolmay contributeto diversitythroughspe-
cies dispersal by water (i.e., hydrochory; Nilsson, Brown,Jansson,
&Merritt,2010).
2 | MATERIALS AND METHODS
2.1 | Experimental setup
Four riparian areas situated along streams in Denmark
(Sandemandsbækken 56.158507N, 9.496120 E; Voel Bæk
56.195846N, 9.703932 E), Germany (Boye 51°58′61.1″N,
6°91′10.01″E), and the Netherlands (Groote Molenbeek
51°39′17.32″N, 6°03′59.47″E)were selected fortheexperiment
(Table1).Thefourstreamsvariedinmeandischargefrom0.03to
1.73m3/s.This was, however,notconsideredproblematic asour
FIGURE1 Hypothesizedchangesincommunitytrait
compositionmovingfromdroughttofloodedconditions.Arrows
indicatewhetheratraitisexpectedtoincreaseordecreasewith
increasedflooding,withanexpectationoftheoppositeresponseto
drought
Regenerative
• Seed mass (SM)
• Seed buoyancy (BYC) ↑
• Seed volume (SV) ↑
Vegetative
• Specific leaf area (SLA) ↑
• Leaf size (LS) ↑
• Leaf mass (LM)
• Canopy height (CH) ↑
• Root porosity (RP) ↑
• Rooting depth (RD)
DroughtFlooded
Site Sandemandsbæk Boye Voel Bæk Groote Molenbeek
Catchmentarea
(km2)
0.07 3.40 7. 57 183.56
Grassland(%) 0.16 0.31 0.02 0.43
Forest(%) 0.43 0.11 0.03 0.00
Urban(%) 0.05 0.15 0.04 0.07
Agriculture(%) 0.25 0.42 0.90 0.45
Wetlands(%) 0 .11 0.00 0.00 0.00
Water(%) 0.00 0.01 0.00 0.00
Meandischarge
(m3/s)
0.03 0.08 0.06 1.73
TABLE1 Studysitecharacteristics
4 
|
   BAATTRUP- PEDERSEN E T Al.
samplingeffortwasfocused on coveringthe naturalfeaturesof
thest re am-rip ar iangr ad ientatthes tudysitesirr es pect iveofsize.
Thatis,thesamplingcoveredagradient from the watertableof
the stre am under sum mer base flow co nditions to t he high end
of the floodplain where only extreme events lead to flooding
(Figure2).
Thelengthoftheexperimentalareaswas150m,whereaswidth
varieddependingontheextentofthestream-ripariangradient.The
areas were dividedintothree sections: acontrol section, a winter/
spring fl ooded sec tion, and a summ er drought sec tion. These hy-
drologicaltreatmentswereselectedtomimichydrologicalchanges
inEurope as predictedbyIPCC (2007).The riparian areas hadnot
been exposed to floodings prior to theexperiment and comprised
seminaturalgrasslandcommunitieswithonlyherbaceousspecies.
The control sections were situated upstream of the manipu-
latedsectionswithbufferareasin-between(Figure2).Floodingwas
created byconstructingdamsin the streamstoobstructthewater
flowinthemainchannels.InDenmark,alateraldammadeofsand-
bagswasestablishedacrossthestreamchannel(Figure2a),whilein
Germanyand theNetherlands,longitudinaldamswerebuilt within
the channel, which together withalateral damacross thechannel
obstructedthewaterflowinthemainchannel(Figure2b).Thecon-
structeddamswereusedtocreatea6-weekfloodingoftheadjacent
riparianareas (from March to mid-April) in 2011,2012, and2013,
where the strongestresponseswereexpectedto occurin the final
year ofsamplinggiven that theareas have been subject to manip-
ulation fo r several years . However, in 2013, floodi ng was delayed
in Denmar k due to ice cover and las ted from the end of A pril to
mid-June. In D enmark, summ er droughts we re created by digg ing
aditch, which together with a lateral dam inthe mainchanneldi-
verted p art of the wate r flow from the mai n channel, re sulting in
alowered water tablewithin the experimentalareas (Figure2a).In
Germany and the Netherlands,alongitudinaldamwasconstructed
acrossthestreamchannel,whichtogetherwithalateraldamacross
thechannelobstructedthe waterflowadjacenttothe experimen-
tal area, thereby loweringthewater table(Figure2b). The drought
experiment was conducted in 2011, 2012, and2013from the end
of June to Sep tember (appr oximately 10week s)at a ll sites except
Boyewherestronggroundwaterseepagepreventedreductioninthe
watertableinthedroughtsection.
Within e ach section, t hree sample tr ansects wer e establishe d
perpendicular tothe stream from the channel andupwards in the
riparianareas(Figure2). Thelength of the sampletransec ts varied
amongthestudysitesinordertorepresentagradientfromthelow-
est watertable ofthe stream under summer base flow conditions
tothehighestpoint ofthestreamvalleypotentiallyfloodedbysur-
face waterduring extremewinter floods (Figure2c). Todetermine
thehydrology ofthecontrol,drought,and floodedsections,atotal
ofnine piezometerswereinstalledwithineachsection(threealong
eachsampletransect).Thefirstpiezometerwasplacedclosetothe
stream , just above the n ormal summer w ater table in th e stream,
thatis normallynotfloodedduringsummerbutoccasionallyduring
winter flo ods (position 1; Figu re2c). The second piezometer was
placedjustabovethenormalwinterwatertablethatisnormallynot
floodedineithersummerorwinter(position2;Figure2c).Thethird
piezomete r was placed at th e highest poin t of the floodpl ain that
was rarely flooded and, ifso, only during extreme winter flooding
events(onceevery100years;position3;Figure2c).
2.2 | Characterization of hydrology and vegetation
The water t able depths we re measured at l east four tim es during
theexperimental periodsineachexperimental year (atthestartof
theexperiment,after2weeks,after4weeks,andattheendofthe
FIGURE2 Aschematicpresentationoftheexperimentalsetup
appliedinourstudy.Thecontrolsectionissituatedupstreamofthe
droughtandfloodedsectionswithbuf fersin-between.Flooding
wascreatedbyconstructingdams(markedasbarsonthefigure)
toobstructthewaterflowinthemainchannels.(a)InDenmark,
alateraldamofsandbagswasconstructedacrossthestream
channel.(b)InGermanyandtheNetherlands,longitudinaldams
werebuiltwithinthechannel,whichtogetherwithalateraldam
acrossthechannelobstructedthewaterflowinthemainchannel.
(c)Thepositionofthesampletransectswithintheexperimental
sections.Thefirstpiezometerwasplacedjustabovethesummer
watertable(position1),thesecondpiezometerjustabovethe
normalwinterwatertable(position2)andthethirdatthehighend
ofthefloodplain(position3).Thecirclesindicatethepositionofthe
piezometersalongeachtransect
SWT
1
NWT
2
HFP
3
(a) (b)
(c)
Buffer
ControlDrought
Buffer
Buffer
Flooded
ControlDroughtFlooded
Buffer
    
|
 5
BAATTR UP- PEDERSEN E T Al.
experiment).MeanvaluesofwatertabledepthsaregiveninTable2.
Positive va lues indicate t hat flooding occ urred; the more p ositive
thevalues,thehigherthefloodingdepths.Similarly,negativevalues
indicatethat the water tableis situatedbelowthesurface,andthe
morenegativethe values,thedeeperthe watertable.Close tothe
streams(position1),thefloodingtreatmentprolongedtheduration
ofwinterfloodingandincreasedthedepthofflooding,whereasthe
drought treatment generally lowered the groundwater table dur-
ing the tre atment perio d (Table2). Further away f rom the strea m
at position 2, theflooding treatment resulted in occasional winter
floodingsduring the treatmentperiod, whereas thedroughttreat-
mentlowered the groundwater table( Table2).Far thestaway from
the stre am (position 3), t he flooding tr eatment result ed in overall
highergroundwatertablesduringthetreatmentperiod,whereasthe
droughttreatmentloweredthegroundwatertable(Table2).
Vegetation surveyswereconductedduring the growingseason
(June–September).Percentagecoveragewasestimatedforallvascu-
larspeciesinatotalof27plots(50×50cm2)persiteforeachtreat-
ment. These were positioned with three plots next toeach of the
threepiezometersineachofthethreetransects.Speciescomposi-
tionwasrecordedaccording totheBraun-Blanquet method(1928),
adjuste d by Barkman, D oing, and Seg al (1964). In the t wo Danish
sites, anadditional27bareplotswereestablished with threeplots
nexttoeachofthethreepiezometersineachofthethreetransects
inordertofollowtheestablishmentofthevegetationunderthenew
hydrologic al settings d uring the exper imental perio d. These were
Site Treatment Position
Groundwater,
mean (cm) Groundwater, SE
Sandemandsbækken Control 1−10 . 35 1.68
2−22 .35 1.73
3−16 . 59 1.32
Drought 1−18.86 1.44
2−26 .75 1.89
3−20 .9 3 2.45
Flooded 11.34 1.9 0
2−0.77 2.27
3−26 .4 3 1.07
Voel Control 1−10.07 0.94
2−16 .1 3 1.01
3−29. 36 1.56
Drought 1−35.23 1.73
2−4 9.3 5 2.20
3−56.10 2.39
Flooded 11.10 1.79
2−0.50 1.77
3−24.2 8 1.63
Boye Control 1−8.79 1.81
2−9.9 6 2.13
3−22 .74 3.36
Flooded 113.70 2 .10
2−0.18 3.68
3−30.12 2.12
GrooteMolenbeek Control 1−5. 27 3.09
2−15 . 87 2.53
3−21.5 2 3.48
Drought 1−8.72 1.78
2−33.0 0 2.14
3−37.75 3.14
Flooded 113.55 4.62
21.29 2.89
3−4.50 1.39
TABLE2 MeansandSEof
groundwatertabledepthsmeasuredin
piezometersatleastfourtimesduring
eachexperimentalrun(atthestartofthe
experiment,after2weeks,after4weeks,
andattheendoftheexperiment).Positive
valuesindicatethatthewatertablewas
situatedabovethegroundsurface,and
negativevaluesindicatethatthewater
tablewassituatedbelowtheground
surface.Thepiezometerswereplaced
alongahydrologicalgradient.Thefirst
samplingpointwasatthelowestwater
tableofthestreamduringsummerbase
flowconditions(SWT).Thesecond
samplingpointwasjustabovethenormal
winterwatertablethatisnormallynot
floodedineithersummerorwinter
(position2).Thethirdsamplingpointwas
atthehighestpointupthestreamvalley
thatcouldbefloodedbysurfacewater
duringextremewinterfloods(position3)
6 
|
   BAATTRUP- PEDERSEN E T Al.
createdbyremovingtheexistingvegetationandthetopsoilfollowed
bydepositionof 15cm mixedsandand peat.Toavoidingrowthof
nearbyplants, the plots were delineated using15-cm-wide plastic
bandsthatwereverticallyinsertedintothesoil.
Vegetationdatawereconver tedtoOrd%scale(coverageranges
from 0.5 t o 140) according to Van de r Maarel (20 07) for a cover-
basedinterpretationoftheBraun-Blanquetscale(Braun-Blanquet,
1928). Seed traps consisting of 25×22.5cm artificial mats with
plasticbristles(Astroturf®)wereplacedandsecurednearthesquare
plots used for vegetation sur veys. Seeds were collected in 2011
in both control, flooded, and drought areas duringthe 6weeks of
experimental flooding and10weeks of experimental drought. The
matswereremovedfromthefieldimmediatelyaftertheexperimen-
tal per iod and taken to t he laborator y where the y were stored in
plastic bags i n the dark at 4°C bef ore processing . The processin g
involvedextractionofdepositedmaterialbyflushingtheseedtraps
withwater,followed bywet sieving thedepositstoremovefinesilt
andclay.Thematerialwasthendriedat70°Cfor48hrafterwhich
intactseeds werevisually identified from thedried material, man-
uallyremoved,anddetermined tospecieslevelwiththeuseof the
“Digital seed atlas of the Netherlands” (C appers, Bekker, & Jans,
2006).
