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Quantitative structure activity relationship study (QSARs) and molecular docking were used 

to design and virtually screen some new N-benzylacetamide derivatives for their ability to 

inhibit γ-amino butyrate-aminotransferase. Ninety compounds with anticonvulsant activity 

against maximal electroshock induced seizures were used for QSAR study. HF/DFT B3LYP/6-

31G** quantum mechanical method was employed to optimize/minimize the molecular 

structure of these compounds. Genetic Function Algorithm (GFA) method was used to develop 

the QSAR models. Each model gave an octa-parametric equation with good statistical 

qualities (R2 ranged from 0.823 to 0.893, Q2 from 0.772 to 0.854, F from 36.53 to 37.10, R2
pred 

(test) from 0.768 to 0.893). Information obtained from the parameter contained in the models 

suggested that increasing the molecular mass and linearity of molecule would lead to increase 

in anticonvulsant activity of studied compounds. These informed the design and virtual 

screening of 118 new N-benzylacetamide derivatives using 2-acetamido-N-benzyl-2-(5-

methylfuran-2-yl)acetamides as the template. The designed molecules were docked with γ-

amino butyrate-aminotransferase (GABA_AT; PDB: 1OHV) using Internal Coordinate 

Mechanics Program (ICM-pro 3.8-3). The binding affinity of the designed compounds with 

GABA_AT were better to that of 4-aminohex-5-enoic acid (vigabatrin); 3, 3-

diphenylpyrrolidine-2, 5-dione (phenytoin) and comparable to that of 5H-dibenzo 

[b,f]azepine-5-carboxamide (carbamazepine), which are known inhibitors of GABA_AT. 

Therefore, the designed molecules have potential as inhibitors of GABA_AT and consequently 

as anticonvulsant agent. 
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1. INTRODUCTION 

One of the major inhibitory amino acid neurotransmitter of 
the mammalian central nervous (CNS) system is γ-amino butyric 
acid (GABA). Reduction of its concentration in the brain has been 
implicated not only in symptoms associated with epilepsy but also 
several other neurodegenerative/psychiatric conditions like stroke, 
anxiety, schizophrenia and so on (WHITING, 2003). The enzyme 
γ-amino butyrate-aminotransferase (GABA_AT) catalyzes the 
degradation GABA to succinic semi aldehyde thereby reducing its 
level in the brain. When the level diminishes below certain 
threshold, convulsions result (PAOLA et al., 2004). Direct 
administration of GABA peripherally to remedy this has been 
reported not feasible because of difficulty in crossing the blood-
brain barrier (DAVID et al., 2000; PHYLLIS, 2011). Therefore, 
inhibition of the activity of GABA_AT is a way to raise cerebral 
concentrations of GABA and this has become the target for many 
anticonvulsant drugs. Numerous anticonvulsant molecules 
(antiepileptic drugs, AEDs) that inhibit the action of GABA_AT 
have been developed over the years e.g. 4-aminohex-5-enoic acid 
(vigabatrin) (PAOLA et al., 2004). However, with optimal usage of 
the available AEDs, epilepsy still threatens more than 50 million 
people worldwide (USMAN et al., 2017). Roughly 20% to 30% of 
patients don’t react to marketed AEDs and those that responded do 
so at the risk of other side effects like depression, agitation, tremor, 
double vision, poor vision and etc. (MATTSON, 1995). In this 
light, developing new molecule with enhanced antiepileptic activity 
and lessened side effect is a fundamental task for medicinal science. 

Drug discovery and development is an arduous task, yet 
with the assistance of novel drug discovery methods like computer 
aided drug design (CADD), excellent leads which will probably 
prevail in clinical trials can be developed (IBEZIM et al., 2009). 
The objective of the present study is to utilize quantitative structure 
activity relationship study (QSARs) strategy to design new 2-
acetamido-N-benzyl-2-(5-methylfuran-2-yl)acetamides with 
enhanced anticonvulsant activity values against maximal 
electroshock induced seizure (MES) in view and other use 
molecular docking method to investigate the capacity of the 
designed compounds to interact with a known crystal structure of 
GABA_AT obtained from protein data bank (PDB: 1OHV).QSAR 
is a CADD technique that relates quantitative measure of chemical 
structure (i.e. molecular descriptors) of compounds to their 
activities employing regression or classification based approaches. 
It offers an in silico tool for the development of predictive models 
that can be used to propose the activities of known and hypothetic 
chemical entities (IBEZIM et al., 2009; SING, 2013). Molecular 
docking is a CADD technique that explores the binding mode of 
two interacting molecules relying on their topographic features or 
energy consideration (LESK, 2002; PEDRO AND JOHN, 2010). 

2. MATERIAL AND METHODS 

2.1 Dataset 

Ninety derivatives of N-benzylacetamide were used as 
dataset. Their structural formula and anticonvulsant activity values 
against maximal electroshock seizure test were taken from 
literatures (KING, 2010). The activity values were expressed as 
ED50 (mg/kg) (concentration of compound that is effective on 50% 
tested animals). ED50 (mg/kg) was converted to molar unit and 

subsequently to logarithm unit by taking the logarithm of the 
inverse of ED50 (mol/kg). The resulting scaled anticonvulsant 
activity values (pED50) and the corresponding molecular structure 
in the dataset are presented in Table 1. 

2.2 Dataset splitting 

For modeling purpose, the complete dataset was divided 
into training sets and test sets using Kennard and Stone algorithm 
(KENNARD AND STONE, 1969) available in DatasetDivision 
1.2 software (AMBURE et al., 2015). This algorithm was reported 
to produce excellent dataset division results (ROY et al., 2008; 
ROY, 2007). The algorithm proceeded by finding the Euclidean 
distances dij between the molecular descriptor vectors of each pair 
of compounds I, J: 

d�� =  ��� − �
� =  �∑ x�� − x��������   (1) 

In Equation 1, k is the number of descriptors, xik, xjk were 
similar descriptor contained in the Xi, Xj descriptor vector 
respectively. Once the distances had been calculated, two 
compounds that were farthest apart in terms of the measured 
distance were selected i.e. the pair I, J with largest value of dij. 
Compounds that exhibits the largest minimum distance with 
respect to the two previously selected compounds were selected 
and placed in the training set. These steps were repeated until the 
desired number of compounds had been added to the training set 
and the remaining compounds were used as the test set. 

2.3 Molecular descriptors calculation 

Build module available in Spartan 14 (SHAO et al, 2006) 
was used to generate the 2D molecular structures of dataset 
compounds. These were subsequently converted to 3D by view 
module in the software. Conformation of structures were 
optimized using HF/DFT B3LYP/6-31G** quantum mechanical 
method to ensure a well-defined conformer relationship across the 
compounds. The energy minimized structures were ported to 
PaDEL-Descriptor (YAP, 2011) used to compute various 0D, 1D, 
2D and 3D-classes of chemometric molecular descriptors. 

2.4 Model development 

Genetic function algorithm (GFA) module available in 
Material Studio 7.0 (ACCERLYS, 2007) was used for QSAR 
model development. GFA uses genetic algorithm to search over 
the entire data space for possible QSAR models and uses Friedman 
lack of fitness (LOF) function to estimate the fitness of each 
model. The activity values and descriptors of the training set only 
were used to generate the models. GFA module parameters were 
set as equation length (5 to 12), population (10000), maximum 
generation (500), number of top equation returned (5), mutation 
probability (0.1), and scaled LOF smoothness (0.5). The 
advantages of GFA over other techniques include: production of 
multiple models, automatic selection of the exact number of 
descriptors needed to build a full-size model, resistant to over-
fitting, allowance of user control over the smoothness of fit and 
length of equation, allowance for the use of higher-order 
polynomials, and applicability when number of descriptors is 
more than the number of dataset (ROGERS AND HOPFINGER, 
1994). 
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Table 1-Molecular structure and anticonvulsant activity values for dataset compounds 

No. Molecular structure pED50  No. Molecular structure pED50  
1a 

 

5.009 14 

 

4.682 
 

2 

 

5.003 15a 

 

4.628 

3 

 

4.949 16 

 

4.525 

4 

 

4.933 17 

 

4.546 

5 

 

4.882 18 

 

4.567 

6 

 

4.857 19 

 

4.447 

7a 

 

4.720 20 

 

4.479 

8 

 

4.592 21a 

 

4.368 

9 

 

4.603 22 

 

4.529 

10 

 

4.530 23 

 

4.284 

11 

 

4.423 24 

 

4.034 

12a 

 

4.275 25 

 

4.228 

13 

 

4.428 26 

 

4.268 

27 

 

4.383 42 

 

4.218 
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28 

 

4.360 43a 

 

4.167 

29 

 

4.373 44a 

 

4.234 

30 

 

4.333 45 

 

4.173 

31 

 

4.093 
 

46 

 

4.171 

32 

 

