ArticlePDF Available

Abstract and Figures

The importance of patch quality for amphibians is frequently overlooked in distribution models. Here we demonstrate that it is highly important for the persistence of endemic and endangered amphibians found in the threatened and fragile ecosystems that are the rocky plateaus in Western Maharashtra, India. These plateaus are ferricretes of laterite and characterise the northern section of the Western Ghats/Sri Lanka Biodiversity Hotspot, the eighth most important global hotspot and one of the three most threatened by population growth. We present statistically supported habitat associations for endangered and data-deficient Indian amphibians, demonstrating significant relationships between individual species and their microhabitats. Data were collected during early monsoon across two seasons. Twenty-one amphibian taxa were identified from 14 lateritic plateaus between 67 and 1179m above sea level. Twelve of the study taxa had significant associations with microhabitats using a stepwise analysis of the AICc subroutine (distLM, Primer-e, v7). Generalist taxa were associated with increased numbers of microhabitat types. Non-significant associations are reported for the remaining 9 taxa. Microhabitat distribution was spatially structured and driven by climate and human activity. Woody plants were associated with 44% of high-elevation taxa. Of the 8 low-elevation taxa 63% related to water bodies and 60% of those were associated with pools. Rock size and abundance were important for 33% of high elevation specialists. Three of the 4 caecilians were associated with rocks in addition to soil and stream presence. We conclude the plateaus are individualistic patches whose habitat quality is defined by their microhabitats within climatic zones.
Linktree analysis of plateau similarities based upon microhabitat explanations for the biotic distribution, Primer-e v7. Annotated for Eco-zones; HS-High South; HC-High Central; HN-High North; LS-Low South; LC-Low Central; LN-Low North. A: R = 0.53; B% = 85; Woody plants<-0.117(>-0.0826). B: R = 0.89; B% = 91; Max loose rock size<0.832(>2.26) or Surface water<0.848(>1.67) or Woody plants>-0.999(<-1.23). C: R = 0.55; B% = 43; Surface water>-1.19(<-1.6) or Woody plants<-0.345(>-0.117). D: R = 0.37; B% = 29; Woody plants<-0.738(>-0.607). E: R = 0.54; B% = 20; Stream>0.743(<-1.1) or Max loose rock size<-0.871(>0.00354) or Surface water>-0.377(<-0.785) or Woody plants>-0.738(<-0.999). F: R = 0.00; B% = 11; Max loose rock size<0.00354(>0.832) or Soil Cover<-0.791(>0) or N. Rocks>-0.0943(<-0.7) or Surface water>-0.785(<-1.19). G: R = 1.00; B% = 26; N. Rocks<-1.09(>2.13) or Pools<-0.832(>1.23) or Surface water>0.848(<-1.19) or Soil Cover<0(>1.58) or Max loose rock size<-1.42(>-0.0425) or Stream>0.743(<-0.177) or Woody plants<-0.607(>-0.345). H: R = 0.37; B% = 68; N. Rocks<-0.067 (>1.63) or Woody plants>0.376(<-0.0826). I: R = 0.54; B% = 67; Woody plants>2.31(<1.39) or N. Rocks<-1.03(>-0.997). J: R = 0.63; B% = 55; Soil Cover<0(>2.37) or N. Rocks<-0.206(>-0.067). K: R = 0.50; B% = 42; Surface water<-0.377(>0.44). L: R = 0.50; B% = 23; Stream<-1.1(>1.66) or Max loose rock size<-1.24(>0.786) or Woody plants<0.376(>1.39) or Surface water>1.26(<0.44) or Soil Cover<-0.791(>0) or N. Rocks<-0.997(>-0.206) or Pools<-0.832(>-0.317). https://doi.org/10.1371/journal.pone.0194810.g004
… 
Content may be subject to copyright.
RESEARCH ARTICLE
Micro-habitat distribution drives patch quality
for sub-tropical rocky plateau amphibians in
the northern Western Ghats, India
Christopher J. Thorpe
1
*, Todd R. Lewis
2
*, Siddharth Kulkarni
3
, Aparna Watve
4
,
Nikhil Gaitonde
5
, David Pryce
1
, Lewis Davies
1
, David T. Bilton
1
, Mairi E. Knight
1
1Ecology and Evolution Research Group, School of Biological and Marine Sciences, University of Plymouth,
Drake Circus, Plymouth, Devon, United Kingdom, 2Westfield, Wareham, Dorset, United Kingdom, 3George
Washington University, Washington D.C., United States of America, 4Tata Institute of Social Sciences,
Taljapur, Osmanabad, Maharashtra, India, 5National Centre for Biological Sciences, Rajiv Gandhi Nagar,
Kodigehalli, Bengaluru, Karnataka, India
These authors contributed equally to this work.