2.3 | Diversity indices and community- weighted
means of plant traits
All diversity and trait indices were calculated for each vegetation
type based on Ord%values (van der Maarel 2007). Wecalculated
taxonrichnessandShannondiversityasindicesoftaxonomicdiver-
sity. Tra it swerealloca te dt ot he en co un te redspecie sb as ed on in fo r-
mationavailable intheLEDAdatabase(Kleyer&Bekker,2008)and
literaturecitedinDoumaetal.(2012).Weselectedtraitsdescribing
both see d (SM, BYC, SV; Table3) and adu lt (SLA , LS, LM, C H, RP,
RD;Table3)plantcharacteristicsexpectedtorespondtoanaltered
hydrologicalregimeasdescribed intheintroduction(Figure1). The
number of specieswithtrait information and thetotalabundances
ofthese species are given in Table3. We calculated functional di-
vergence (FDvar) and community-weighted means (CWMs) when
the abun dance of species wit h trait informatio n was above 65%,
thereby precluding specific leaf area, root porosity, and rooting
depth(Table3).Theabundancelimitrepresentedabalancebet ween
ontheonehandtohaveasmanytraitsaspossibleintegratedinthe
analysesto obtaininsight intothe functional responseoftheplant
communit ytoclimatechange-relatedalterationsinthehydrologyof
the areas , and on the oth er hand to keep the e stimation b ias low
(Borgyetal.,2017).FDvarandCWMswerecalculatedforeachtrait
accordingtoLavoreletal.(2007).
Aresponse ratio (Δr) (Osenberg, Sarnelle,& Cooper,1997) for
eachdiversityandtraitmetricwasalsocalculatedusingmeanvalues
ofthree sample plot s for eachofthe threesamplingtransects for
eachpositionas:
where Ncisthemeanmetricvalue atthecontrolsiteandNtis the
metricvalueforthetreatment(floodedordrought).Responseratios
allowedustoassessthegeneraleffectsofthetwotreatmentsonri-
parianplantdiversityandtraitcompositionacrossthefourstreams.
2.4 | Data analyses
Allanalysesdescribedinthisparagraphwereconductedusingthesta-
tisticalsoftwareR(RCoreTeam2014),packagevegan(Oksanenetal.,
2014). Canonical correspondence analysis (CCA) (function cca) fol-
lowedbypermutationalANOVAs(function anova.ccawithmaximum
permutations set to 9999) was performed to assess differences in
plantcommunity compositionbetweentreatments (control,drought,
flooding),typeofvegetation(seed,existingvegetation,bareplot),and
year(2011,2012,2013).Toestimatetheuniqueeffectofasinglepre-
dictor (i.e., treatment,type of vegetation, and year),the variation in
plantcommunity compositionexplainedbythe otherpredictors was
alwayspartialledout(i.e.,includedascovariables)intheANOVAs.We
also assessed which traits weresignificantly associated with differ-
encesinplantcommunitycompositionbetweentreatmentsbyfitting
traitvectors(describingtherelativeabundanceoftraitsineachplot;
i.e.,CWMs)ontotheCCAordinationusingthefunctionenvfit. The en-
vfitfunctionfindsthedirectionintheordinationspacetowardwhich
eachtraitvectorchangesmostrapidlyandtowhichitismaximallycor-
relatedwiththeordinationconfiguration.Thesignificanceofthetrait
vectorswasdeterminedbyapermutationtest(n=999).
Δ
r=ln
(
Nt
Nc
)
TABLE3 Explanationsofthetraitsusedtocharacterizethe
riparianplantcommunities.TraitswerederivedfromtheLEDA
database(Kleyer&Bekker,2008)andfromliteraturecitedin
Doumaetal.(2012).Thepercentageofspecieswithtrait
informationwascalculatedasthenumberofspecieswithtrait
informationandastheabundanceofspecieswithtraitinformation
(inbrackets).Threetraitswereexcludedfromtheanalyses(SLA,
RD,RP)astheabundanceofspecieswithtraitinformationwas
below65%
Trait name Unit Category
% species with
trait information
Seedbuoyancy
(BYC)
%Seed 64(65)
Seedmass(SM) Mg Seed 75(78)
Seedvolume
(SV)
mm3Seed 68(73)
Specificleafarea
(SLA)
mm2/mg Adult 52(55)
Leafsize(LS) mm2Adult 64(70)
Leafmass(LM) Mg Adult 62(68)
Canopyheight
(CH)
MAdult 74(77)
Rootporosity
(RP)
%Adult 31(53)
Rootingdepth
(RD)
MAdult 37(65)
    
|
 7
BAATTR UP- PEDERSEN E T Al.
Toassessthegeneraleffectsofthetreatmentsacrossthestudy
streams,we combinedtheyearlyestimatesintoasingle effectsize
measurementand tested whether the response ratios (Δr) of tax-
onomic diversity, trait diversity, and CWMs differed significantly
from zero (i .e., higher or lowe r than zero) using t wo-side d ttests.
The yearly response ratioestimateswerecombinedby a weighted
averageusingthevariancefor yearastheweight.Ttestswereper-
formed separately foreachvegetationtype (seed,existingvegeta-
tion, bareplot). Asignificant result was interpreted as a consistent
anddetectablechangeinthemetricvalueinthecontrolsiteversus
thetreated(floodedordry)siteacrosstheinvestigatedstreams.
3 | RESULTS
There were large variationsinspecies composition amongthefour
studysitesregardingbothtypeconsidered(i.e.,seedpool,bareplot,
and existing vegetation), treat ment applied (i.e., control, drought,
and flooding), and time of sampling (i.e., 2011, 2012 and 2013;
Figures3 a nd 4; Table4). The effec ts of the ap plied treat ment on
the compositionalpatterns in the experimentalareas were signifi-
cant for both the seed pooland the existing vegetation(Figures3
and4;Table4).Severalofthetraitsusedtodescribethefunctional
characteristics of the vegetation were associated with the main
FIGURE3 Ordinationplotsofthecanonicalcorrespondenceanalyses(CCAs)ofplantspeciescompositionwithineachriparianarea
(Boye,GrooteMolenbeek,Sandemandsbækken,andVoelBæk).IntheCCAs,speciescompositionwasconstrainedbythetypeofvegetation
(seed,existing,andbareplot),whereasthevariationinspeciescompositionexplainedbytreatment(flood,drought,control)andyear(2011,
2012,2013)waspartialledout.TraitssignificantlyassociatedwiththeCCAaxes(p<.05)areplottedontotheordination
–1 012 43
–3
–2
–1
0
1
2
3
CCA1
CA1
Control
Flooded
Boye
2–3 10 123
–3
–2
–1
0
1
2
3
CA1
–6 –4 –2 0246
–6
–8
–4
–2
0
2
4
CCA1
Sandemandsbækken
–3–4 –2 –1 012
–3
–4
–2
–1
0
1
2
CCA1
CCA2
Voel k
Groote Molenbeek
CCA1
Control
Drought
Flooded
Existing
Seed
SM
CH
LM
LS
Existing
Seed
SM
CH
LM
LS
CCA2
Control
Drought
Flooded
Exis ting
Seed
Bareplot
SM
CH LS Exis ting
Seed
Bareplot
BYC
SM
LS
Control
Drought
Flooded
8 
|
   BAATTRUP- PEDERSEN E T Al.
gradientsintaxonomiccomposition(Tables5and6),suggestingthat
theycapturedimportantunderlyingmechanismsresponsibleforthe
observedcompositionalchanges.
3.1 | Existing vegetation
Apply ing response rat ios, we detecte d consistent chan ges among
studysitesforboththetaxonomicandfunctionalcompositionofthe
plantcommunities. Inaccordancewiththefirst hypothesis,weob-
servedthatbothspeciesrichnessandShannondiversitywerenega-
tivelyaffectedbydroughtandfloodingandthattheresponsevaried
with dist ance from the s treams (Fig ure5). At position 1 , the rich-
nessanddiversityoftheexistingvegetationdeclinedinresponseto
droughtthefirstyearafterinitiatingthetreatment(i.e.,theresponse
ratiowassignificantlylowerthanzero),andrichness wasstilllower
after3yearsoftreatment(Figure5).Fur therawayfromthestreams
atposition 2,we observeda decline in species richnessand diver-
sity,buttheresponse was only significant after3yearsof flooding
(Figure5).
Inaccordancewiththe secondhypothesis,wealsoidentified
con siste ntcha ngesi nthef un ctio naldi versityoftheexistingvege -
tationinparticularinresponsetoflooding(Figures6a,7a,and8a).
FIGURE4 Ordinationplotsofthecanonicalcorrespondenceanalyses(CCAs)ofplantspeciescompositionwithineachstream(Boye,
GrooteMolenbeek,Sandemandsbækken,andVoelBæk).IntheCCAs,speciescompositionwasconstrainedbytreatment(flood,drought,
control),whereasthevariationinspeciescompositionexplainedbytypeofvegetation(seed,existing,andbareplot)andyear(2011,2012,
2013)waspartialledout.TraitvectorssignificantlyassociatedwiththeCCAaxes(p<.05)areplottedontotheordination
–3 –2 –1 0123
–3
–2
–1
0
1
3
2
CA1
Boye
–2–3 –1 01
23
–2
–1
0
1
2
4
3
CCA1
CCA2
Groote Molenbeek
–4 –2 024–4–20
24
–1
–3
–2
0
1
2
3
5
4
–1
–3
–2
0
1
2
3
5
4
CCA1
CCA2
Sandemandsbækken
CCA1
CCA2
Voel k
CCA1
Existing
Seed
Control
Flooded
BYC
SM
LM
LS
Control
Drought
Flooded
BYC
LS
Existing
Seed
Control
Drought
Flooded
Existing
Bareplot
Seed
SM
SV Control
Drought
Flooded CH
LM
Existing
Bareplot
Seed
    
|
 9
BAATTR UP- PEDERSEN E T Al.
Close tothestreams,atpositions 1 and 2, weobservedthatthe
functionaldiversityofalltrait sdeclinedinresponseto3yearsof
flooding(BYCSM,SV,CH,LM,andL S;Figures6aand7a),whereas
thefunctional diversity of CHdeclinedinresponse to 3years to
drought bu t only at position 1 (cl osest to the str eam). Farthest
away from th e streams at posit ion 3, we observe d a decline in
the functional diversityoftwo trait s (LM and LS)inresponseto
drought(Figure8a).
In accordance with the second hypothesis, we also obser ved
consisten t changes in the mean f unctional tr ait (CWM) values of
Constraint Covariables Study site X2F (df)Pr (>F)
Treatment Type;Year Boye 0.352 2.571(1.21) 0.005
GrooteMolenbeek 0.537 2.847(2.3 4) 0.005
Voel 0.377 2.976(2.58) 0.005
Sandemand 0.432 2.682(2.58) 0.005
Typ e Treatment;Year Boye 0.909 6.6 47(1 .21) 0.005
GrooteMolenbeek 0.642 6.798(1.34) 0.005
Voel 0.680 5.409(2.58) 0.005
Sandemand 0.842 5.221(2.58) 0.005
Yea r Treatment;Type Boye 0.352 1.224(2.20) 0.079
GrooteMolenbeek 0.409 2.0 84(2.34) 0.005
Voel 0 .224 1.696(2.58) 0.005
Sandemand 0.269 1.614(2.58) 0.005
TABLE4 Summarystatisticsofthe
ANOVAsofthecanonicalcorrespondence
analyseswherespeciescompositionwas
constrainedbytreatment,t ype,oryear.