4.174 47 

 

4.077 

33a 

 

4.125 48a 

 

4.032 

34 

 

4.144 49 

 

3.923 

35 

 

4.073 50 

 

3.774 

36a 

 

4.096 51 

 

3.805 

37 

 

4.083 52 

 

3.811 

38 

 

4.085 53a 

 

4.092 

39 

 

4.225 54 

 

4.107 

40 

 

4.113 
 

55 

 

4.158 

41a 

 

4.107 56 

 

3.864 

57 

 

3.770 74 

 

3.733 

58 

 

3.866 75 

 

3.809 
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59 

 

3.764 76a 

 

3.741 

60 

 

4.013 77 

 

3.821 

61 

 

3.861 78 

 

3.694 

62 

 

3.834 79 

 

3.898 

63 

 

3.672 80 

 

3.728 

64 

 

3.770 
 

81 

 

3.593 

65 

 

3.839 82a 

 

3.460 

66 

 

3.630 83 

 

3.489 

67 

 

3.568 84 

 

3.768 

68 

 

3.607 85a 

 

3.472 

69 

 

3.545 86 

 

2.933 

70 

 

3.690 87a 

 

2.693 

71 

 

3.708 88 

 

2.684 

72 

 

3.747 89a 

 

2.610 

73a 

 

3.483 
 

90 

 

2.728 

a compound in the test set 

2.5 Model validation  

The models produced were used to predict the anticonvulsant 
activity values for the test set compounds and the result obtained 
were used to check for the presence of systematic error in the 
models using the criteria of ROY et al. (2016). In the absence of 
systematic error, the models were validated with various internal 
and external validation parameters. Internal validation was done 
with the training set data only using the leave-one-out (LOO) 
cross-validation, y-randomization and other metrics obtained 

from multiple linear regressions (MLR) carried out on each 
models. In the leave-one-out cross-validation techniques, the 
training set is primarily modified by eliminating one compound 
from the data set and using the remaining data to construct a 
QSAR equation using the same descriptor combination contained 
in the model being validated. The new equation obtained was then 
used to predict the activity of the eliminated compound. The cycle 
was repeated until all the molecules of the training set had been 
eliminated once. The obtained LOO predicted activity was used 
to calculate various parameters including predicted error sum of 
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square (PRESS), standard deviation of error of prediction (SDEP) 
and LOO square correlation coefficient (Q2) using the following 
equation 

PRESS = ∑Y���( !"�#) − Y$!%&( !"�#)��
  (2) 

SDEP =  �()*++
#   (3) 

Q� = 1 − ()*++
∑-./0(12345)6-712345�8  (4) 

In equation 2 - 4, Yobs(train) is the observed activity values 
for the training set data, Ypred(train) and is the predicted activity 
values of the training set data based on the LOO technique, 9:;<=>? 
is the average of the observed activity value for the training set 
and n is the number of observation in the training set. The 
threshold value of Q2 is 0.5.  

In y-randomization techniques, the observed activity 
values were permuted several times keeping the descriptor matrix 
unchanged. For each permutation, a new model was developed at 
the same confidence level as the original model. Then square 
correlation coefficients for the randomized models R2

r were 
estimated (TROPSHA et al., 2003). Deviation in the value of the 
average of square correlation coefficient of the randomized 
models R7!� from the square correlation coefficient of non-
randomized models R2 was used to calculate the Y-randomization 
parameter cR2

p: 

cR2
p = R × AR� −  R7!�    (5) 

Threshold value of cR2
p is 0.5. The MLR metrics used 

included determination coefficient (R2), adjusted determination 
coefficient (R2

adj), standard error of estimation (SEE) and variance 
ratio (F). Only the test set data was used to validate the model 
externally using predicted square correlation coefficient R2

pred and 
modified square correlation coefficient R2

m (ROY et al., 2012). 
R2

pred reflect the degree of correlation between the observed and 
predicted activity data for the test set and its defined: 

R2
pred = 1 − ∑-./0(1B01)6-C2BD(1B01)�8

∑-./0(1B01)6-71234545E�8     (6) 

In equation 6, Yobs(test) and Ypred(test) are the observed and 
predicted activity data for the test set compounds, while Y7 !"�#�#F 
indicates the mean observed activity of the training set. The 
threshold value for R2

pred is 0.5. Modified square correlation 
coefficient (R2

m) is defined: 

R2
m= r2×  G1 −  A(H� − HI�)J                          (7) 

In the equation 6, r2 and r2
0 are the square correlation 

coefficients of the plot of observed against predicted activity 
values for test set data with and without intercept respectively. 
The threshold value for R2

m is 0.5. Other criteria used for external 
predictive capacity validation were (a) Q2 > 0.5 ; (b) R2

pred > 0.6 ; 
(c) r2- r2

0/r2  < 0.1 and 0.85 ≤ k ≤ 1.15 or r2-r’2/r2 < 0.1 and 0.85 ≤ 
k′ ≤ 1.15 and (d) |r2

0-r’2
0| < 0.3. In the criteria Q2, R2

pred, r2 and r2
0 

were as discussed before. While, ‘k’ is the slope of the graph of 
observed versus predicted activity, r’2

0 is the square correlation 

coefficients between predicted versus observed activity for test set 
data without intercept and k′ is the slope (GOLBRAIKH AND 
TROPSHA, 2002). Furthermore, error-based criteria were used to 
check if the predictions of the models are good, bad or moderate. 
These criteria were based on the mean absolute error (MAE) 
defined as: 

MAE = �
# × ∑MY��� − Y$!%&M                          (8) 

In equation 8, Y��� and Y$!%&  are experimental and 
predicted response values for the test set data only. The criteria 
stated that when the number of test set data point is at least 10 (for 
statistical reliability) and there is no systematic error in the model 
(for statistical applicability) then, (a) for good prediction, MAE ≤ 
0.1 × training set response range or MAE + (3 × σ) ≤ 0.2 × 
training set response range, (b) for bad prediction MAE > 0.15 × 
training set response range or MAE + (3 × σ) > 0.25 × training 
set response range, and (c) any prediction which does not fall 
condition a and b may be considered as of moderate quality. In the 
criteria, σ denotes the standard deviation of the absolute error 
values for the test set data (ROY et al., 2016). 

2.6 Models applicability domain (AD) 

The AD of a QSAR model is the physical-chemical, 
structural or biological space, knowledge or information on which 
the training set of the model has been developed, and for which it 
is applicable to make predictions for new compounds 
(JAWORSKA et al., 2005). In the study, model AD was 
investigated with extent of extrapolation method which is based 
on the leverages value (h) and the standardized residual (SDR) for 
each molecule in the dataset, produced by the model. The plot of 
SDR versus h (Williams plot) gave simple pictorial representation 
of the AD. In the plot, the AD is established inside a squared area 
within ± 3 SDR and a threshold leverage (h*), which is generally 
fixed at 3 (k + 1)/n, where n is the number of training-set 
molecules and k is the number of descriptors in the model. Any 
prediction by the model for any compounds whose leverage value 
is higher than the threshold leverage is considered unreliable. On 
the other hand, when the leverage value of a compound is lower 
than the threshold value, the probability of accordance between 
predicted and observed values is as high as that for the training-
set compounds. 

S.7 In silico design of title compound 

(S)-2-acetamido-N-benzyl-2-(5-methylfuran-2-yl) 
acetamide (Molecule 37) in the dataset (Table 1) was used as 
template to design about 119 hypothetic derivatives. The template 
was chosen because of it relatively high activity i.e. pED50 = 
4.174. The design of the derivatives was guided by the 
information obtained from the descriptors contained in the 
models. Modification to the template was done by simple addition 
and removal of substituent. Molecular geometries of the designed 
molecules were optimized, descriptors obtained and their leverage 
values calculated as described for the training dataset. The 
threshold leverage (h*) of the models was used to screen designed 
molecules that were ‘X-outlier’ to the descriptor space of the 
models. Hypothetical anticonvulsant activity values of the 
designed molecules within the AD of the models were predicted 
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with the models and those found with improved activity value 
were selected for molecular docking study. 

2.8 Molecular docking studies 

Molsoft Internal Coordinate Mechanic Program (ICM-pro 
3.8-3) was used for the docking study.  High resolution 2.3 Å 
crystal structure of GABA_AT (PDB: 1OHV) was downloaded 
from protein data bank. It was loaded into the ICM-pro workspace 
where it was prepared prior to docking. PDB: 10HV existed as 
two asymmetric physiologically identical dimmers containing 
four chains of amino acids (PAOLA et al., 2004). A dimer 
(represented by chains C and D), water molecules, intrinsic 
ligands and heteroatom contained in the pdb files were removed. 
Then, the remaining dimer (chains A and B) were converted to 
ICM-object. During conversion, hydrogen and missing heavy 
atoms were added were automatically added to the protein 
structure. Also, atom type and partial charges were assigned and 
the orientations of His, Asn, Glu and Cys residue were optimized. 
The available pockets in the receptor was located, binding site and 
grid map were created around the best pocket identified by the 
software. 