Thevariationoftheotherparameterswas
alwayspar tialledout(i.e.,includedas
covariables)intheANOVAstoenable
estimationoftheuniqueeffectofasingle
parameter
TABLE5 Summarystatisticsoftheenvfitanalyseswheretraitvectors(CWMs)werefittedtotheordinationaxesofthecanonical
correspondenceanalyses(CCAs).Summarystatisticsofthecorrelationbetweentraitvectorsandthefirstt woordinationaxesareshown.In
theCCAs,plantspeciescompositionwasconstrainedbythet ypeofvegetation,whiletreatmentandyearwereincludedascovariables(i.e.,
thevariationinplantcompositionexplainedbytreatmentandyearwaspartialledout)
Tra it
Boye Groote Molenbeek Sandemandsbæk Voel Bæk
CCA1 CA1 r2CCA1 CA1 r2CCA1 CCA2 r2CCA1 CCA2 r2
BYC −0.07 1.00 .05 0.80 0.60 .06 0.53 0.85 .07 0.44 0.90 .21**
SM 0.78 0.63 .30**** −0.52 −0.85 .08 0.95 0.33 .00 0.84 0.54 .18**
SV 0.42 0.91 .10 0.62 0.79 .02 0.50 −0.87 .02 0.54 0.84 .06
LS 0.99 0.17 .32** −1.0 0 −0.03 .21*−0.99 0.12 .12*−1.0 0 0.07 .15*
LM 0.85 −0 .52 .63** −0 .98 −0 .19 .40*** 0.58 0.81 .01 −0.89 −0.46 .07
CH 0.99 0.13 .88*** 0.60 −0.80 . 26** −1. 0 0 0.08 .45*** −0.68 0.73 .08****
***p<.001,**p<.01,*p < .05.
TABLE6 Summarystatisticsoftheenvfitanalyseswheretraitvectors(CWMs)werefittedtotheordinationaxesofthecanonical
correspondenceanalyses(CCAs).Summarystatisticsofthecorrelationbetweentraitvectorsandthefirstt woordinationaxesareshown.In
theCCAs,plantspeciescompositionwasconstrainedbytreatment,whilethetypeofvegetationandyearwereincludedascovariables(i.e.,
thevariationinplantcompositionexplainedbytreatmentandyearwaspartialledout)
Tra it
Boye Groote Molenbeek Sandemandbæk Voel Bæk
CCA1 CA1 r2CC A1 CA1 r2CCA1 CCA2 r2CCA1 CC A2 r2
BYC −0.89 0.46 .25 −0 .41 0.91 .32 0.66 0.75 .07 −0.02 1.00 .07
SM −0.36 0.93 .14 0.67 0.75 .02 1.00 −0.09 .14*0.94 0.35 .01
SV 0.53 0.85 .11 0.23 −0 .97 .02 0.91 −0.40 .17** −0.70 −0.72 .07
LS 0.98 0.18 .31*−1. 0 0 −0.04 . 24*0.99 −0.11 .03 −0.15 0.99 .05
LM 0.77 −0.63 .43** 0.78 −0.63 .15**** 0.81 0.59 .04 0.64 0.77 .11*
CH 0.54 −0.84 .02 −0.83 0 .55 .13**** 0.83 0.55 .05 0 .47 0.88 .16**
***p<.001,**p<.01,*p < .05.
10 
|
   BAATTRUP- PEDERSEN E T Al.
the existing vegetation in response to the applied treatmentsand,
asdemonstratedbythediversitypatterns,theresponsevariedwith
distancefromthestreams(Figures6b,7b,and8b)andgenerallyfol-
lowed the pr edicted pa tterns (se e Figure1). Close t o the stream s,
atposition1,BYC-CWMincreasedinresponsetofloodingandSM-
CWMincreasedinresponse todrought (Figure6b)but, incontrast
to our expectations, SV-CWM declined in response to flooding.
Furthe r away from the st ream, at posit ion 2, BYC-CWM an d CH-
CWM increased in response to flooding and LS-CWM declined
(Figure7b), but incontrast toourexpectations,LM-CMW declined
inresponsetodrought (Figure7b). Farthest away from thestream
atposition 3,weobservedanincreaseinSV-CWM inresponse to
flooding,alsoconfirmingourexpectations(Figure8b),butSM-CWM
increasedwhichwasincontrasttoourexpectations(Figure8b).We
alsoobservedseveralsignificantchangesinthetraitcompositionof
thecommunit yinresponsetodroughtatposition 3(BYC,SM,CH,
LS,SV,LM)andforthemajorityofthetraits,thesechangeswereas
predicted(BYC,SM,CH,LS;Figure8b).
3.2 | Seed pool
As oppo sed to our third hyp othesis, we did not f ind a signific ant
increaseinthetaxonomicrichnessordiversit yofthe seed poolin
respons e to flooding ( Figure5; ANOVA; p>.05), b ut we obser ved
an increase in functional diversity but only for SM at position 2
(Figure7a).Instead,weobservedseveralchangesin the traitvalue
oftheseedpool inresponseto flooding (CH, LM, LS at position1;
SM,LM,LSatposition2;BYC,SM,SV,CH,LM,LSatposition3)and
drought(CH,LM,LSatposition1;CH,LSatposition2)andmostof
thesechangesfollowedthepredic tedpat tern(Figure1)particularly
closetothestream.
4 | DISCUSSION
4.1 | Taxonomic and functional diversity response
Wefoundsignificanteffectsoffloodinganddroughtonthespecies
composition of both the vegetation and the seedpool in allstudy
areas. B etween-study si te variabilit y was also pro minent, an d this
islikelyduetolocaldif ferencesinsoilcharacteristicsand/orhydro-
logical conditionsamong the study sites thatinfluencethe effects
ofhydrologicalalterationsontheriparianvegetation(Garssenetal.,
2015).Despitetheobservedbetween-studysitevariability,consist-
entpatternswerealsodetectedinresponsetohydrologicalchanges.
Inparticular,weobservedadeclineinboththetaxonomicandfunc-
tional diversityoftheplantcommunities.Thedecline intaxonomic
diversit yinresponsetodroughtwasonlyevidentnearthestreams,
probabl y reflecti ng that the expe rimental ar eas were alread y well
FIGURE5 Averageresponseratios(±1SE)oftaxonomicdiversity(richnessandShannondiversity)inplotspositionedclosetothestream
channeljustabovethenormalsummerwatertable(position1;a)andinplotssituatedjustabovethenormalwinterwatertable(position2;
b).Nosignificantchangesinrichnessordiversityoccurredfurtherupthefloodplain,position3,followingtheapplieddroughtandflooding
treatment.Opensymbols(existing)comprisedataforthevegetationsurveys,whereasclosedsymbols(seed)comprisedatafortheseed
trapsur veys.Thecoloroftheasteriskindicatesthetypeofvegetationdifferingsignificantlyfromzero(i.e.,blackasterisk=seed,white
asterisk=existing)
RichnessShannon
–1.0
–0.5
0
0.5
1.0
–2.0
–1.0
0
1.0
2011 2012 2013 2011 2012 2013
Drought Flooded
Existing Seed
(b)(a)
2011 2012 2013 2011 2012 2013
Drought Flooded
RichnessShannon
–1.0
–0.5
0
0.5
–2
–3
–1
1
0
    
|
 11
BAATTR UP- PEDERSEN E T Al.
drainedandconsequentlylessaffectedbytheexperiment( Table2),
whereasthenegativeimpactsoffloodingonspeciesdiversitywere
more pronounced (although only significantafter 3years offlood-
ing).Thisfindingmayindicatethatfewerspecieswereabletotoler-
atefloodingwithin the areacompared withthenumber of species
able to tolerate(relativelymild) droughtand/orthatdispersalcon-
straintswerehigherforspeciesadaptedtofloodedconditions.Our
findingsareinlinewiththoseofStröm,Jansson,Nilsson,Johansson,
and Xiong(2011)where soil monolithswere transplantedto areas
subjectedtodifferentfloodingintensitieswithintheriparianzoneof
aborealriver.Speciesdiversityincreasedrapidlyinmonolithstrans-
plantedtohigherelevations(i.e.,lessflooding)overthecourseofthe
6-year fieldstudy,whilespeciesdiversityinmonolithstransplanted
tolowerelevations(i.e.,moreflooding)declinedrapidly(Strömetal.,
2011).
Functional diversity also respondedto the altered hydrological
settings,inparticularinproximitytothestreams.Weobservedasig-
nificantdeclineinthefunctionaldiversityofalltraits,indicatingthat
the range ofsuccessful strategies displayed underthe new hydro-
logicalsettingswasrestricted.Ourfindinglendssupporttoprevious
studiessuggestingthatstrong abioticfilters constraintherange of
speciesmeantraitvaluesthatcanexistwithinthecommunity,lead-
ing to a convergent traitdistribution (Bernard-Verdier etal., 2012;
Jung, Violle, Mondy,Hoffmann, & Muller,2010;Weiher,Clarke, &
Keddy,1998).In linewithourobservationsfor taxonomicdiversity,
also functional diversity responded morestronglyto flooding than
drought,indicating thatfloodingposesamoreseverestress onthe
riparian community intemperate regions (Fraaije,B raak, Verduyn,
Verhoeven,&Soons,2015;Fraaije,Braak,Verduyn,Breeman,etal.,
2015).Theloss offunctionaldiversity(1–2years)may influencere-
sourceuseefficiencywithinthesystems,withcascadingeffectson
ecosystem functioning (Díaz & Cabido, 2001). Further studies are,
however, needed to explore this topic, with special emphasis on
how climate change-mediatedalterations in hydrologicalextremes
incombinationwithahigherdegreeofunpredictabilityintheoccur-
renceoftheseaffectecosystemfunctioning.
4.2 | Community functional trait response
Thelossof functional diversitywasalsoreflected inthemeantrait
responseoftheriparianplantcommunit y.Weobservedaconsistent
FIGURE6 Averageresponseratios(±1SE)offunctionaltrait
diversit y(FDis)(a)andtraitcomposition(CWMs)(b)inplots
positionedclosetothestreamchanneljustabovethenormal
summerwatertable(position1).Whenaresponseratiois
significantlydif ferentfromzero,thisisindicatedwithanasterisk
abovetheerrorbar(p<.05).Opensymbols(existing)comprisedata
forthevegetationsur veys,whereasclosedsymbols(seed)comprise
datafortheseedtrapsurveys.Thecoloroftheasteriskindicates
thetypeofvegetationdifferingsignificantlyfromzero(i.e.,black
asterisk=seed,whiteasterisk=existing).Notethatthescalefor
FDisforCHisdif ferentincomparisonwiththeothertraits
Existing Seed
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
0
–4
–2
–6
6
4
2
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
Drought Flooded
BYCSMSVCHLM
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
LS
DroughtFlooded
(a) Functional divergence (b) CWM
0
–4
–2
–6
6
4
2
12 
|
   BAATTRUP- PEDERSEN E T Al.
increas e in the mean tra it value of seed b uoyancy in res ponse to
flooding,indicatingthatthefractionofspeciesadaptedto flooded
conditionsincreasedin thearea.This findingisin accordance with
Ozinga,Bekker,Schaminee,andVanGroenendael(2004)who,based
onaclassificationofdispersaltraitsofca.900speciesfromdifferent
typesofcommunities,foundahighlysignificantcorrelationbetween
thepositionofspeciesalongawetnessgradientandthe frequency
ofmorphological adaptationsto hydrochory.This pat tern has later
beenconfirmedalsoforriparianandaquaticplantcommunities(van
denBroek,vanDiggelen,&Bobbink,2005).Asopposedtothefind-
ings ofDouma etal. (2012), however,we did notobserveadeclin-
ingseedmasswith enhancedbuoyancyandseeddensitytherefore
seemstobearelativelypoorpredictorofseedbuoyancy.
For the vegetative CWMs, we obser ved fewer consistent
changesincomparisonwiththosepreviouslyreportedtorespondto
analteredhydrology(Bernard-Verdieretal.,2012;Jungetal.,2010;
Mommer,De Kroon,Pierik,Bögemann, &Visser,2005;Violleetal.,
2011;Voesenek,Colmer,Pierik,Millenaar,&Peeters,2006).There
may be several, nonmutually exclusive, explanations to the less
consistentresponse of trait CWMs to thecontrasting hydrological
settingsin our study.First, differentadaptive strategiesfordiffer-
entspeciesmayco-occurinacommunity,whichmay partlyexplain
therelatively weak responseobservedwhencomparing the mean
traitvalueofsingletraits(Bernard-Verdieretal.,2012;Doumaetal.,
2012). For exam ple, some sp ecies may have smal l and thin leaves
that facilitate oxygen uptake during submergence (Banach etal.,
2009;Nielsen&Sand-Jensen,1989),enablingthemtosurviveunder
floodedconditions,whereas otherspeciesmay avoidflooded con-
ditions by e longating the ir shoots, th ereby accessing at mospheric
oxygen ( Voesene k, Rijnders, P eeters, Van de Steeg, & D e Kroon,
2004)as alsoobservedinourstudy. Second,intraspecific variabil-
itywasnotconsideredforanyofthetrait sinthisstudy,whichmay
have weakened community responses (Albert, Grassein, Schurr,
Vieille dent, & Violle, 2011; Jun g etal., 2010). For example , many
speciescanelongateshootsandpetiolesthatenablethemtosurvive
shallow,prolongedflooding(e.g.,Chenetal.,2009),butsuchabilities
willnotbecapturedwhenapplyingmeantraitvalues.Third,weonly
followed thecommunitiesfor3yearsafterthechangeinhydrolog-
icalsettings.Alteredhydrologicalconditionswill likelymediate fast
exclusionofspeciesintolerantofthesechanges,whereastheestab-
lishment ofnewspecies relieson theirdispersal and establishment
FIGURE7 Averageresponseratios(±1SE)offunctionaltrait
diversit y(FDis)(a)andtraitcomposition(CWMs)(b)inplots
positionedjustabovethenormalwinterwatertable(position2).
Whenaresponseratioissignificantlydifferentfromzero,this
isindicatedwithanasteriskabovetheerrorbar(p<.05).Open
symbols(existing)comprisedataforthevegetationsurveys,
whereasclosedsymbols(seed)comprisedatafortheseedtrap
surveys.Thecoloroftheasteriskindicatesthetypeofvegetation
differingsignificantlyfromzero(i.e.,blackasterisk=seed,white
asterisk=existing.NotethatthescaleforFDisforSMisdifferent
incomparisonwiththeothertraits
Existing Seed
0
–2
–1
–3
3
2
1
0
–2
–1
–4
–3
4
3
2
1
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
Drought Flooded
BYCSMSVCHLM
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
LS
DroughtFlooded
(a) Functional divergence (b) CWM
0
–2
–1
–4
–3
4
3
2
1
    
|
 13
BAATTR UP- PEDERSEN E T Al.
within th e areas. The refore, a delay i n the respon se of mean trai t
values of thecommunit y to changedhabitat conditions mayoccur
(Oddershede,Svenning,&Damgaard,2015;Sandeletal.,2010),re-
flectingprogressivefillingofavailablenicheswithinthecommunity,
eventuallyleadingtostronger traitconvergence (Helsen,Hermy,&
Honnay,2012;Roscher,Schumacher,Gerighausen,&Schmid,2014).
Thisdelaymaybestrongerinexistingvegetationthan inbareplots
where col onization and envi ronmental filt ering may occur rapi dly
(Fraaije, Braak, Verduyn, Verhoeven, etal., 2015; Fraaije, Braak,
Verduyn, Br eeman, etal., 2015) as a lso seen in the bare pl ots in
ourstudy, which dif fered significantlyinspeciescompositionfrom
the exis ting vegetatio n. Finally, we did not h ave traits for a ll spe-
cies foun d in the areas, a nd the result s regardi ng the respon se of
communit y-weightedtrait meansshould therefore be treated with
caution.
4.3 | Seeds
Weexpected to find functionallymorediverseseedpools inthe
floodedareasthaninthedroughtareas,reflectingthathydrochory
canintroduceseedsfromanupstreamspeciespoolinadditionto
seeds that may enter from the localspecies poolby wind and/or
animal dispersal.Furthermore, earlier investigations have shown
that seed deposition in flooded areas is highly dependent on
flowpatterns andmicrotopography withinthe areas andthatthe
amountofseedsdepositedcoincideswiththedriftlineinflooded
areas(Nilsson&Grelsson,1990;Riis,Baattrup-Pedersen,Poulsen,
&Kronvang,2014).Wethereforeexpectedtofindthehighestdi-
versityatintermediatedistancefrom the streams.However,our
study didnotconfirmthisexpectationas thefunctionaldiversity
wasunaffectedbyflooding.Thisfindingindicatesthatspeciesar-
riving by water may not be more functionallydiversethanthose
arrivi ng by other means of di spersal. Th is interpretat ion is sup-
porte d by previous studie s reporting that species d ispersed by
hydrochor yareoftenthosealreadylocallyabundant(Brederveld,
Jähnig,Lorenz,Brunzel,&Soons,2011;Soomersetal.,2011)and
that floo ding in itself m ay not be sufficie nt to increase spe cies
richnes s in grasslan d vegetation u pon restor ation of more n atu-
ral floodingconditions(Baattrup-Pedersen,Riis, & Larsen, 2013;
Baattrup-Pedersen,Dalkvist,etal.,2013;Bissels,Holzel,Donath,
&Otte,2004).
FIGURE8 Averageresponseratios(±1SE)offunctional
traitdiversity(FDis)(a)andtraitcomposition(CWMs)(b)in
plotspositionedatthehighendofthefloodplain(position3).
Whenaresponseratioissignificantlydifferentfromzero,this
isindicatedwithanasteriskabovetheerrorbar(p<.05).Open
symbols(existing)comprisedataforthevegetationsurveys,
whereasclosedsymbols(seed)comprisedatafortheseedtrap
surveys.Thecoloroftheasteriskindicatesthetypeofvegetation
differingsignificantlyfromzero(i.e.,blackasterisk=seed,white
asterisk=existing).NotethatthescaleforFDisforBYC,LM,and
LSisdifferentincomparisonwiththeothertrait s
Existing Seed
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
0
–6
–3
–9
9
6
3
0
–4
–2
–6
6
4
2
Drought Flooded
BYCSMSVCHLM
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
0
–2
–1
–3
3
2
1
0
–6
–3
–9
9
3
1
0
–4
–2
–6
6
4
2
LS
DroughtFlooded
(a) Functional divergence (b) CWM
0
–2
–1
–4
–3
4
3
2
1
0
–2
–1
–4
–3
4
3
2
1
14 
|
   BAATTRUP- PEDERSEN E T Al.
5 | CONCLUSIONS
We observed large study site variability in plant community re-
sponses t o the hydrologic al conditio ns of our exper iment, rega rd-
ingbothdroughtandflooding.Wedid,however,identifyconsistent
patter ns in the taxo nomic and fu nctional r esponses of p lant com-
munitiestothealteredhydrologicalsettings.Bothtaxonomicdiver-
sity and functional diversity were generallynegativelyaffected by
floodingandtosomeextentalsobydrought.Thesefindingsindicate
that the range of successful strategies declined duetothe altered
hydrologic al setting s. The loss in fu nctional di versity was a lso re-
flecte d in the mean tra it response of th e riparian commu nity but
fewer signif icant and con sistent changes a ppeared in re sponse to
thealteredhydrologicalconditions.Thismightreflectacombination
ofthe existenceof severalstrategies withinthe vegetationto cope
withthealtered hydrological settings and adelayinthemeantrait
respons e due to a slow and pr ogressive fil ling of available n iches.
Takentogether,ourresultsdemonstratethateventhoughitisdiffi-
cultwithina3-yeartimeframetopredictgeneraleffectsofextreme
hydrologicalconditionsonriparianvegetationcharacteristicsacross
large regions, the observed losses in diversity likely affect ecosys-
tem func tioning by redu cing niche comp lementari ty with possi ble
cascadingeffectsonresourceuseefficiency.
ACKNOWLEDGMENTS
This work wa s supported by the Eu ropean Union 7th Fr amework
Projects RE FRES Hu nd ercontra ctno .24 4121andMARSunde rcon-
tract no.603378(Annet teBaattrup-Pedersen).Wethankthe land-
owners,waterboards, and nature organizationsforkindly allowing
ustousetheirareasfor ourexperiments,MarleneVenøSkjærbæk,
HenrikStenholt,UffeMensberg,andseveralstudentsforhardwork
constr ucting the dams , Helena Kalles trup, Tinna Chris tensen and
Juana Jacobsenforfigure layout,AnneMette Poulsenforeditorial
supportandFrederikHansenBaattrupformakingthefinaleditorial
changes.ThecompanyAstroTurf®isacknowledgedforsponsoring
seedmats.
CONFLICT OF INTEREST
Nonedeclared.
AUTHORS CONTRIBUTIONS
ABP,AG,CCH,andMSdesigned the study,EGandSELconducted
thestatistical analyses, AO and TR assistedinthefield campaigns,
andPMvD provideda number oftraitsforthespecies.ABPwrote
themanuscriptandallauthorscontributedtoitsfinalization.
ORCID
Annette Baattrup-Pedersen ht t p :// o rc i d .
org/0000-0002-3118-344X
REFERENCES
Ackerly, D.(2004).Functionalstrategiesofchaparralshrubs in relation
toseasonalwaterdeficitanddisturbance.Ecological Monographs,74,
25–44.ht tps://doi.org/10.1890/03-4 022
Alber t, C. H., Grassein, F., Schurr, F. M., Vieilledent, G., & Violle, C.
(2011). When and how should intraspecific variability be consid-
ered in trait-based plant ecology?. Perspectives in Plant Ecology,
Evolution and Systematics, 13, 217–225. https://doi.org/10.1016/j.
ppees.2011.04.003
Ander sen, H. E., K ronvang, B ., Larse n, S. E., Hof fmann, C . C., Jensen ,
T.S., & Rasmussen, E. K.(2006). Climate-change mediated impacts
onhydrologyandnutrient sina Danishlowland riverbasin. Science
of the Total Environment, 365, 223–237. https://doi.org/10.1016/j.
scitotenv.2006.02.036
Armstrong,W.,Brandle,R.,&Jackson,M.B.(1994).Mechanismsofflood
toleranceinplants.Acta Botanica Neerlandica,43,307–358.https://
doi .or g/10.1111/j.1438- 867 7.1994.t b0 0756.x
Baattrup-Pedersen, A., Dalkvist, D., Dybkjær, J. B., Riis, T., Larsen,
S. E., & Kronvang, B. (2013). Species recruitment following
flooding, sediment deposition and seed addition in restored ri-
parian areas. Restoration Ecology, 21, 399–408 . https://doi.
org /10.1111/j.1526 -100X .2012.0 0893 .x
Baattrup-Pedersen, A., Jensen, K., Thodsen, H., Andersen, H. E.,
Andersen, P. M., Larsen, S. E., … Kronvang, B. (2013). Ef fects of
strea m flooding on t he distribut ion and diver sity of ground water-
dependentvegetationinriparianareas.Freshwater Biology,58, 817–
827.ht tp s://doi.org/10.1111/fw b.12 08 8
Baat trup-Ped ersen,A .,Riis,T.,&Larsen,S.E.(2013).Catchmentcharac-
teristicsandplantrecruitmentfromsedimentinstreamandmeadow
habitats. River Research and Applications, 29, 855–863. https://doi.
org /10.1002/rr a. 2573
Bailey-Serres,J.,&Voesenek,L.A.C.J.(2008).Floodingstress:Acclimation
and geneticdiversity. Annual Review of Plant Biology,59, 313–339.
https://doi.org/10.1146/annurev.arplant.59.032607.092752
Banach,K.,Banach, A. M., Lamers, L. P.,DeKroon,H.,Bennicelli,R.P.,
Smits,A .J.,& Visser,E. J.(2009).Dif ferencesinflooding tolerance
betwe en species from t wo wetland habit ats with contra sting hy-
drology: Implications for vegetation development in futureflood-
water retention areas. An nals of Botany,10 3, 341–351.ht tps://doi.
org /10.1093/aob/m cn18 3
Barkman,J.J.,Doing,H.,&Segal,S.(1964).KritischeBemerkungenund
Vorschläge zur quantitativen Vegetationsanalyse. Acta Botanica
Neerlandica,13 ,394–419.https://doi.org/10.1111/j.1438-8677.1964.
tb0 0164.x
deBello,F.,&Mudr ak,O.(2013). Plant trait sas indic ators: Loss orgain
ofinformation?.Applied Vegetation Science,16,353–354.https://doi.
org /10.1111/avs c.1 2035
Beltman,B.,Willems,J.H.,&Güsewell,S.(20 07).Floodevent soverrule
fertilisereffec ts onbiomass production and speciesrichnessin riv-
erinegrasslands.Journal of Vegetation Science,18 ,625–634.https://
doi .or g/10.1111/j.1654-1103.2007.tb02576.x
Bernard-Verdier,M.,Navas, M. L.,Vellend, M., Violle, C.,Fayolle,A., &
Garnie r, E . (2012). Communit y assembly al ong a soil depth g radi-
ent:Contrastingpatternsofplanttraitconvergenceanddivergence
in aMediterranean rangeland. Journal of Ecolog y, 100, 14 22–1433. 
https://doi. org/10.1111/1365-2745.120 03
Bissels , S., Holzel, N ., Donath, T. W., & Otte , A. (200 4). Evaluation o f
restor ation success in al luvial grassl ands under contr asting flood -
ing regimes. Biological Conservation, 118, 641–650. https://doi.
org /10.1016/j.biocon.200 3.10. 013
Borg y, B ., Violle, C., C holer, P., G arnier, E., Kattg e, J., Loranger, J., …
Diquelou, S. (2017). Sensitivity of community-level trait–environ-
mentrelationshipstodatarepresentativeness:Atestforfunctional
biogeography.Global Ecology and Biogeography,26,729–739.ht tps://
doi .or g/10.1111/geb.12573
    
|
 15
BAATTR UP- PEDERSEN E T Al.