The design molecules optimized geometry were saved in a 
tabular form (chemical table) and used as the ligands molecules. 
The chemical table was imported into ICM-Pro and dock chemical 
table module was invoked. Docking thoroughness (10) and 
number of conformation returned (10) parameters were set. The 
ligands were flexible during the docking process and their binding 
pose and internal torsions were sampled by biased probability 
Monte Carlo (BPMC) global-energy optimization/minimization 
procedure. Energy calculations were based on the ECEPP/3 force 
field with a distance-dependent dielectric constant (MOLSOFT, 
2012). 

3. RESULTS AND DISCUSSION 

3.1 QSAR results 

A total number of 1845 descriptors were calculated for the 
data set. The dataset compounds were divided into 72 training and 

18 tests set. Only the training set was used to construct the QSAR 
models utilizing GFA. The test set was used to validate the 
constructed models externally. The models obtained and their 
validation parameters are reported in Table 2. Each model 
contained 8 descriptors and since they were obtained from 70 
training set compounds, they do not violate the QSAR rule of 
thumb (TOPLIS AND COSTELLO, 1972). The rule 
recommended that the ratio of descriptors to compounds used for 
building a model should not exceed 1:5; otherwise the risk of 
chance correlation is high. The reported models are void of 
systematic error because, their AAE - |AE| are greater than 
0.5 × AAE and the square correlation coefficient of the plot of 
residual against observed activity for both training set R2

(res-train) 

(0.109 – 0.183) and test set R2
(res-train) (0.356 – 0.437) for them are 

less than 0.5 (ROY et al., 2016). The values of the R2
train (0.823 - 

893) for the models suggested they could explain up to 83.20 % 
of variances in the observed activities. The variance ratio F (36.54 
– 65.37) for the models were greater than critical values of F8, 

72(2.07) for the 0.05 significance level. This indicated that the 
models remained significant at 95% level. R2

train, R2
adj, Q2

LOO and 
cR2

p for the models were greater than their threshold value 0.5 and 
the test set R2

pred (0.830 – 0.893) and R2
m (0.693 – 0.799) are also 

greater than threshold 0.5. Therefore, reported models have good 
internal and external predictive ability; they are robust because 
they have about 80% explained variance; and are not product of 
chance correlation (TROPSHA, 2003; ROY et al., 2012). 
Furthermore, the reported model passed the criteria for predictive 
model (GOLBRAIKH-TROPSHA, 2002) and criteria for good 
prediction (ROY et al., 2016).  

Principal component regression (PCR) was conducted with 
the 16 descriptors shared by the GFA model. The result is included 
in Table 2 which identified eight components to be sufficient in 
explaining the variances in the data set. The relationship between 
the residual produced by the models and the observed activity is 
presented in Figure 1 and linear relationship was observed in the 
plot of observed versus predicted activity values by the models as 
presented in . 

 

Figure 1-Plots of residual against the observed pED50 values for training set compounds (M1-M5 represent model 1-5 and 

PCR represent PCR model) 
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Figure 2. These are indication of the goodness of fit by the 
models. The observed and predict anticonvulsant activity values 
for the entire data set are presented in Table 3 and close agreement 
was observed between them. The statistical parameters for the 
reported models (Table 2) suggested absent of significant 
difference between the models. In other to investigate this claim, 
repeated measure ANOVA was performed on the result presented 

in Table 3. The result obtained indicated that Mauchly's test of 
sphericity F-value value under significant was less than 0.05 and 
Greenhouse-Geisser F-value under significant was greater than 
0.05 (table not included). The result implied there is no statistical 
significant difference between predicted values by the models and 
observed values therefore; application of the models for consensus 
prediction will give robust prediction 

 

Figure 2-Plots of predicted against the observed pED50 values for test-set compounds (M1-M5 represent model 1-5 and PCR 

represent PCR model. 

Table 2- GFA and PCR obtained QSAR models and their validation parameters 
No Models Validation parameters 
1 pED50 =  4.057(±0.024) + 

0.391(±0.090)AATSC7m 
˗ 0.314(±0.090)MATS7m + 

0.425(±0.042)MATS5s 
+ 0.133(±0.029)SC-5 ˗ 0.403(±0.038)SdO 
+ 0.249(±0.035)IC3 + 0.061(±0.031)E1p 

- 0.172(±0.028) E3s 

Internal 
n = 70, R2

train
 = 0.823, R2

adj = 0.801, SEE= 0.207, F = 36.72, Q2
LOO = 0.751, PRESS = 

3.791, SDEP = 0.229,   
cR2

p = 0.771, R2
(res-train) = 0.181  

External 
R2

pred= 0.893, R2
m = 0.693, |r2

0-r’2
0| =  0.046,  k = 0.998, r2

0- r2
0/r2 = 0.014, k′ = 0.999, r2-

r’2/r2  =0.065 AAE-|AE|= 0.138, 0.5 × AAE = 0.069, R2
(res-test)  = 0.373, MAE = 0.155, 

0.1×Range(train) = 0.231,  0.15×Range(train) = 0.347, 0.2×Range(train) = 0.463, 
0.25×Range(train) =  0.579, 

 MAE + (3 × σ) = 0.466 

2 pED50 = 4.057(±0.024)  + 
0.394(±0.091)AATSC7m 

-0.323(±0.091)MATS7m + 
0.424(±0.042)MATS5s +0.133(±0.029)SC-

5 - 0.402(±0.039)SdO 
 +0.247(±0.036)IC3 - 0.171(±0.029)E3e 

 +0.065(±0.031)E1p 

Internal 
n = 70, R2

train
 = 0.823, R2

adj = 0.800, SEE= 0.207, F = 36.54, Q2
LOO = 0.751, PRESS = 

3.793, SDEP = 0.230, cR2
p = 0.781, R2

(res-train) = 0.183 

External 
R2

pred= 0.892, R2
m = 0.799, |r2

0-r’2
0| =  0.046,  k = 0.998, r2

0- r2
0/r2 = 0.015, k′ = 0.999, r2-

r’2/r2  =0.066 AAE-|AE|= 0.137, 0.5 × AAE = 0.078, R2
(res-test)  = 0.375, MAE = 0.156, 

0.1×Range(train) = 0.232,  0.15×Range(train) = 0.348, 0.2×Range(train) = 0.464, 
0.25×Range(train) =  0.579, 

 MAE + (3 × σ) = 0.466 
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3 pED50 = 4.057(±0.024)  + 
0.213(±0.040)AATSC7e  

-0.151(±0.0409)AATSC7s 
+0.433(±0.042)MATS5s -

0.328(±0.042)SdO 
 -0.166(±0.035) maxHCsatu 

+0.276(±0.035)IC3  
+0.068(±0.031) E1p 
 -0.147(±0.029) E3s 

Internal 
n = 70, R2

train
 = 0.825, R2

adj = 0.803, SEE= 0.205, F = 37.10, Q2
LOO = 0.773, PRESS = 

3.463, SDEP = 0.219,   
cR2

p = 0.769, R2
(res-train) = 0.180 

External 
R2

pred= 0.835, R2
m = 0.751, |r2

0-r’2
0| =  0.081,  k = 0.996, r2

0- r2
0/r2 = 0.012, k′ = 1.000, r2-

r’2/r2  =0.107 AAE-|AE|= 0.177, 0.5 × AAE = 0.089, R2
(res-test)  = 0.358, MAE = 0.201, 

0.1×Range(train) = 0.232,  0.15×Range(train) = 0.348, 0.2×Range(train) = 0.464, 
0.25×Range(train) =  0.579, 

 MAE + (3 × σ) = 0.553 

4 pED50 = 4.057(±0.019)  + 
0.233(±0.033)MATS7e  

+ 0.472(±0.035)MATS5s - 
0.122(±0.035)MATS7s 

 -0.357(±0.037)SdO + 0.211(±0.029)IC3 
+ 0.341(±0.037)RDF25m - 

0.279(±0.037)RDF70m 
 -0.172(±0.024)E3s 

Internal 
n = 70, R2train = 0.893, R2adj = 0.879, SEE= 0.161, F = 65.37, Q2LOO = 0.854, PRESS 

= 2.213, SDEP = 0.175,  cR2p = 0.854, R2(res-train) = 0.109 
External 

R2pred= 0.830, R2m = 0.738, |r20-r’20| =  0.099,  k = 1.006, r20- r20/r2 = 0.019, k′ = 
0.989, r2-r’2/r2  =0.136 AAE-|AE|= 0.215, 0.5 × AAE = 0.107, R2(res-test)  = 0.437, 

MAE = 0.231, 0.1×Range(train) = 0.232,  0.15×Range(train) = 0.348, 0.2×Range(train) = 
0.464, 0.25×Range(train) =  0.580, 

 MAE + (3 × σ) = 0.544 

5 pED50 = 4.056(±0.024)  +0.215(±0.039) 
AATSC7e  

- 0.152(±0.041)AATSC7s + 
0.432(±0.042)MATS5s - 0.327 

(±0.042)SdO - 0.167(±0.035)maxHCsatu 
+0.274(±0.035)IC3  
- 0.147(±0.029)E3e 
 +0.071(±0.031)E1p 

Internal 
n = 70, R2train = 0.824, R2adj = 0.802, SEE= 0.206, F = 36.964, Q2LOO = 0.772, PRESS 

= 3.468, SDEP = 0.219,  cR2p = 0.765, R2(res-train) = 0.181 
External 

R2pred= 0.832, R2m = 0.757, |r20-r’20| =  0.082,  k = 0.995, r20- r20/r2 = 0.011, k′ = 
1.000, r2-r’2/r2  =0.109 AAE-|AE|= 0.177, 0.5 × AAE = 0.089, R2(res-test) = 0.356, 

MAE = 0.203, 0.1×Range(train) = 0.232,  0.15×Range(train) = 0.348, 0.2×Range(train) = 
0.464, 0.25×Range(train) =  0.579, 

 MAE + (3 × σ) = 0.466 

 PCR MODEL 
 pED50 = 4.056(±0.021)  + 

0.056(±0.009)PC1 
+ 0.121(±0.014)PC2 + 0.194(±0.026)PC3 

+ 0.280(±0.03573)PC4 -0.368(±0.036)PC5 
+ 0.080(±0.038) PC6 -0.333(±0.046)PC7 

-0.409(±0.067)PC8 

Internal 
n = 70, R2train = 0.859, R2adj = 0.841, SEE= 0.184, F = 41.96, Q2LOO = 0.809, PRESS 

= 2.916, SDEP = 0.201,  cR2p = 0.799, R2(res-train) = 0.141 
External 

R2pred= 0.768, R2m = 0.683, |r20-r’20| =  0.169,  k = 0.998, r20- r20/r2 = 0.019, k′ = 
0.997, r2-r’2/r2  =0.237 AAE-|AE|= 0.234, 0.5 × AAE = 0.126, R2(res-test) = 0.453, 

MAE = 0.251, 0.1×Range(train) = 0.232,  0.15×Range(train) = 0.348, 0.2×Range(train) = 
0.464, 0.25×Range(train) =  0.579, 

 MAE + (3 × σ) = 0.668 

 
Table 3- Observed and modeled anticonvulsant activity of studied compounds. 