Braun-Blanquet, J. (1928). Pflanzensoziologie. Grundzüge der
Vegetationskunde.InW.Schoenichen(Hrsg.),Biol. Studienbücher 7
(pp.1–330).Berlin,Germany:Springer.
Breder veld, R. J., Jähnig, S. C., Lorenz, A . W., Brunzel, S., & Soons,
M. B. (2011). Dispersal as a limiting factor in the colonization
of restored mountain streams by plants and macroinverte-
brates. Journal of Applied Ecology, 48, 1241–1250. https://doi.
org/10.1111/j.1365-2664.2011.02026.x
van den Broek, T., van Dig gelen, R., & Bobbink, R. (2005). Variation
in seed buoyancy of species in wetland ecosystems with dif fer-
ent flooding dynamics. Journal of Vegetation Science, 16 , 579–586.
https://doi. org/10.1111/j .1654-1103 .2005.tb02399.x
Cappe rs, R., Be kker, R. M., & Jans, J . E. A. (200 6). Digitale Zadenatlas
van Nederland Groningen. Groningen, The Netherlands: Barkhuis
Publishing.www.zadenatlas.nl
Catford,J.A.,Naiman, R.J.,Chambers,L.E.,Roberts,J.,Douglas,M.,&
Davies, P.(2013). Predicting novel riparian ecosystems in a chang-
ing climate. Ecosystems, 16, 382–400. https://doi.org/10.1007/
s1002 1- 0 1 2-95 6 6-7
Chen, X., Huber,H.,deKroon,H.,Peeters,A.J., Poorter,H., Voesenek,
L. A., & Visser,E. J. (2009).Intraspecific variation inthemagnitude
and pat tern of floodin g-induced sh oot elongatio n in Rumex palus-
tris. Annals of Botany,10 4,1057–1067.https://doi.org /10.1093/aob/
mcp198
Christensen, J. H., & Christensen, O. B. (2007). A summar y of the
PRUDENCE model projections of changes in European climate
by the end of t his century. Climatic Change, 81, 7–30. http s://doi.
org /10.1007/s10584- 00 6-9210-7
Cornwell,W.K.,&Ackerly,D.D.(2009).Communityassemblyandshift s
inthe distribution of trait values across an environmental gradient
incoastalCalifornia.Ecological Monographs,79,109–126.http s://doi.
org /10.189 0/07-1134.1
Díaz, S.,&Cabido, M.(2001). Vive ladifference:Plantfunctional diver-
sitymatterstoecosystemprocesses.Trends in Ecolo gy & Evolution,16,
646–655.https://doi.org/10.1016/S0169-5347(01)02283-2
Diaz,S.,Hodgson,J.G.,Thompson,K.,Cabido,M.,Cornelissen,J.H.C .,
Jalili,A .,…Band,S.R.(2004).Theplanttraitsthatdriveecosystems:
Evidence fromthree continents. Journal of Vegetation Science, 15,
295–3 04.h tt ps: //doi.org /10.1111/j.1654 -1103.20 0 4.t b0 226 6.x
Douma, J.C., Bardin,V.,Bartholomeus,R .P.,& Bodegom,P.M.(2012).
Quantif ying thefunctional responses of vegetation todrought and
oxygen stress intemperateecosystems. – Func. Functional Ecology,
26,1355–1365.https://doi.org/10.1111/j.1365-2435.2012.02054.x
Do u vi lle ,H. ,C h auv in, F., Pla nto n,S ., Royer, J.F. ,S ala s- M el i a, D. ,&Ty tec a ,
S.(2002).Sensitivityofthehydrologicalcycletoincreasingamount s
ofgreenhousegasesandaerosols.Climate Dynamics,20,45–68.
Fraaije, R . G., Braa k, C. J., Verduy n, B., Bree man, L., Verh oeven, J. T.,
&Soons, M.B. (2015). Early plantrecruitment stages set the tem-
plate for the development of veget ation patterns along a hy-
drological gradient. Functional Ecology, 29, 971–980. https://doi.
org /10.1111/1365-2435.12441
Fraaije, R . G., Braa k, C. J., Verduy n, B., Verhoeve n, J. T., & Soons, M.
B. (2015). Dispersal versus environmental filtering in a dynamic
system : Drivers of vege tation pat terns and dive rsity alo ng stream
riparian gradients. Journal of Ecology, 103, 16 34–1646 . https ://d oi.
org /10.1111/1365-2745.1246 0
Garssen,A.G.,Baattrup-Pedersen,A .,Voesenek,L.A.,Verhoeven,J.T.,
& Soons, M . B. (2015). Rip arian plant co mmunity r esponses to i n-
creasedflooding:Ameta-analysis. Global Change Biology,21, 2 8 81–
2890.https://doi.org/10.1111/gcb.12921
Garssen, A. G ., Verhoeven, J. T., & Soons, M. B. (2014). Effects of
climate-inducedincreasesinsummer droughton riparianplantspe-
cies:Ameta-analysis.Freshwater Biology,59,1052–1063.https://doi.
org /10.1111/fwb.1 2328
Helsen, K., Hermy, M., & Honnay, O. (2012). Trait but not spe-
cies convergence during plant communit y assembly in restored
semi-natural grasslands. Oikos, 1 21, 2121–2130. https://doi.
org /10.1111/j.160 0-0706. 2012. 20 499.x
Horner,G.J.,Cunningham,S.C.,Thomson,J.R.,Baker,P.J.,&MacNally,
R.(2012).Foreststructure,floodingandgrazingpredictunderstorey
composi tion of flood plain fores ts in sout heastern A ustralia . Forest
Ecology and Management, 286, 148–158. https://doi.org/10.1016/j.
foreco.2012.08.023
Hough-Snee, N., Laub,B. G., Merritt,D. M.,Long, A.L., Nackley,L . L.,
Roper,B.B.,&Wheaton,J.M.(2015).Multi-scaleenvironmentalfil-
tersandnichepartitioninggovernthedistributionsofriparianvege-
tationguilds.Ecosphere,6,1–22.
Intergovernmental Panel on Climate Change (IPCC) (2007). Synthesis
report: Summary for policymakers.Fourth Assessment Report , IPCC
Plenar yXX VII,Valencia,Spain.
Jung, V., Albert, C . H., Violle, C., Kunstler, G., Loucougaray, G., &
Spiegelberger, T. (2014). Intraspecific trait variabilit y medi-
ates the response of subalpine grassland communities to ex-
treme dr ought events. Journal of Ecology, 102, 45–53. htt ps://doi.
org /10.1111/1365-2745.12177
Jung,V.,Violle,C.,Mondy,C.,Hoffmann,L.,&Muller,S.(2010).Intraspecific
variability and trait-based community assembly.Journal of Ecology,
98,113 4–1140 .https://doi.o rg /10.1111/j.1365-2745.2010.01687.x
Karlsson,I.B.,Sonnenborg,T.O.,Seaby,L.P.,Jensen,K.H.,&Refsgaard,
J.C .(2015). Effec tofa high-endCO2-emissionscenarioonhydrol-
og y. Climate Research,64,39–54.https://doi.org/10.3354/cr01265
Kleyer, M., & Bekker,R . M. (2008). The LEDAtraitbase: A database of
life-histor ytraitsoftheNorthwestEuropeanflora.Journal of Ecol ogy,
96,1266–1274.https://doi.org/10.1111/j.1365-2745.2008.01430.x
Kominoski, J. S., Shah, J. J. F.,Canhoto,C., Fischer,D.G., Giling, D. P.,
González, E., … McElarney, Y. R. (2013). Forecasting func tional
implications of global changes in riparian plant communities.
Frontiers in Ecology and the Environment, 11, 423–4 32. https://doi.
org /10.1890/120056
Lavorel, S., Grigulis, K., McIntyre, S., Williams, N. S., Garden, D.,
Dorrough,J.,…Bonis,A.(20 07).Assessingfunc tionaldiversityinthe
field-methodolog ymatters!.Functional Ecology,22,134–147.
Mommer, L.,De Kroon, H., Pierik, R., Bögemann, G. M.,& Visser,E. J.
(20 05).Af unction alc ompar isonofacc lim ationtoshad ean dsu bmer-
genceintwoterrestrialplantspecies.New Phytologist,167,197–206.
https://doi.org/10.1111/j.1469-8137.2005.01404.x
Nielsen , S. L., & San d-J ensen, K. (1989). Regul ation of photos ynthetic
rates of sub merged rooted m acrophytes . Oecologia, 81, 364–368.
htt ps://doi.org /10.10 07/BF0 0377085
Nilsson,C.,Brown,R.L.,Jansson,R.,&Merritt,D.M.(2010).Theroleof
hydrochoryinstructuringriparianandwetlandvegetation.Biological
Reviews,85,837–858.
Nilsson , C., & Grelsson , G. (19 90). The effec ts of litter displ acement
on riverbank vegetation.Canadian Journal of Botany, 68, 735–741 .
https://doi.org/10.1139/b90-097
Oddershede,A .,Svenning,J.C.,&Damgaard,C.(2015).Topographically
determined water availability shapes functional patterns of plant
communities within and across habitat types. Plant Ecology, 216,
1231–1242.https://doi.org/10.1007/s11258-015-0504-6
Oksanen,J.,Blanchet,F.G.,Kindt,R.,Legendre,P.,Minchin,P.R.,O’Hara,
R. B., … Wagner,H. (2014).Vegan:Communit y ecolog y package.R
package v ersion 2. 2-0. Retrieve d from http: //CR AN.R-pro ject.or g/
package=vegan.
Osenberg,C .W.,Sarnelle,O.,&Cooper,S.D.(1997).Effectsizeineco-
logica l experimen ts: The appl ication of bio logical mod els in meta-
analysis.American Naturalist,150,799–812.
Ozinga , W.A ., Bekker, R. M ., Schami nee, J. H., & Van G roenen dael, J.
M. (200 4). Dispersal potential in plant communities depends on
16 
|
   BAATTRUP- PEDERSEN E T Al.
environmentalconditions. Journal of Ecolog y, 92, 767–777.h ttps://
doi.org/10.1111/j.0022-0477.2004.00916.x
Poorter,L.,& Markesteijn,L.(2008). Seedling traitsdeterminedrought
tolerance of tropical treespecies. Biotropica,40,321–331.https://
doi .or g/10.1111/( ISSN)174 4-7429
RCoreTeam.(2014).R: A language and environment for statistical comput-
ing.Vienna,Austria:RFoundationforStatisticalComputing.http://
www.R-project.org/.
Riis, T., Baat trup-Peder sen, A., Poul sen, J. B., & Kronv ang, B. (2014).
Seedgerminationfromdepositedsedimentsduringhighwinterflow
in riparian areas. Ecological Engineering, 66, 103–110. https://doi.
org/10.1016/j.ecoleng.2013.05.006
vanRoosmalen,L., Sonnenborg, T.O.,&Jensen, K.H .(2009).Impactof
clim ateandla nd us ec ha ng eo nt he hydr ol og yofa la rge-sca le ag ri cul-
turalcatchment .Water Resources Research,45,W00A15.
Roscher, C., Schumacher, J., Gerighausen, U., & Schmid, B. (2014).
Different assemblyprocessesdrive shif ts in speciesand functional
compositioninexperimentalgrasslandsvaryinginsowndiversit yand
communityhistory.PLoS ONE,9,e101928. ht tps://doi.org/10.1371/
journal.pone.0101928
Sandel, B., Goldstein, L. J., Kraft, N. J., Okie, J. G., Shuldman, M. I.,
Ackerly, D. D., … Sud ing, K. N. ( 2010). Contras ting trai t response s
in plant communities to experimental and geographic varia-
tion in precipitation. New Phytologist, 188, 565–575. https://doi.
org /10.1111/j.1469- 8137.2 010.03 382.x
Soomer s, H., Sarneel, J. M.,Patberg,W.,Verbeek, S. K ., Verweij,P.A.,
Wassen, M . J., & van Diggele n, R. (2011). Factors in fluencing th e
seedsourceandsinkfunctions ofafloodplainnaturereserveinthe
Netherlands.Journal of Vegetation S cience,22,445–456.https://doi.
org /10.1111/j.1654-1103.20 11.01261.x
Ström, L.,Jansson, R., Nilsson, C., Johansson, M. E., &Xiong,S. (2011).