 pED50   pED50  
Cpd

. 
 Models  Cpd

. 
 Models  

No. Obs. 1 2 3 4 5 PCR No. Obs. 1 2 3 4 5 PCR 
1a 5.00

9 5.025 
5.028 4.915 4.705 4.919 5.02

0 
46 4.07

7 4.299 
4.297 3.94

0 
4.10

0 
3.93

8 
4.07
2 

2 5.00
3 4.667 

4.651 4.740 4.794 4.731 5.01
2 

47 a 4.03
2 3.912 

3.933 4.00
2 

3.74
8 

4.02
2 

3.78
5 

3 4.94
9 4.509 

4.506 4.676 4.870 4.673 4.66
1 

48 3.92
3 4.137 

4.142 3.82
0 

4.00
3 

3.82
4 

3.88
9 

4 4.93
3 4.851 

4.856 4.924 4.723 4.932 4.90
8 

49 3.77
4 4.063 

4.060 3.99
5 

4.14
2 

3.99
3 

4.23
1 

5 4.88
2 4.707 

4.711 4.822 4.711 4.828 4.77
4 

50 3.80
5 4.221 

4.215 4.18
7 

4.05
0 

4.18
0 

4.05
5 

6 4.85
7 5.089 

5.092 5.046 4.928 5.052 5.11
1 

51 3.81
1 3.335 

3.344 3.83
7 

3.44
9 

3.84
8 

3.66
7 

7 a 
4.72 4.573 

4.575 4.552 4.354 4.554 4.35
5 

52 a 4.09
2 4.020 

4.019 4.05
6 

4.36
5 

4.05
5 

4.16
5 

8 4.59
2 

4.060
c 

4.077
c 

4.256
c 

4.251
c 

4.268
c 

4.38
8 

53 4.10
7 4.102 

4.101 3.94
2 

4.18
9 

3.94
0 

4.14
0 
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9 4.60
3 4.151 

4.154 3.954 4.318 3.953
b 

4.34
6 

54 4.15
8 4.203 

4.203 4.18
1 

4.19
5 

4.18
1 

4.06
4 

10 4.68
2 4.616 

4.619 4.692 4.794 4.697 4.89
4 

55 a 4.10
7 4.264 

4.262 4.19
8 

4.48
0 

4.19
6 

4.17
8 

11 a 4.62
8 4.708 

4.710 4.504 4.659 4.504 4.64
9 

56 
3.77 3.911 

3.918 3.71
5 

3.84
7 

3.71
7 

3.86
6 

12 4.52
5 4.152 

4.156 4.195 4.290 4.197 4.31
0 

57 3.86
6 3.807 

3.795 4.05
1 

4.07
9 

4.04
3 

4.03
8 

13 4.54
6 4.567 

4.566 4.526 4.410 4.524 4.47
7 

58 3.76
4 3.834 

3.830 3.74
3 

3.80
9 

3.73
8 

4.01
6 

14 4.56
7 4.577 

4.579 4.456 4.507 4.457 4.42
9 

59 4.01
3 3.994 

3.991 3.99
6 

4.22
9 

3.99
4 

4.10
7 

15 4.44
7 4.224 

4.229 4.152 4.381 4.154 4.37
5 

60 3.86
1 3.972 

3.983 4.04
8 

3.88
5 

4.05
8 

3.91
6 

16 4.47
9 4.229 

4.223 4.338 4.146 4.333 4.27
9 

61 3.83
4 3.919 

3.922 4.01
4 

3.91
1 

4.02
0 

4.00
6 

17 a 4.36
8 4.262 

4.265 4.624 4.216 4.627 4.53
2 

62 3.67
2 

3.661
c 

3.654
c 

3.93
5 

3.65
0 

3.93
5 

3.83
3 

18 4.52
9 4.558 

4.560 4.450 4.663 4.451 4.43
3 

63 
3.77 3.699 

3.698 3.76
4 

3.74
3 

3.76
3 

3.72
3 

19 4.53
0 4.682 

4.699 4.618 4.571 4.632 4.51
8 

64 3.86
4 4.105 

4.105 3.87
8 

4.02
4 

3.87
8 

3.92
4 

20 4.42
3 4.424 

4.426 4.412 4.657 4.414 4.56
0 

65 3.73
3 3.624 

3.619 3.74
5 

3.65
5 

3.74
4 

3.77
7 

21 a 4.27
5 4.165 

4.159 4.142 4.016 4.137 4.05
5 

66 3.80
9 3.975 

3.972 4.12
7 

3.91
1 

4.12
7 

3.87
8 

22 4.42
8 4.053 

4.045 4.059 4.121 4.051 4.08
1 

67 a 3.74
1 3.669 

3.665 3.49
3 

3.65
2 

3.49
1 

3.54
1 

23 4.38
3 4.063 

4.065 4.118 4.386 4.121 4.24
2 

68 3.82
1 4.206 

4.202 4.27
7 

4.14
6 

4.27
4 

4.08
3 

24 4.36
0 4.141 

4.136 4.175 4.068 4.171 4.07
2 

69 3.69
4 3.792 

3.792 3.71
4 

3.88
7 

3.71
2 

3.73
8 

25 4.37
3 4.371 

4.349 4.364 4.579 4.346 4.49
4 

70 3.89
8 3.993 

3.995 4.06
2 

3.78
3 

4.06
3 

3.82
1 

26 4.33
3 4.209 

4.209 4.433 4.503 4.435 4.22
2 

71 3.72
8 4.019 

4.029 4.09
8 

3.85
9 

4.10
6 

3.87
7 

27 4.09
3 4.162 

4.152 4.145 4.230 4.134 4.25
8 

72 3.59
3 4.083 

4.084 3.86
9 

3.79
5 

3.86
6 

4.00
7 

28 4.28
4 4.302 

4.305 4.223 4.271 4.224 4.25
5 

73 3.83
9 3.982 

3.981 4.04
7 

3.94
0 

4.04
7 

3.91
6 

29 4.03
4 3.952 

3.946 3.917 3.830 3.911 4.01
1 

74 
3.63 3.812 

3.763 3.89
1 

3.57
1 

3.85
0 

3.50
8 

30 4.22
8 4.227 

4.216 4.268 4.187 4.259 4.18
5 

75 3.56
8 3.262 

3.275 3.34
6 

3.36
9 

3.35
5 

3.39
7 

31 4.26
8 4.349 

4.355 4.321 4.336 4.325 4.27
2 

76 3.60
7 3.867 

3.871 3.79
3 

3.73
6 

3.79
6 

3.74
3 

32 4.21
8 4.230 

4.231 4.183 4.042 4.183 4.09
8 

77 3.54
5 3.838 

3.843 3.69
2 

3.60
7 

3.69
3 

3.80
0 

33 a 4.16
7 4.014 

4.015 4.091 3.992 4.091 3.97
6 

78 
3.69 3.619 

3.625 3.73
1 

3.92
3 

3.74
0 

3.83
2 

34 a 4.23
4 4.102 

4.089 3.942 4.111 3.929 4.01
4 

79 3.70
8 3.891 

3.882 3.86
7 

3.76
7 

3.86
0 

3.66
0 

35 4.17
3 4.117 

4.114 4.096 3.982 4.093 3.92
8 

80 3.74
7 3.341 

3.339 3.18
2 

3.38
1 

3.17
9 

3.36
7 

36 4.17
1 4.259 

4.259 4.289 4.204 4.290 4.21
1 

81 a 3.48
3 3.386 

3.385 3.38
4 

3.56
1 

3.38
3 

3.64
6 

37 4.17
4 4.260 

4.266 4.210 4.216 4.215 4.20
8 

82 a 3.46
0 3.952 

3.948 4.05
8 

3.86
8 

4.05
5 

4.06
5 

38 a 4.12
5 4.175 

4.196 4.190 3.778 4.206 3.72
9 

83 3.48
9 3.435 

3.429 3.47
6 

3.30
4 

3.46
8 

3.30
3 
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39 4.14
4 3.768 

3.767 3.748 3.892 3.748 3.87
9 

84 3.76
8 4.144 

4.148 4.21
4 

3.93
5 

4.21
8 

3.84
3 

40 4.07
3 3.977 

3.981 3.821 3.893 3.823 3.87
7 

85 a 3.47
2 

3.469 3.479 3.76
2 

3.66
8 

3.77
6 3.82 

41 a 4.09
6 3.863 

3.867 3.795 3.976 3.797 3.82
9 

86 2.93
3 2.892 

2.901 2.97
6 

2.88
7 

2.98
5 

2.97
8 

42 4.08
3 4.100 

4.098 4.095 4.201 4.092 4.17
5 

87 a 2.69
3 

2.968 2.974 2.91
2 

2.97
5 

2.91
8 

3.16
3 

43 4.08
5 4.320 

4.330 4.399 4.174 4.405 4.08
7 

88 2.68
4 2.668 

2.674 2.71
4 

2.76
2 

2.71
9 

2.77
2 

44 4.22
5 3.948 

3.951 3.922 4.170 3.925 4.06
0 

89 a 2.61
0 3.079 

3.082 3.11
2 

2.90
5 

3.11
4 

3.10
2 

45 4.11
3 4.187 

4.198 4.154 4.142 4.165 4.11
7 

90 2.72
8 3.083 

3.094 2.95
8 

2.96
7 

2.97
0 

3.01
7 

a compound in the test set; b response outlier in model 5; c compound with leverages higher than the threshold leverage h* = 0.375 
 

3.2. Applicability domain 

 On analyzing the applicability domain (AD) with the 
Williams plots (Figure 3) for the models based on the entire 
dataset, compound 9 was identified as y-outlier for model 5. The 
limit of normal values for the response variable was set as ±3σ 
(standard deviation) units. Compounds 8 was observed to have 
leverages (h) values greater than the threshold leverage (h* = 
0.375) for all the models and compound 62 was found to have 
leverage values greater than threshold leverage for model 1 and 2. 

In summary, the produced models matched high quality 
parameters for both the training and test set data. They had good 
fitting power and capability for assessing external data. 
Furthermore, almost 99% of the studied compounds were within 
the applicability domain of the proposed model meaning they 
were evaluated correctly except for compounds 8, 9 and 62 that 
showed inconsistency. 

 

 
Figure 3-Williams plots for the models. In the charts, horizontal lines refer to the residual limit (± 3 standard deviation) and 

vertical line refers threshold leverage h* = 0.375(M1-M5 represent model 1-5) 

 

3.3. Descriptor interpretation 

Table 4 presents a brief definition, average regression 
coefficient and incidence of the 16 descriptors shared by the 
reported model in the study. AATSC7m, AATSC7e and 
AATSC7s are Moreau-Broto average/centered 2D autocorrelation 
descriptors. They are based on spatial-dependent autocorrelation 
function which measures the strength of the relationship between 

observations (atomic or molecular properties) and space 
separating them (lag) (TODESHINI AND COSONNI, 
2009).These descriptors are obtained by taking the molecule 
atoms as the set of discrete points in space and an atomic property 
as the function evaluated at those points. When these descriptors 
are calculated on molecular graph, the lag coincides with the 
topological distance between any pair of vertices. AATSC7m, 
AATSC7e and AATSC7s were defined on the molecular graphs 
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using atomic masses (m), Sanderson electronegativities (e) and 
inductive effect respectively of pairs of atoms 7 bond apart as the 
weighting scheme.  These observations suggested that atomic 
masses and electronic distribution of atoms that made up the 
molecule had significant effect on the anticonvulsant activity of 
the dataset. In addition, the signs of the regression coefficients for 
each descriptor indicated the direction of influence of descriptors 
in the models such that, positive regression coefficient associated 
to a descriptor will augment the activity profile of a compound 
while the negative coefficient will diminish the activity of a 
compound. Therefore, increase in the values of AATSC7m and 
AATSC7e augments the anticonvulsant activities of the 
compounds, while, that of AATSC7s diminishes it (Table 4). 
Therefore, chain elongation and introduction of more 
electronegative atom into the molecular system will be favorably 
disposed to increase in anticonvulsant activity.  

MATS7m, MATS7s, MATS7e and MATS75s are also 
spatial-dependent 2D autocorrelation descriptors with the 
incorporation Moran coefficient (index) (TODESHINI AND 
COSONNI, 2009) in the measurement of the strength of the 
relationship between observations and space separating them. 
These Moran autocorrelation descriptors contained in the model 
reported in this study were defined on the molecular graphs using 
atomic masses (m), Sanderson electronegativity (e ) and inductive 
effect of pairs of atoms 7 and 5 bond apart as the weighting 
scheme. These observations supported the claim that atomic 
masses and electronic distribution had significant effect on the 
anticonvulsant activity of the molecules. MATS7m and MAT7s 
were negatively correlated to the anticonvulsant activity values 
(Table 4). 

SdO and maxHCsatu are 2D-electrotopological state (E-
state indices) atom type descriptor. In general E-state indices 

encodes the intrinsic electronic state of each atom as perturbed by 
the electronic influenced of all other atoms in the molecule within 
the context of the topological character of the molecule (HALL 
AND KIER, 1995). SdO is usually calculated for compounds 
containing a carbonyl group, i.e. ketones, carboxylic acids, esters, 
amides and urea, nitro and nitroso compounds, sulfones, and 
sulfoxides (HUUSKONEN et al., 2000).   

It is negatively correlated to the anticonvulsant activity of 
the dataset (Table 2). maxHCsatu favor the addition of –CH3 to 
unsaturated C atom e.g. in benzene ring. However, it’s negatively 
correlated to the activity of the dataset molecules. SC-5 is a simple 
connectivity chi index which is a weighted count of sub-graph 
whose number of edges (bonds) is five (KIER AND HALL, 
1976). Increase in molecule linearity increases it value and 
increasing the value of this descriptor augments the activity of the 
data set molecules (Table 2). 

RDF25m and RDF70m are 3D radial distribution function 
at 2.5 and 7.0 inter-atomic distance weighted by atomic masses 
(TODESHINI AND COSONNI, 2009).  

The presence of this descriptor in the model suggested the 
occurrence of a linear relationship between anticonvulsant activity 
and the 3D molecular distribution of atomic masses in the 
molecules calculated at radius of 2.0 Å and 7.0 Å from the 
geometrical centers of each molecule. It was observed that 
RDF25m is positively correlated to activity (Table 3) and reverse 
is the case for RDF70m. IC3 is a topological information index of 
a graph based on neighbor degrees and edge multiplicity. It is a 
measure of graph complexity (KIER AND HALL, 1976). It is 
positively correlated with anticonvulsant activities of dataset 
molecules. 

Table 4- Models descriptors along with their physical meaning, average regression coefficient and incident 

No Descriptor Descriptor class Physical meaning Av. reg. coeff. 
(Incidence) 

1 AATSC7m 2D-autocorrelation Average centered Broto-Moreau autocorrelation - lag 7 / 
weighted by mass 

0.393(2) 

2 AATSC7e 2D-autocorrelation Average centered Broto-Moreau autocorrelation - lag 7 / 
weighted by Sanderson electronegativities 

0.214(2) 

3 AATSC7s 2D-autocorrelation Average centered Broto-Moreau autocorrelation - lag 7 / 
weighted by I-state 

-0.152(2) 

4 MATS7m 2D-autocorrelation Moran autocorrelation - lag 7 / weighted by mass -0.323(2) 
5 MATS5s 2D-autocorrelation Moran autocorrelation - lag 5 / weighted by I-state 0.437(5) 
6 MATS7e 2D-autocorrelation Moran autocorrelation - lag 7 / weighted by Sanderson 

electronegativities 
0.233(1) 

7 MATS7s 2D-autocorrelation Moran autocorrelation - lag 7 / weighted by I-state -0.122(1) 
8 SdO 2D- Electrotopological State 

Atom Type Descriptor 
Sum of atom-type E-State: =O -0.354(5) 

9 SC-5 2D-Chi cluster descriptor Simple cluster of order 5 0.133(2) 
10 maxHCsatu 2D- Electrotopological State 

Atom Type Descriptor 
Maximum atom-type H E-State: H on C sp3 bonded to 

unsaturated C 
-0.167(2) 

11 RDF25m 3D- RDF Descriptor Radial distribution function - 025 / weighted by relative mass 0.341(1) 
12 RDF70m 3D- RDF Descriptor Radial distribution function - 070 / weighted by relative mass -0.279(1) 
13 IC3 Information Content Descriptor Information content index (neighborhood symmetry of 3-order) 0.251(5) 
14 E3e 3D-PaDEL WHIM Descriptor 3rd component accessibility directional WHIM index / weighted 

by relative Sanderson electro-negativities 
-0.159(2) 

15 E1p 3D-PaDEL WHIM Descriptor 1st component accessibility directional WHIM index / weighted 
by relative polarizabilities 

0.066(4) 

16 E3s 3D-PaDEL WHIM Descriptor 3rd component accessibility directional WHIM index / weighted 
by relative I-state 

-0.163(3) 
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Table 5-Designed molecule and their leverage values and predicted anticonvulsant activity (pED50) 

   
No. X1 X2 X3 X4 Leverage pED50 
1 CH3 H O NH2 0.123 4.453 
2 CH3 H O NHCH3 0.148 4.724 
3 CH3 H O N(CH3)2 0.194 4.751 
4 CH3 H O NH-O-H 0.121 4.652 
5 CH3 H O NH-O-CH2CH3 0.17 4.702 
6 CH3 H O NHCOCH3 0.294 3.625b 
7 CH3 H O NHCSCH3 0.153 4.659 
8 CH3 H O NHCOCH2CH3 0.357 3.843b 
9 CH3 H O NHCSCH2CH3 0.156 4.778 
10 CH3 H O NHNH2 0.129 4.573 
11 CH3 H O NHNHCH3 0.161 4.661 
12 CH3 H O NHN(CH3)2 0.126 4.537 
13 CH3 H O Cl 0.188 4.839 
14 CH3 H O Br 0.328 4.803 
15 CH3 H O F 0.232 3.787b 
16 CH3 H O I 1.777a 5.493 
17 CH3 H O OH 0.13 4.339 
18 CH3 H O COOH 0.274 3.780b 
19 CH3 H O CH3 0.108 4.633 
20 CH3 N(CH3)2 O H 0.087 4.261 
21 CH3 CH2CH3 O H 0.063 4.329 
22 CH3 NH2 O H 0.059 4.294 
23 CH3 NHCH3 O H 0.077 4.325 
24 CH3 NHOCH3 O H 0.128 4.319 
25 CH3 NHOCH2CH3 O H 0.198 4.321 
26 CH3 NHCOCH3 O H 0.224 3.293b 
27 CH3 NHCOCH2CH3 O H 0.246 3.441b 
28 CH3 NHCSCH2CH3 O H 0.1 4.42 
29 CH3 NHCSCH3 O H 0.086 4.437 
30 CH3 NHNH2 O H 0.084 4.183 
31 CH3 NHNHCH3 O H 0.111 4.241 
32 CH3 NHN(CH3)2 O H 0.073 4.212 
33 CH3 Cl O H 0.152 4.591 
34 CH3 F O H 0.132 3.852b 
35 CH3 Br O H 0.219 4.24 
36 CH3 I O H 0.684a 4.727 
37 CH3 OH O H 0.078 4.054 
38 CH3 COOH O H 0.426a 3.214b 
39 CH3 H S H 0.047 4.205 
40 CH3 H S NH2 0.089 4.437 
41 CH3 H S NHCH3 0.125 4.673 
42 CH3 H S N(CH3)2 0.165 4.736 
43 CH3 H S NHOCH3 0.097 4.591 
44 CH3 H S NHOCH2CH3 0.13 4.668 
45 CH3 H S NHSCH2CH3 0.139 4.688 
46 CH3 H S NHSCH3 0.113 4.574 
47 CH3 H S NHCOCH2CH3 0.364 3.933b 
48 CH3 H S NHCSCH3 0.109 4.585 
49 CH3 H S NHCSCH2CH3 0.14 4.692 
50 CH3 H S NHNH2 0.109 4.65 
51 CH3 H S NHNHCH3 0.089 4.354 
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52 CH3 H S NHN(CH3)2 0.098 4.527 
53 CH3 H S Cl 0.126 4.669 
54 CH3 H S F 0.161 3.994b 
55 CH3 H S Br 0.491a 4.936 
56 CH3 H S I 1.531a 5.195 
57 CH3 H S OH 0.128 4.061b 
58 CH3 H S COOH 0.423a 3.498b 
59 CH3 CH3 S H 0.059 4.039b 
60 CH3 NH2 S H 0.067 4.005b 
61 CH3 NHCH3 S H 0.072 4.111b 
62 CH3 N(CH3)2 S H 0.064 4.027b 
63 CH3 NHOCH3 S H 0.121 4.161b 
64 CH3 NHCOCH3 S H 0.25 3.355b 
65 CH3 NHCSCH3 S H 0.091 4.165b 
66 CH3 NHNH2 S H 0.106 4.125b 
67 CH3 NHN(CH3)2 S H 0.094 4.108b 
68 NHNH2 H O H 0.119 4.354 
69 NHNHCH3 H O H 0.07 4.188 
70 NHN(CH3)2 H O H 0.101 3.674b 
71 OCH3 H O H 0.197 4.455 
72 NHOCH3 H O H 0.108 3.791b 
73 NHOH H O H 0.114 4.141b 
74 OH H O CH3 0.143 4.894 

 
75 H O N C 0.108 4.571 
76 H O C S 0.078 4.438 
77 H O C O 0.122 4.531 
78 H S C S 0.132 4.145b 
79 NH2 O C O 0.119 4.385 
80 NHCH3 O C O 0.097 4.536 
81 NH2 S C S 0.145 3.928b 
82 NHCH3 S C S 0.137 4.021b 
83 N(CH3)2 O C O 0.209 4.421 
84 N(CH3)2 S C S 0.067 4.032b 
85 NHNH2 O C O 0.144 4.321 
86 NHNH2 S C S 0.193 3.945b 
87 NHNHCH3 O C O 0.101 4.534 
88 NHN(CH3)2 O C O 0.09 4.432 
89 NHNHCH3 S C S 0.087 4.343 
90 NHN(CH3)2 S C S 0.085 4.254 
91 OH O C O 0.078 4.314 
92 COOH O C O 0.495 3.472b 

 
93 NHNH2 H H  0.125 3.776b 
94 CH3 H NH2  0.156 4.096b 
95 CH3 H CH3  0.063 4.262 
96 CH3 H OH  0.128 3.792b 
97 CH3 H COOH  0.267 3.338b 
98 CH3 H N(CH3)2  0.122 4.401 
99 CH3 H NHOH  0.065 4.100b 
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100 CH3 H CHCH2CH2  0.104 4.409 
101 CH3 OH CH3  0.21 4.016b 
102 OH H CH3  0.09 4.406 

 
103 H    0.059 3.862b 
104 NH2    0.091 3.937b 
105 NHCH3    0.094 4.145b 
106 N(CH3)2    0.074 4.031b 
107 NHOCH3    0.093 3.983b 
108 NHCOCH3    0.358 3.101b 
109 NHCOCH2CH3    0.374 3.160b 
110 NHCSCH3    0.095 4.074b 
111 NHCSCH2CH3    0.083 4.272 
112 NHNH2    0.123 3.987b 
113 NHNHCH3    0.115 4.080b 
114 NHN(CH3)2    0.086 3.997b 
115 Cl    0.066 4.150b 
116 F    0.154 3.609b 
117 OH    0.132 3.748b 
118 COOH    0.348 3.118b 

a leverage value greater than threshold; b activity values less than that of template (4.174) 
 

E1p, E3e and E3s are 3D directional WHIM (Weighted 
Holistic Invariant Molecular) descriptors. These are indices 
developed to describe molecular structure in terms of size, shape, 
atom distribution and symmetry with respect to some invariant 
reference frame. They are univariate statistical indices calculated 
from the score of individual principal component (1, 2, 3) obtained 
by performing a principal component analysis (PCA) ont a 
centered molecular coordinate by different weighting scheme 
(TODESHINI AND COSSONI, 2009).  