Hyd rolog iceffec tsonripar ianveget at ioninabo realR iver:Anexper-
imenttestingclimatechangepredictions.Global Change Biology,17,
254–267.https://doi.org/10.1111/j.1365-2486.2010.02230.x
Stromberg,J.C.,Bagstad,K. J.,Leenhouts, J.M.,Lite,S.J., &Makings, E.
(2005).Effectsofstreamflowintermittencyonriparianvegetationof
asemiaridregion river(San PedroRiver,Arizona).River Research and
Applications,21,925–938.https://doi.org/10.1002/(ISSN)1535-1467
Strombe rg, J. C., H azelton, A . F.,& Wh ite, M. S. (20 09). Plant sp ecies
richness in ephemeral and perennial reaches of a dryland river.
Biodiversity and Conservation,18,663–677.https://doi.org/10.1007/
s10531-0 08-9532-z
Suding,K.N.,Lavorel,S.,Chapin,F.S.,Cornelissen,J.H.,Diaz,S.,Garnier,
E.,…Navas,M.L.(2006).Scalingenvironmentalchangethroughthe
community-level:A traitbasedresponse andeffectframeworkfor
plants.Global Change Biology,14,1125–1140.
Swenson , N. G., & Enquist , B. J. (2007). Eco logical and evol utionary
determinants of a key plant functionaltrait: Wooddensity andits
community-widevariation acrosslatitudeand elevation. American
Journal o f Botany,94,451–459.https://doi.org/10.3732/ajb.94.3.451
Thodsen, H., Baattrup-Pedersen, A., Andersen, H. E.,Jensen, K. M.
B., Andersen, P. M., Bolding, K., & Ovesen, N. B. (2014). Climate
changeeffectsonlowlandstreamfloodregimesandriparianrich
fen vegetation communities in Denmark. Hydrological Sciences
Journal,51,1–15.
Thuille r,W., Al bert, C . H., Dub uis, A. , Randin, C ., & Guis an, A. (20 10).
Variation inhabitatsuitabilitydoesnotalwaysrelatetovariation in
specie s plant fun ctional t raits . Biology Letters,6, 120–123.https://
doi.org/10.1098/rsbl.2009.0669
vanderMaarel,E.(2007).Transformationofcover-abundancevaluesfor
appropriatenumericaltreatment– Alternativesto theproposalsby
Podani.Journal of Vegetation Science,18,767–770.
Violle, C., Bonis, A., Plantegenest, M., Cudennec, C., Damgaard, C.,
Marion , B., … Bouzillé , J. B. (2011). Plant fun ctional tr aits capt ure
species richness variations along a flooding gradient. Oikos, 120,
389–398.https://doi.org/10.1111/j.1600-0706.2010.18525.x
Violle,C., Navas,M.L.,Vile,D.,Kazakou,E.,For tunel,C.,Hummel,I.,&
Garnier,E.(2007).Lettheconceptoftraitbefunctional!.Oikos,116 ,
882–8 92. ht tp s://doi .org/10.1111/ j.0030 -1299.20 07.15559.x
Voesenek, L. A. C. J., Colmer, T. D., Pierik, R., Millenaar, F. F., &
Peeters, A. J. M. (2006). How plants cope with complete
submergence. New Phytologist, 170, 213–226. https://doi.
org /10.1111/j.1469- 8137.2 00 6. 01692.x
Voesenek,L.A.C.J.,Rijnders,J.H.G.M.,Peeters,A.J.M.,VandeSteeg,
H. M., & DeKroon,H. (2004). Planthormones regulate fastshoot
elongation underwater: From genes to communities. Ecology, 85,
16–27.https://doi.org/10.1890/02-740
Weiher, E., Cla rke, G. P., & Keddy, P. A . (1998). Communit y assembly
rules,morphologicaldispersion,andthecoexistenceofplantspecies.
Oikos,81,309–322.https://doi.org/10.2307/3547051
Westoby,M.,&Wright, I. J. (2006).Land-plant ecology on the basis of
functionaltraits.Trends in Ecolog y & Evolution, 21,261–268 .https://
doi.org/10.1016/j.tree.2006.02.004
Westwood, C. G., Teeuw, R. M., Wade, P. M., Holmes, N . T. H., &
Guyard,P.(2006).Influencesofenvironmentalconditionsonmac-
rophytecommunitiesindrought-affectedheadwaterstreams. River
Research and Applications, 22, 703–726. https://doi.org/10.1002/
(ISSN)1535-1467
Wright, I. J., Reich, P.B., Cornelissen,J.H .,Falster, D.S.,Groom,P.K.,
Hikosaka,K.,…Osada,N.(20 05).Modulationofleafeconomictraits
and tra it relations hips by climate . Global Ecolog y and Biogeography,
14,411–421.https://doi.org/10.1111/j.1466-822x.2005.0 0172.x
Wright,I.J.,Reich,P.B.,&Westoby,M.(2003).Least-costinputmixtures
ofwater and nitrogen for photosynthesis. American Naturalist, 161,
98–111.
Zwicke, M., Alessio, G . A., Thiery, L., Falcimagne, R., Baumont, R.,
Rossignol,N.,…Picon-Cochard,C.(2013).Lastingef fect sofclimate
disturbance on perennial grassland above-ground biomass pro-
duction under two cutting frequencies.Global Change Biology, 19,
3435–3448.
How to cite this article:Baattrup-PedersenA,GarssenA,
GötheE,etal.Structuralandfunctionalresponsesofplant
communitiestoclimatechange-mediatedalterationsinthe
hydrologyofriparianareasintemperateEurope.Ecol Evol.
201 8; 0 0 :1–16 . https://doi.org/10.1002/ece3.3973
... For example, mean flood frequency across 15 sites was found not to be related to trait diversity, whereas the magnitude of a 20-year flood and the variability in flood frequency (when they occurred during the year) were both related to trait diversity (Lawson et al., 2015). Species richness was decreased in field experiments of artificial flooding and drought,, although trait diversity was more tolerant to drought conditions overall (Baattrup-Pedersen et al., 2018). Rivers with more variable flows tend to encourage pioneer species, whilst those with prolonged periods of drought see an increased abundance of water tolerant species (Aguiar et al., 2018). ...
... Some variables inevitably require databases to avoid substantial disturbance, such as root characteristics (e.g. Stromberg and Merritt, 2016;Aguiar et al., 2018;Baattrup-Pedersen et al., 2018), although databases should be used with caution; for example, maximum plant height is not related to the plant submergence height at the time of a particular flow event, and great variation can be seen in both effect and response traits for a singular species (Hortobágyi et al., 2017;Hortobágyi et al., 2018). Therefore, accounting for temporal and spatial variation in traits is important and highlights the need for temporally and spatially relevant data collection. ...
... Although vegetation trait response to hydrological conditions is well documented and can be applied across several scenarios (e.g. Baattrup-Pedersen et al., 2018), traits-based interactions with morphology and flow are less well documented. In order to prove that traits-based methods should be widely adopted amongst the research community, evidence of applicability between domains is required, and this should be an avenue of research that is pursued in tandem with isolating the effects of different guilds, as both complement each other. ...
Thesis
The importance of vegetation within the fluvial domain is well established, influencing both flow and morphology, and has long been recognised as a key component of the river corridor. Despite this, adequately capturing the spatial and structural variability of vegetation for us to understand the eco-geomorphic feedbacks occurring at a range of scales remains a challenge. Currently, the focus of this research takes place at either the individual plant scale, looking into vegetation-flow interactions, or at larger scales, attempting to spatially discretise vegetation for bulk roughness metrics. Subsequently, hydrodynamic models are typically based around these bulk roughness values which exclude vegetation structure. The aim of this research is to attempt to bridge this gap and link the different scales of analysis to improve our understanding of eco-geomorphic interactions. This is achieved by: (1) Examining current remote sensing methods that may be used for fluvial research, (2) Developing a novel UAV based remote sensing system to collect plant scale data for reach scale analysis, (3) Extracting trait-based metrics for individual plants and upscaling these to reach scale extents, (4) Implementing these traits-based parameters in to a 2D hydrodynamic model. At present, the main trade offs in remote sensing centre around scale and resolution, whereby capturing larger areas reduces the detail of the phenomena being studied. Structure from Motion (SfM) photogrammetry has helped to bridge this gap yet fails to reconstruct topography in vegetated reaches and cannot resolve vegetation structure. These drawbacks have herein been overcome with the introduction of UAV based laser scanning techniques, capable of accurately capturing topography in vegetated reaches as well as resolving vegetation structure. This data can be used to extract traits-based vegetation metrics, identify individual guilds within a river corridor, and be scaled to spatially discretise vegetation structure at reach scales. Guilds are then evaluated against monitored morphological change to investigate eco-geomorphic feedbacks. These vegetation metrics and classifications are subsequently used to parameterise a 2D hydrodynamic model, showing the impact that vegetation discretisation methods have on model outputs. This research has developed methods for obtaining reach scale data on vegetation structure to better inform our understanding of eco-geomorphic feedbacks. The robustness and scalability of these methods presents future avenues of research, both within the fluvial domain and for other environmental research applications, where eco-geomorphic feedbacks have a major influence in shaping the Earth’s surface.
... Because different species are affected in different ways, riparian vegetation composition is likely to change in the future. Although changes can be predicted for some species (e.g., Balke and Nilsson, 2019;Perry et al., 2020), the effects of extreme events, interactions between species, large local variation and interactions with other pressures make it difficult to predict what future riparian zones will look like, but decreased taxonomic and functional diversity are to be expected Baattrup-Pedersen et al., 2018). ...
... Although several studies cited here (e.g., Lind and Nilsson, 2015;Baattrup-Pedersen et al., 2018;Sarneel et al., 2019b) cover multiple years, short-term changes found in such work cannot always be extrapolated to the medium or long term (see for example Blume-Werry et al., 2016). Much recent and valuable research aims to predict climatic changes (e.g., Arheimer et al., 2017) and the effects these may have on riparian vegetation, using qualitative (Catford et al., 2013) or quantitative models (Ström et al., 2012;Jansson et al., 2019). ...
... Despite the uncertainties regarding the exact magnitude of climatic change, the pace with which it takes place and what role extreme events will come to play, the literature (e.g., Nilsson et al., 2013;Lind et al., 2014b) points out that these changes will be reflected in riparian vegetation. Theoretical models and empirical evidence consistently point out that riparian species composition, and thus the functioning of riparian ecosystems, will change (e.g., Ström et al., 2012;Baattrup-Pedersen et al., 2018). Much remains unknown about how different pressures interact with each other, especially when it comes to pressures that operate on different scales. ...
Article
Full-text available
Riparian zones are species-rich and functionally important ecotones that sustain physical, chemical and ecological balance of ecosystems. While scientific, governmental and public attention for riparian zones has increased over the past decades, knowledge on the effects of the majority of anthropogenic disturbances is still lacking. Given the increasing expansion and intensity of these disturbances, the need to understand simultaneously occurring pressures grows. We have conducted a literature review on the potential effects of anthropogenic pressures on boreal riparian zones and the main processes that shape their vegetation composition. We visualised the observed and potential consequences of flow regulation for hydropower generation, flow regulation through channelisation, the climate crisis, forestry, land use change and non-native species in a conceptual model. The model shows how these pressures change different aspects of the flow regime and plant habitats, and we describe how these changes affect the extent of the riparian zone and dispersal, germination, growth and competition of plants. Main consequences of the pressures we studied are the decrease of the extent of the riparian zone and a poorer state of the area that remains. This already results in a loss of riparian plant species and riparian functionality, and thus also threatens aquatic systems and the organisms that depend on them. We also found that the impact of a pressure does not linearly reflect its degree of ubiquity and the scale on which it operates. Hydropower and the climate crisis stand out as major threats to boreal riparian zones and will continue to be so if no appropriate measures are taken. Other pressures, such as forestry and different types of land uses, can have severe effects but have more local and regional consequences. Many pressures, such as non-native species and the climate crisis, interact with each other and can limit or, more often, amplify each other’s effects. However, we found that there are very few studies that describe the effects of simultaneously occurring and, thus, potentially interacting pressures. While our model shows where they may interact, the extent of the interactions thus remains largely unknown.