E1p was obtained from the first component and it is 
weighted by relative polarizabilities of atom that make up the 
molecule. E3e was obtained from the third component. It is 
weighted by Sanderson electronegativity values for all atoms that 
made up a molecule. While E3s was also obtained from the third 
component, however, weighted by relative I-state (inductive or I-
effect). This suggested that the electronic distribution of atoms that 
made up the molecule had significant effect on the anticonvulsant 
activity of the molecules.  

The two WHIM descriptors are obtained from the third 
component were negatively correlated to the anticonvulsant 
activity, while E1p was positively correlated. Generally, for 
directional WHIM descriptors, increase in chain length of an 
organic molecule increases both first and third component of 
directional whip descriptors. Cyclisation of the chain reduces both. 
Branching reduces first but increases the third a little. Increase in 
molecular mass increase both. Aromaticiation reduces it both 
drastically. Addition of halogen increases first but reduces the 
third component. Adding alkyl group to benzene increase both a 
little. And increase in unsaturation reduces the first such single > 
double > triple (TODESHINI AND COSSONI, 2009). 

 

 

3.4 Designed molecule 

Modification were made around the template (2-
acetamido-N-benzyl-2-(5-methylfuran-2-yl)acetamide) structure 
to obtain about 118 new molecules which are presented in Table 
5. Firstly, efforts were made to increase the linearity of the 
molecule by the addition of chain substituent at position 1, 9 and 
17. However, the substituents added were not pure alkyl group 
because, addition of alkyl to benzene ring was reduces the value 
of first component directional WHIM descriptors and favors 
maxHCsatu (TODESHINI AND COSSONNI, 2009).  

Additional ring system was avoided as much as possible 
because of their relationship with the directional WHIM 
descriptors and other descriptors that favors increase linearity (SC-
5, IC3, AATSC and MATS). Increment in degree of unsaturation 
of the molecular system and number of carbonyl group was 
avoided in order to negate its incremental effect on SdO 
descriptor. Furthermore, additions of O, S, N, and halogen favors 
increase in molecular mass, linearity and polarizability the data set 
molecules. O, S, N addition also allows some degree compromise 
on relative inductive effect (I-state). Generally, relative inductive 
effects have been experimentally measured with reference to 
hydrogen, in decreasing order of -I effect or increasing order of +I 
effect, as follows: –NH3

+ > –NO2 > –SO2R > –CN > –SO3H > –
CHO > – CO > –COOH > –COCl> –CONH2 > –F > –Cl > –Br > 
–I > –OR > -OH > –NH2 > –C6H5 > –CH=CH2 > –H (STOCK, 
1972). 

The average predicted activity values by the models and 
their leverages value are included in Table 5. It was observed that 
only 6 out of 118 designed molecules had leverage value greater 
than h* = 0.375 and they were designated with superscript ‘a’. 
Therefore, prediction made for these molecules by the models 
were considered unreliable [ROY et al, 2015; ERIKSON et al., 
2003; DEARDEN et al., 2007). About 50 of the designed 
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compounds had predicted activity value less than that of the 
template compounds (pED50 of 4.174).  

The predicted activities of these groups of molecules are 
designated with superscript ‘b’. Substitution of the furan ring of 
the template molecule with piperidine or pyrole ring (molecules 
93-118) does not lead to compounds with improved activity. This 
might be attributed to reduction in linearity of the molecules as 
pointed out by the models.  

Addition of carbonyl compounds to the molecular system 
of the template, gave molecules with reduced activity value 
(Molecules 6, 8, 18, 26-27, 47, 58, 64, 92, 97, 108-109,118). 
Increment in the value of descriptor SdO and conjugation may 
contribute to this observation as pointed out by the models. 

3.5  Docking simulation 

X-Ray crystal structure of chains A and B of PDB: 10HV 
is composed of 922 amino acids and 14608 atoms. It contained 15 
pockets and binding site was defined around the pockets ranked 1, 
which is represented by blue mesh in Figure 4. The pocket had 
amino acids Ile72, Phe189, Arg192and Lys329 that were 
implicated in the inhibitory action of vigabatrin and acetate ion on 
GABA_AT (STORICI et al., 2004). Also, its Merck’s Drug-Like 
Density (DLID) score was greater than 0.5. This suggested the 
pocket could be a good site of action for any drug. Grid map size 
of 0.5 and dimensions 25.02Å X 24.82Å X 34.25Å were used.  

44 out of the 118 designed molecules showed better 
predicted anticonvulsant activity compare to the template, they 
were docked with 1OHV receptor. The best result for each 
molecule after 10 conformations run is presented in Table 6. The 
molecules were ranked according to their predicted affinity for the 
target considered.  

Hydrogen bond energy, hydrophobic interaction, 
electrostatic interaction, and the various amino acid involved in 
these interactions are also included in the table. The designed 
molecule had negative binding score. This indicated good binding 
affinity with the receptor. Their binding scores were better than 
that of the template, 4-aminohex-5-enoic acid (vigabatrin), 3, 3 
diphenylpyrrolidine-2, 5-dione (phenytoin) and comparable to that 
of 5H-dibenzo [b, f] azepine-5-carboxamide (cabamezapine). 
Vigabatrin, phenytoin and carbamezapine are known inhibitors of 
GABA_AT. The designed molecules therefore have potential as 
inhibitor of GABA_AT and invariably as antiepileptic chemical 
agent. 

Explaining the interaction between the ligands and the 
receptor molecules are a complex endeavor because various 
interactions are involved including: hydrophobic interaction, 
hydrogen bonding and electrostatic interaction. The correlation 
between this interactions and dock score (binding affinity) gave 
hydrogen bonding correlation value of 0.703, hydrophobic 
interaction correlation value of 0.248 and electrostatic interaction 
correlation value of -0.301. This was in agreement with the report 
that the specificity of the binding between ligand and receptor 
molecule is controlled by hydrogen bonding (YEH et al., 2002).  

 

 
Figure 4-3D structure of chain A (red) and B (magenta) of 

PDB: 1OHV receptor, pocket ranked 1 (blue mesh) and the F-

sites (red) are the remaining pocket positions. 

Figure 5 presented the interaction between designed 
molecule 30 ((S)-2-acetamido-N-benzyl-2-(5-hydrazinylfuran-2-
yl)acetamide) and the receptor pocket. From the diagram, it was 
observed that the molecule interacted with the receptor chain A: 
Tyr69, Arg192, Glu270, Gly438 via conventional hydrogen bond 
and Lys203 and Gly438 via carbon hydrogen bond. It also reacted 
with chain B Try348 via pi-donor hydrogen bond and hydrophobic 
pi-pi T-shape interaction. The number and types of interactions in 
this molecule were similar to, but more than that of 4-aminohex-
5-enoic acid (i.e. vigabatrin a known GABA_AT inhibitors) 
(Figure 6).  

 
Figure 5-Intermolecular interaction between 2-acetamido-N-

benzyl-2-(5-hydrazinylfuran-2-yl)acetamide (molecule No 30) 

and the pocket amino acid residue of GABA_AT 
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Figure 6-Intermolecular interaction between 4-aminohex-5-

enoic acid (vigabatrin) and the pocket amino acid residue of 

GABA_AT 

This could inform it’s observed higher binding affinity 
compared to vigabatrin. In summary, the observed high binding 
affinity for the designed molecules when compare with vigabatrin, 
phenytoin and carbamazepine could be attributed to the number 
and types of interaction between them and the receptor. The 
docking result suggested that the designed molecules might be 
potential anticonvulsant molecules for the treatment of epilepsy 
episodes. 

 

 

 

 

 

 

 

 

 

Table 6-Molecular docking result for the designed molecules showing various interactions with GABA_AT 

  Energy(kcal/mol) Intermolecular interaction and the amino acid involved 

Rank No. Score Hb Hph Ein Hb Hph Ein 

1 30 -34.3 -9.91 -5.20 4.80 
Tyr69,  Arg192, Lys203, Glu270, 

Tyr348, Gly438 Tyr348  

2 31 -31.59 -8.19 -6.20 4.96 
Tyr69, Arg192, Glu270, Tyr348, 

Gly438, Gly440 Tyr348 Glu270 

3 7 -29.07 -5.83 -5.89 6.50 
Tyr69,Arg192,His206,Glu270,Tyr348, 

Asn423 Tyr348 Arg192 

4 9 -28.93 -5.73 -5.92 19.6 
Tyr69,Arg192,His206,Glu270,Tyr348, 

Arg430,Asn423 Tyr348 Arg192 

5 14 -28.9 -5.45 -6.20 5.40 
Tyr69,Arg192,His206,Glu270,Tyr348, 

Gly438 Tyr348 Arg192 

6 10 -28.75 -8.17 -5.22 5.96 
Tyr69,Arg192,His206,Glu270,Tyr348, 

Gly440 Tyr348 Arg192 

7 24 -28.51 -5.53 -5.93 6.54 
Tyr69,Arg192,lys203,Glu270,Tyr348, 

Gly438 Tyr348,His206, Arg192 

8 13 -27.96 -5.41 -6.11 5.12 Tyr69,Arg192,Glu270,His206,Tyr348 Tyr348 Arg192 

9 45 -27.79 -5.77 -6.27 7.75 
Tyr69,Arg192,Glu270,Tyr348, 

Asn423 Tyr348, Ile426 
His206, 
Arg192 

10 5 -27.44 -5.91 -6.02 6.99 
Tyr69,Arg192,His206,Glu270,Tyr348, 

Asn423 
Tyr348, Ile426, 

Gly438 Arg192 

11 33 -27.42 -5.33 -6.15 4.56 
Tyr69,Arg192,Glu270,Tyr348, 

Gly438 Tyr348  

12 32 -27.37 -5.61 -6.86 6.86 
Tyr69,Arg192,Glu270,Tyr348, 

Gly438 Tyr348, His206 Arg192 

13 22 -27.28 -7.34 -5.29 5.13 Tyr69,Arg192,Glu270,Tyr348 Tyr348 Arg192 

14 53 -27.21 -5.21 -6.44 5.18 Tyr69,Arg192,Glu270Tyr348 Tyr348 
Arg192, 
His206 

15 21 -27.11 -5.63 -6.24 5.42 Tyr69,Arg192,Glu270,Tyr348 Tyr348  

16 23 -26.97 -6.57 -6.00 4.80 
Tyr69,Arg192,Glu270,Tyr348, 

Gly438, Gly440  Glu270 

17 35 -26.79 -5.40 -6.18 4.53 
Tyr69,Arg192,Glu270,Tyr348, 

Gly438 Tyr348 Glu270 

18 2 -26.45 -5.94 -6.10 5.40 Tyr69,Arg192,Glu270,His206,Asn423 Tyr348 Arg192 
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19 12 -26.39 -5.93 -6.30 5.54 Tyr69,Arg192,Glu270,Tyr348,Asn423 Tyr348 
His206, 
Arg192 

20 50 -26.35 -7.61 -5.47 6.00 Tyr69,Arg192,Glu270,Gly449 Tyr388 
His206, 
Arg192 

21 1 -26.02 -5.93 -5.50 5.12 Tyr69,Arg192,Glu270,His206,Asn423 Tyr348 Arg192 

22 4 -25.99 -5.84 -5.79 6.28 Tyr69,Arg192,Glu270,His206,Asn423 Tyr348, Gly438 Arg192 

23 29 -25.91 -5.56 -5.60 14.2 
Tyr69,Arg192,Glu270,Tyr348, 

Gly438 His206,Tyr348 Arg192 

24 11 -25.89 -5.93 -5.926 5.81 
Tyr69,Arg192,His206,Glu270,Tyr348,

Asn423 Tyr348 Arg192 

25 46 -25.64 -5.83 -6.448 6.02 Tyr69,Arg192,Glu270,Tyr348 Tyr348  

26 48 -25.58 -5.38 -6.12 5.03 
Tyr69,Arg192,Glu270,Tyr348,Arg445

,Arg422 Tyr348  

27 41 -25.5 -7.74 -6.13 7.92 Tyr69,Arg192,Glu270,Tyr348,Leu436 Tyr69,Tyr348 His206 

28 49 -25.38 -5.77 -6.277 14.87 
Tyr69,Arg192,Glu270,Tyr348,Arg422

,Asn423 Tyr348  

29 40 -25.26 -5.68 -5.799 5.21 Tyr69,Arg192,Glu270,Tyr348,Asn423 Arg192,Tyr348 His206 

30 20 -24.54 -5.08 -6.448 6.10 
Tyr69,Arg192,Glu270,Tyr348,Gly438

, Gly440 Hie44 
Glu270, 
Arg445 

31 17 -24.42 -5.80 -5.499 5.06 
Tyr69,Arg192,His206,Glu270,Tyr348,

Asn423 Tyr348 Arg192 

32 44 -24.02 -5.73 -6.599 5.63 
Tyr69,Arg192,Glu270,Tyr348,Gly438

, Arg445 Tyr348,Gly438  

33 3 -24.01 -5.28 -6.474 5.73 Tyr69,Arg192,Glu270,His206,Asn423 Tyr348 Arg192 

34 52 -23.81 -5.64 -6.763 5.04 Try69,Arg192,Glu270,Tyr348 Tyr348  

35 43 -23.45 -5.47 -6.17 7.20 
Tyr69,Arg192,Glu270,Tyr348, 

Glu419,Arg422,Arg445 Tyr348  

36 51 -22.08 -4.10 -6.30 6.04 
Tyr69,Arg192,Glu270,Tyr348, 

Asn423 
Arg192,His206, 

Tyr348  

37 25 -22.06 -5.44 -6.17 8.98 Tyr69,Arg192,Glu270,Tyr348,Cys439 Hie44,Tyr348 Glu270 

38 74 -21.73 -5.29 -5.15 4.83 Tyr69,Arg192,Glu270,Tyr348 Tyr348 Arg69 

39 42 -21.48 -3.41 -6.63 6.48 Tyr69,Arg192,Glu270,Tyr348,Asn423 Tyr348 His206 

40 39 -20.13 -3.40 -6.10 5.64 Tyr69,Arg192,Glu270,Tyr348 Tyr348 His206 

41 28 -18.16 -3.36 -5.35 11.58 Glu270,Arg422,Asn423,Gly438 
Phe351,Tyr348,Ile

426 
Arg430,A

rg445 

42 68 -17.05 -5.28 -4.73 5.78 Arg192,His206,Glu270 Ile72,Phe189, 
Lys203,G

lu270 

43 71 -17.15 -3.24 -5.83 5.07 Tyr69,Arg192,Glu270,His206,Tyr348 Phe189,Tyr348 Arg192 

Template -26.08 -5.40 -6.20 4.75 Tyr69,Arg192,Glu270,Tyr348,Gly438 Try348  
Carbamazepin

e -24.76 -1.61 -4.38 3.02 His206 Tyr348,His206 Arg422 

Phenytoin -16.69 -2.99 -4.17 3.91 Tyr69,Gly438 Tyr348, Gly438 
Arg422,A

rg445 

Vigabatrin -10.97 -3.99 -2.57  Tyr69, TYR 348, Glu270 His206  
Hb is hydrogen bond, Hph is hydrophobic interaction and Ein is electrostatic interaction 

. 
4. CONCLUSION 

Thoroughly validated QSAR models were developed for 
the anticonvulsant activity of some N-benzyl actetamide 
derivatives. The QSAR models obtained obeyed the “rule of 
thumb” and there is no redundancy among the chemometric 
molecular descriptors included in the model. The models were 
predictive (R2 ranged from 0.823 to 0.893, Q2 from 0.772 to 
0.854, F from 36.53 to 37.10, R2

pred(test) from 0.768 to 0.893) and 

statistically significant at 95% confidence level.  Models proposed 
that increase in molecular mass, molecular linearity and 
polarizability of the molecules that is within the AD of the models 
would increase the activity of the molecules. 2-acetamido-N-
benzyl-2-(5-methylfuran-2-yl)acetamides,  member of the training 
set within the AD of the proposed models was therefore chosen as 
scaffold to designed about 118 hypothetical molecules. Molecular 
descriptors of the designed molecules were used to extrapolate 
their inclusion in the AD of the proposed models. The models were 
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employed to predict hypothetical anticonvulsant activities for the 
designed molecules. Designed molecules found within the AD of 
the models with hypothetical anticonvulsant activity value greater 
than the observed activity value for the scaffold were then docked 
to GABA_AT (PDB: 1OHV). The binding affinities of these 
molecules for GABA_AT were better than that of scaffold, 
vigabatrin, and phenytoin and are comparable to that of 
carbamazepine. Since vigabatrin, phenytoin and carbamazepine 
are known GABA_AT inhibitors, the design molecules have 
potential as GABA_AT inhibitors. Therefore, the results of the 
study may be useful in future in vivo experiments for the ability of 
the designed compound to inhibit GABA_AT. 
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