... Riparian vegetation is known to be sensitive to spatio-temporal precipitation patterns as they strongly affect river hydrology (Capon et al., 2013). The results are consistent with experimental and observational studies that reported declines in FRic and FRed due to drought occurrence and duration (Baattrup-Pedersen et al., 2018;Bruno et al., 2016). However, our results show that we should consider water availability together with other climate stressors (Butterfield et al., 2018;Pérez-Ramos et al., 2017). ...
... The second major implication is that lowland riparian ecosystems may experience declines in functional diversity due to an increasing influence of environmental filtering associated with annual and seasonal water availability. In most of the study area, declines in annual and seasonal precipitation are expected to shift communities toward lower FRic and FDiv and increase the presence of droughtadapted species with conservative traits (Baattrup-Pedersen et al., 2018;Bruno et al., 2016). This may lead to a decline in ecosystem functioning and temporal stability compared to the current baseline, particularly in the Temperate-Atlantic areas (Lozanovska, Ferreira, Segurado, & Aguiar, 2018;Rohde et al., 2021). ...
Article
Riparian plant communities are key to ecosystem functioning and important providers of ecosystem services on which wildlife and people depend. Ecosystem functioning and stability depend on functional diversity and redundancy. Therefore, understanding which and how different drivers shape community assembly processes and functional patterns is crucial. However, there is limited knowledge of these processes at larger scales for the entire riparian vascular plant community. Two community assembly processes dominate: environmental filtering , where species living in similar environments have similar traits leading to trait convergence; and limiting similarity , where similar traits cause species to compete more strongly leading to trait divergence. We assessed functional diversity patterns of riparian vascular plant communities across an Atlantic–Mediterranean biogeographical gradient in north Portugal. We used functional diversity indices and null models to detect community assembly processes and whether these processes change along environmental gradients. We hypothesised that environmental filtering associated with precipitation and aridity would be the prevailing assembly process at a regional scale. We also expected a shift from environmental filtering to limiting similarity as precipitation‐related stress declined. As hypothesised, patterns of functional diversity were consistent with environmental filtering of species occurrences at the regional scale. Functional patterns were also consistent with a shift between environmental filtering and limiting similarity as cold and aridity stress declined. Under stressful environmental conditions, communities showed lower functional divergence and richness than expected by chance. Environmental filtering was more strongly associated with minimum temperatures than precipitation and aridity. Underlining the need for hierarchical approaches and the analysis of multiple climatic stressors, our results highlighted the relevance of large‐scale environmental stress gradients and the potential role of community assembly in influencing riparian functional diversity. Alterations in stress filters due to climate change will affect assembly processes and functional patterns, probably affecting ecosystem functioning and stability.
... Due to their ecological importance, macrophyte species are formally recognized as one out of four biological quality elements used in the monitoring of surface water ecosystems [15]. Macrophyte communities are strongly influenced by hydrology, reflecting both anthropogenic and natural disturbances, with hydrology having a stronger effect on the trait composition than on the species composition of the community [16][17][18][19]. ...
... There is a growing body of literature dealing with the relationships between environmental factors and functional diversity and trait distributions of macrophyte communities in altered waterbodies (e.g., [4][5][6][13][14][15][16][17][18][20][21][22][23]). The methods applied to investigate these relationships include the use of multivariate characterization of functional assemblage structures, functional diversity measures, and/or specific trait-environment correlations. ...
Article
Full-text available
There is a gap in the knowledge about how environmental factors affect functional diversity and trait structures of macrophyte communities in altered waterbodies. We used macrophyte and environmental data collected from 46 waterbodies; we extracted data on 14 traits with 43 attributes for 59 species and calculated seven functional diversity indices. We used redundancy analysis (RDA) to investigate the response of functional diversity indices to the environmental variables. To relate traits to environment we performed the analysis on three data matrices: site by environmental variables (R), site by species (L), and species by traits (Q)-the RLQ analysis, and the 4th corner analyses. The RDA showed that the environmental variables explained 47.43% of the variability in the functional diversity indices. Elevation, hemeroby (integrative measure of the impact of all human intervention) of the land cover classes on the banks, and water conductivity were correlated with all diversity indices. We found that the traits characteristic of floating and emergent plants represents a strategy to increase efficiency in light interception under high nutrient concentrations in lowland waterbodies, while submerged plants dominate nutrient-poorer waterbodies at higher altitudes. Future investigations should be focused on the role of functional diversity and the structure of macrophyte communities in the indication of tradeoffs and/or facilitation between ecosystem services that altered waterbodies provide, in order to guide their adequate management.
... Thus, macrophyte communities are a fundamental component of rivers that respond to both anthropogenic and natural disturbances. In addition to species composition, plant trait composition can show strong linkages with environmental changes [16][17][18][19]. For instance, macrophytes show a variety of growth forms that reflect adaptations to their physical habitat with various implications on ecosystem processes [20]. ...
Article
Full-text available
The analysis of plant trait composition has raised significant interest among freshwater ecologists as a complementary approach for assessing the effects of environmental change on ecosystem functions. In this study, we investigated patterns of functional traits of the aquatic macrophyte assemblages of 74 lotic ecosystems of Greece, and we identified associations between species traits and environmental variables (hydromorphological and physicochemical parameters) through testing the hypothesis that the environmental features determine the spatial structure of traits. We allocated 12 traits to a total of 39 hydrophyte species, and we conducted RLQ and fourth corner analysis to explore relationships between species, trait composition, and environmental gradients. Based on the results of the RLQ, a hierarchical cluster analysis was conducted to identify groups of plants that share common trait characteristics. Plants were discriminated into five discrete groups based mostly on their life form (e.g., free-floating, rooted submerged etc.) and their ecological preference for nitrogen levels. Hydromorphological parameters had a higher contribution than physicochemical variables in explaining the total variance of the trait data, with water abstraction, channel substrate, and hydrologic alteration being the most important. Our analysis did not reveal significant bivari-ate relationships between single traits and environmental parameters, although the five groups of macrophyte assemblages appeared to associate with certain environmental gradients. Free-floating and emergent plants were related to higher concentrations of nutrients, whereas rooted submerged plants were related to higher oxygen concentration and increased pH. In addition, free-floating plants were highly associated with metrics of hydromorphological change. Our findings showed clear discrimination of macrophytes based on their functional composition and association of traits with environmental gradients. Thus, further research could explore whether macrophyte functional groups can serve as indicators of environmental change and the overall ecosystem health.
... Data from nine sites ranging from Cumbria to the floodplain of the River Severn (Gowing et al., 2002b) showed the number of relevés classified in the species-rich subcommunities declined by 38% per year when aeration SEVs exceeded 1.1 m.weeks, whilst transitions from the Agrostis back to the drier Typical subcommunity, when water tables fell, were much slower averaging only 5% p.a. (Gowing, 2005) which would imply a recovery period to the richer subcommunity of approximately 20 years. Similar structural and functional responses of the floodplain meadows to flooding were also shown in temperate Europe (Baattrup-Pedersen et al., 2018). ...
Article
Full-text available
Nature conservation requires classification of vegetation types for site assessment and assignment. Species-rich floodplain meadows are a declining habitat in Britain and Europe yet their classification in Britain has been based on just a few samples and fails to describe community response to environmental change adequately. European classification, in opposite, has been based on samples from the wide geographical range with no environmental data/analysis supporting the choices. We propose a revised classification of the lowland meadow Alopecurus pratensis-Sanguisorba officinalis community of the British National Vegetation Classification (NVC) linked to variation in local water-table depth. Data have been collated from 58 British floodplain meadows. Based on botanical and hydrological data, four subcommunities within the Alopecurus-Sanguisorba community have been defined. Assessment of conservation sites at the subcommunity level allows temporal and spatial evaluation of the trends and suggests hydrological management towards desirable vegetation. This approach, developed on data from the British meadows, has much wider geographical applications if compared with European plant communities. Seventy-two British and European plant associations were compared via Canonical Correspondence Analysis (CCA). Species ordinations were used to study the coherence of floodplain syntaxonomic alliances across Europe from Ireland to Bulgaria. CCA confirmed the spread of the British subcommunities of the Alopecurus-Sanguisorba community along a strong hydrological gradient and highlighted their lower fertility compared to their Dutch counterparts. The hydrological gradient separating the British subcommunities should help inform site management for the conservation of the species-rich communities, especially where hydrological control is possible.
... Thus, macrophyte communities are a fundamental component of rivers that respond to both anthropogenic and natural disturbances. In addition to species composition, plant trait composition can show strong linkages with environmental changes [16][17][18][19]. For instance, macrophytes show a variety of growth forms that reflect adaptations to their physical habitat with various implications on ecosystem processes [20]. ...
Research Proposal
Full-text available
Dear Colleagues, The Diversity Journal is ready to launch a Special Issue dedicated to Aquatic Plant Diversity, Conservation, and Restoration. You are cordially invited to prepare a scientific paper for this Special Issue. Freshwater biodiversity loss continues at an alarmingly fast rate, and the loss of diversity and ecological functions of aquatic plants (macrophytes) continues. There’s urgency to better understand the ecology of freshwater macrophyte communities worldwide to best serve conservation and resilience, mitigate further diversity loss, and restore degraded habitats. In this Special issue, we will: • Highlight the magnificent biodiversity of macrophytes globally in a variety of freshwater habitats, which are elusive to most people because many species live underwater or in remote habitats. • Cover all aspects of macrophyte diversity, including at the organismal-level (genetics, within populations, and functional traits) and the community-level (alpha, beta, and gamma diversity metrics; phylogenetics) • Showcase meta-analyses and generalizable case studies that describe the patterns and processes of macrophyte biodiversity, community change, vulnerability, and resilience. • Emphasize the needs and opportunities for macrophyte conservation and restoration. Papers may either evaluate specific restoration actions (e.g., hydrologic and connectivity engineering, plantings, habitat improvements, invasive species control, or novel techniques), or, discuss how the ecological knowledge gained may be applied to conservation or restoration. Thank you for your important contributions to this field of study, and thanks in advance for considering a submission to this upcoming Special Issue. Sincerely, Dr. Danelle M. Larson, Dr. Eva Papastergiadou Guest Editors
... The establishment and structure of macrophyte communities in rivers are largely determined by physical factors (i.e., water current, light availability, bottom substrate) that combine the effects of water and sediment chemistry on community composition (Butcher, 1933;Canfield and Hoyer, 1988;Baattrup-Pedersen and Riis, 1999;Riis et al., 2001;Riis and Biggs, 2003;Daniel et al., 2006;Janauer et al., 2010;O'Hare et al., 2010;Steffen et al., 2013). Macrophyte communities are strongly influenced by river hydrology, reflecting both anthropogenic and natural disturbances, where these environmental factors have stronger effect on the trait composition than on the species composition of the community (Papastergiadou et al., 2016;Göthe et al., 2017;Baattrup-Pedersen et al., 2018;Bejarano et al., 2018). Due to the great potential that functional diversity and trait composition of macrophyte communities might have in bioindication of hydro-morphological disturbances in running water-bodies, and its potential importance in river management, there is a growing number of studies investigating the influence of these factors on the trait distribution and/or functional diversity of macrophyte communities (e.g., Baattrup-Pedersen et al., 2016;Göthe et al., 2017;Lukács et al., 2019;Manolaki et al., 2020;Paz et al., 2021;Stefanidis et al., 2021). ...
Article
Full-text available
Macrophyte communities have major role in the functioning of freshwater ecosystems. However, there is gap in knowledge about how natural and anthropogenic hydro-morphological disturbances affect their functional diversity and trait structure, particularly in the temperate large rivers. In this study we investigated the effect of hydro-morphology on functional diversity and trait structure of macrophyte communities in the middle section of the Danube course. We collected macrophyte and environmental data from 947 sampling units in the main river channel and connected side waterbodies. We extracted data on 18 traits with 65 trait states and calculated seven functional diversity metrics and cumulative weighted means of trait states (CWMs). We applied redundancy analysis (RDA) to investigate the response of functional diversity metrics to the environmental variables, and Variation Partitioning to determine whether natural, or anthropogenic subset of hydro-morphological factors is more important predictor of functional diversity. To relate CWMs and environmental variables, we performed RLQ and fourth-corner analysis, followed by false discovery rate procedure. Hydro-morphological variables explained 36.7% of the variability in the functional diversity metrics. Combined effect of two subsets of environmental variables explained largest part of the variability in functional diversity metrics. Six associations between traits and environmental variables were found. We found that functional diversity metrics indicate prevailing ecological processes, from environmental to biotic filtering, along the natural—anthropogenic hydro-morphological gradient. We concluded that functional diversity metrics are potentially useful tools in the identification of the causes of ecological degradation, and could be applied in river bioassessments and management.
Article
Full-text available
Study region: This study refers to the Upper Tiber basin at the Ponte Nuovo outlet in central Italy. Study focus: This study aims at analyzing runoff coefficient (Rc) trends and connections with hydroclimatic parameters, namely (temperature (T), precipitation (P), soil water storage (SWS), and LULC (Land Use Land Cover) changes) using Mann-Kendall (MK) test and wavelet coherence analysis (WCA). New hydrological insights for the region: The results show a decreasing Rc over 1927-2020, coupled with increasing T and decreasing SWS based on seasonal MK test, and implications for water resource management in Central Italy. Results underscore the need for sustainable hydrological management paradigms to address challenges posed by scarcity of water resources under unpredictable changing climate. Rc-hydroclimatic parameters correlations through WCA revealed complex hydrological interactions. Precipitation exhibited insignificant and erratic patterns from 1950 to 1978, and while it established more significant correlations with Rc from 1990 to 2020, it remained moderately erratic. Conversely, weak correlation found against LULC changes, concurrently with strong positive but lagged correlation with SWS (1 month), and strong lagged (3-6 months) but negative correlation with T indicate the prevailing significance of hydroclimatic factors over LULC changes. These insights underscore the pivotal role of hydroclimatic factors in shaping regional water resources. Policymakers can harness these insights as a bedrock to develop effective strategies for water resources planning and climate change adaptation.
Article
Full-text available
Foresight science is a systematic approach to generate future predictions for planning and management by drawing upon analytical and predictive tools to understand the past and present, while providing insights about the future. To illustrate the application of foresight science in conservation, we present three case studies: identification of emerging risks to conservation, conservation of at-risk species, and aid in the development of management strategies for multiple stressors. We highlight barriers to mainstreaming foresight science in conservation including knowledge accessibility/organization, communication across diverse stakeholders/decision makers, and organizational capacity. Finally, we investigate opportunities for mainstreaming foresight science including continued advocacy to showcase its application, incorporating emerging technologies (i.e., artificial intelligence) to increase capacity/decrease costs, and increasing education/training in foresight science via specialized courses and curricula for trainees and practicing professionals. We argue that failure to mainstream foresight science will hinder the ability to achieve future conservation objectives in the Anthropocene.
Article
Full-text available
Across landscapes, riparian plant communities assemble under varying levels of disturbance, environmental stress, and resource availability, leading to the development of distinct riparian life-history guilds over evolutionary timescales. Identifying the environmental filters that exert selective pressures on specific riparian vegetation guilds is a critical step in setting baseline expectations for how riparian vegetation may respond to environmental conditions anticipated under future global change scenarios. In this study, we ask: (1) What riparian plant guilds exist across the interior Columbia and upper Missouri River basins? (2) What environmental filters shape riparian guild distributions? (3) How does resource partitioning among guilds influence guild distributions and co-occurrence? Woody species composition was measured at 703 stream reaches and each species' morphological and functional attributes were extracted from a database in four categories: (1) life form, (2) persistence and growth, (3) reproduction, and (4) resource use. We clustered species into guilds by morphological characteristics and attributes related to environmental tolerances, modeling these guilds' distributions as a function of environmental filters—regional climate, watershed hydrogeomorphic characteristics, and stream channel form—and guild co-existence. We identified five guilds: (1) a tall, deeply rooted, long-lived, evergreen tree guild, (2) a xeric, disturbance tolerant shrub guild, (3) a hydrophytic, thicket-forming shrub guild, (4) a low-statured, shade-tolerant, understory shrub guild, and (5) a flood tolerant, mesoriparian shrub guild. Guilds were most strongly discriminated by species' rooting depth, canopy height and potential to resprout and grow following biomass-removing disturbance (e.g., flooding, fire). Hydro-climatic variables, including precipitation, watershed area, water table depth, and channel form attributes reflective of hydrologic regime, were predictors of guilds whose life history strategies had affinity or aversion to flooding, drought, and fluvial disturbance. Biotic interactions excluded guilds with divergent life history strategies and/or allowed for the co-occurrence of guilds that partition resources differently in the same environment. We conclude that the riparian guild framework provides insight into how disturbance and bioclimatic gradients shape riparian functional plant diversity across heterogeneous landscapes. Multiple environmental filters should be considered when the riparian response guild framework is to be used as a decision-support tool framework across large spatial extents.
Article
Full-text available
Both environmental filtering and dispersal filtering are known to influence plant species distribution patterns and biodiversity. Particularly in dynamic habitats, however, it remains unclear whether environmental filtering (stimulated by stressful conditions) or dispersal filtering (during recolonization events) dominates in community assembly, or how they interact. Such a fundamental understanding of community assembly is critical to the design of biodiversity conservation and restoration strategies. Stream riparian zones are species‐rich dynamic habitats. They are characterized by steep hydrological gradients likely to promote environmental filtering, and by spatiotemporal variation in the arrival of propagules likely to promote dispersal filtering. We quantified the contributions of both filters by monitoring natural seed arrival (dispersal filter) and experimentally assessing germination, seedling survival and growth of 17 riparian plant species (environmental filter) along riparian gradients of three lowland streams that were excavated to bare substrate for restoration. Subsequently, we related spatial patterns in each process to species distribution and diversity patterns after 1 and 2 years of succession. Patterns in initial seed arrival were very clearly reflected in species distribution patterns in the developing vegetation and were more significant than environmental filtering. However, environmental filtering intensified towards the wet end of the riparian gradient, particularly through effects of flooding on survival and growth, which strongly affected community diversity and generated a gradient in the vegetation. Strikingly, patterns in seed arrival foreshadowed the gradient that developed in the vegetation; seeds of species with adult optima at wetter conditions dominated seed arrival at low elevations along the riparian gradient, while seeds of species with drier optima arrived higher up. Despite previous assertions suggesting a dominance of environmental filtering, our results demonstrate that non‐random dispersal may be an important driver of early successional riparian vegetation zonation and biodiversity patterns as well. Synthesis . Our results demonstrate (and quantify) the strong roles of both environmental and dispersal filtering in determining plant community assemblies in early successional dynamic habitats. Furthermore, we demonstrate that dispersal filtering can already initiate vegetation gradients, a mechanism that may have been overlooked along many environmental gradients where interspecific interactions are (temporarily) reduced.
Article
Full-text available
Plant-environment relationships can be assessed through functional traits, but we have little understanding of how they vary on larger scales due to limited sampling. Using a fine-grained digital elevation model and vegetation survey data from a national monitoring program, we now have the chance to investigate the importance of topographically determined water availability in shaping the functional structure of vegetation of different habitat types across Denmark. Plant community responses to hydrology were detected through community-weighted Ellenberg F values and six community-weighted functional traits. We used mixed-effect models to account for the variability related to unknown site-specific factors such as management regime and regional species pool. Additionally, we evaluated whether we can trust a remote-sensing-based topographically determined water availability index (TWI) that calculates how water accumulates on the surface of the landscape to represent actual hydrology. Remote-sensing-based topographically determined water availability represented actual local water availability as indicated by a positive correlation with community-weighted Ellenberg F values (P < 0.001), showing that this is an effective method of measuring water availability at large scale. The strength and direction of vegetation-TWI relationships differed between habitat types. Functional responses were also habitat dependent and to a certain degree explained by non-considered site-specific factors which presumably include historical land use and current management. This study contributes to the understanding of plant–water relationships which is highly relevant, as the hydrological regime might change rapidly in the near future with potential prevalence of extremes in the hydrological environment.
Article
Aim The characterization of trait–environment relationships over broad‐scale gradients is a critical goal for ecology and biogeography. This implies the merging of plot and trait databases to assess community‐level trait‐based statistics. Potential shortcomings and limitations of this approach are that: (i) species traits are not measured where the community is sampled and (ii) the availability of trait data varies considerably across species and plots. Here we address the effect of trait data representativeness [the sampling effort per species and per plot] on the accuracy of (i) species‐level and (ii) community‐level trait estimates and (iii) the consequences for the shape and strength of trait–environment relationships across communities. Innovation We combined information existing in databases of vegetation plots and plant traits to estimate community‐weighted means [CWMs] of four key traits [specific leaf area, plant height, seed mass and leaf nitrogen content per dry mass] in permanent grasslands at a country‐wide scale. We propose a generic approach for systematic sensitivity analyses based on random subsampling and data reduction to address the representativeness of incomplete and heterogeneous trait information when exploring trait–environment relationships across communities. Main conclusions The accuracy of the CWMs was little affected by the number of individual trait values per species [NIV] but strongly affected by the cover proportion of species with available trait values [ P Cover ]. A P Cover above 80% was required for all four traits studied to obtain an estimation bias below 5%. Our approach therefore provides more conservative criteria than previously proposed. Restrictive criteria on both NIV and P Cover primarily excluded communities in harsh environments, and such reduction of the sampled gradient weakened trait–environment relationships. These findings advocate systematic measurement campaigns in natural environments to increase species coverage in global trait databases, with special emphasis on species occurring in under‐sampled and harsh environmental conditions.
Article
In microeconomics, a standard framework is used for determining the optimal input mix for a two‐input production process. Here we adapt this framework for understanding the way plants use water and nitrogen (N) in photosynthesis. The least‐cost input mixture for generating a given output depends on the relative cost of procuring and using nitrogen versus water. This way of considering the issue integrates concepts such as water‐use efficiency and photosynthetic nitrogen‐use efficiency into the more inclusive objective of optimizing the input mix for a given situation. We explore the implications of deploying alternative combinations of leaf nitrogen concentration and stomatal conductance to water, focusing on comparing hypothetical species occurring in low‐ versus high‐humidity habitats. We then present data from sites in both the United States and Australia and show that low‐rainfall species operate with substantially higher leaf N concentration per unit leaf area. The extra protein reflected in higher leaf N concentration is associated with a greater drawdown of internal CO2, such that low‐rainfall species achieve higher photosynthetic rates at a given stomatal conductance. This restraint of transpirational water use apparently counterbalances the multiple costs of deploying high‐nitrogen leaves.
Article
In the latest IPCC report, worst case scenarios of climate change describe average global surface warming of up to 6°C from pre-industrial times by the year 2100. This study highlights the influence of a high-end 6 degree climate change on the hydrology of a catchment in central Denmark. A simulation from the global climate model, EC-Earth, is downscaled using the regional climate model HIRHAM5. A simple bias correction is applied for daily reference evapotranspiration and temperature, while distribution-based scaling is used for daily precipitation data. Both the 6 degree emission scenario and the less extreme RCP4.5 emission scenario are evaluated for the future period 2071-2099. The downscaled climate variables are applied to a fully distributed, physically based, coupled surface-subsurface hydrological model based on the MIKE SHE model code. The impacts on soil moisture dynamics and evapotranspiration show increasing drying-out tendencies for the future, most pronounced in the 6 degree scenario. Stream discharge and groundwater levels also show increased drying due to higher evapotranspiration. By comparing the 6 degree scenario with other emission scenarios, it is found that the most prominent changes in the water balance are caused by drying out of soils rather than precipitation effects.
Article
There is growing awareness that an intensification of the hydrological cycle associated with climate change in many parts of the world will have profound implications for river ecosystem structure and functions. In the present study we link an ensemble of regional climate model projections to a hydrological model with the aim to predict climate driven changes in flooding regimes in lowland riparian areas. Our specific aims were to 1) predict effects of climate change on flood frequencies and magnitudes in riparian areas by using an ensemble of six climate models and 2) combine the obtained predictions with the distribution of rich fen communities to explore whether these are likely to be subjected to increased flooding by a climate change induced increase in river runoff. We found that all regional climate models in the ensemble showed increases in mean annual runoff and that the increase continued through the two scenario periods, i.e. 2035-2065 and 2070-2099. We found concomitant increases in flood levels and flood frequencies. Flood levels and frequencies increased both at sites where the maximum water level was governed directly by river water runoff and where it was governed by river flow roughness (weed cover). We did not find evidence that the present flooding regime was an overall key factor determining the distribution of fen vegetation. However, with the predicted changes in flooding frequencies in the investigated areas we expect to see changes in species compositional patterns within the fen areas under a future climate that may affect the conservation value of these.