*Christopher.thorpe@plymouth.ac.uk (CJT); ecolewis@gmail.com(TRL)
Abstract
The importance of patch quality for amphibians is frequently overlooked in distribution mod-
els. Here we demonstrate that it is highly important for the persistence of endemic and
endangered amphibians found in the threatened and fragile ecosystems that are the rocky
plateaus in Western Maharashtra, India. These plateaus are ferricretes of laterite and char-
acterise the northern section of the Western Ghats/Sri Lanka Biodiversity Hotspot, the
eighth most important global hotspot and one of the three most threatened by population
growth. We present statistically supported habitat associations for endangered and data-
deficient Indian amphibians, demonstrating significant relationships between individual spe-
cies and their microhabitats. Data were collected during early monsoon across two seasons.
Twenty-one amphibian taxa were identified from 14 lateritic plateaus between 67 and
1179m above sea level. Twelve of the study taxa had significant associations with microhab-
itats using a stepwise analysis of the AICc subroutine (distLM, Primer-e, v7). Generalist
taxa were associated with increased numbers of microhabitat types. Non-significant associ-
ations are reported for the remaining 9 taxa. Microhabitat distribution was spatially struc-
tured and driven by climate and human activity. Woody plants were associated with 44% of
high-elevation taxa. Of the 8 low-elevation taxa 63% related to water bodies and 60% of
those were associated with pools. Rock size and abundance were important for 33% of high
elevation specialists. Three of the 4 caecilians were associated with rocks in addition to soil
and stream presence. We conclude the plateaus are individualistic patches whose habitat
quality is defined by their microhabitats within climatic zones.
Introduction
The Western Ghats-Sri Lanka Biodiversity hotspot is the eighth hottest global biodiversity hot-
spot and one of the three most threatened by human population growth [13]. The northern
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 1 / 20
a1111111111
a1111111111
a1111111111
a1111111111
a1111111111
OPEN ACCESS
Citation: Thorpe CJ, Lewis TR, Kulkarni S, Watve
A, Gaitonde N, Pryce D, et al. (2018) Micro-habitat
distribution drives patch quality for sub-tropical
rocky plateau amphibians in the northern Western
Ghats, India. PLoS ONE 13(3): e0194810. https://
doi.org/10.1371/journal.pone.0194810
Editor: Judi Hewitt, University of Waikato, NEW
ZEALAND
Received: July 18, 2017
Accepted: March 9, 2018
Published: March 26, 2018
Copyright: ©2018 Thorpe et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.
Data Availability Statement: All data are contained
in the paper and Supporting Information file.
Funding: This work was supported by the
following: CJT: The Royal Geographical Society
with IBG (www.rgs.org) through Geographical
Fieldwork Grants in 2013 and 2014 and the Monica
Cole Award 2012. CJT: The Erasmus Darwin
Barlow Expedition Fund, Zoological Society of
London (https://www.zsl.org) grant in 2014. TRL:
Percy Sladen Memorial Trust (https://www.linnean.
org The Society Medals, Awards, Prizes and
section of the Western Ghats (NWG) is unique, being geologically distinct and biologically iso-
lated from the central and southern sections of the Western Ghats (WG) on the Indian penin-
sular (Fig 1; [47]. Its’ rich amphibian fauna contains many critically endangered, endangered
species and data deficient species [8,9]. The area is characterised by rocky flat mesa-like hilltop
‘plateaus’ formed from ferricretes of laterite, a rock like material with a high metal content (Fig
2; [1012]). The individual ‘plateau’ habitat is a complex matrix of microhabitats. The avail-
ability of each microhabitat varies between plateaus, but some macroscale patterns are evident.
The plateaus are set within a landscape of varying complexity [13,14]. Rocky plateaus are of
international importance for their substantial contribution to regional biodiversity and ende-
mism [1517] and are globally threatened ecosystems [15,18]. Those in the NWG are recog-
nised as threatened and vulnerable ecosystems [19].
Plateau biodiversity is under pressure from demands placed by on its habitats by the rapidly
growing human population. Proximate threats, that impact habitat availability, falling into two
broad categories: localised threats such as illegal hunting, extraction of non-timber forest prod-
ucts (NTFPs), livestock grazing, and forest fires, and landscape-level threats such as mining,
road construction, hydro power projects, wind farms, large-scale agricultural intensification
including the creation of monoculture plantations and tourism [3,20,21]. Open-cast bauxite
mining is a significant current threat in the NWG [22,23]. Current mine restoration policy
does not identify the importance of preserving the pre-existing habitat or its mix of microhabi-
tats [13].
The WG is home to 161 of India’s 419 amphibians in only 5% of its land area, making the
WG the most amphibian rich land area in India [2426]. In the WG they are a highly diverse
group displaying exceptional levels of endemism (87%; [3,24,27]. Many are endemic with a
very localised distribution resulting from their Gondwanan vicariant origin, having speciated
in situ because of topographical isolation and diverse ecological pressures [24,2831]. The res-
olution of their taxonomy is improving but in common with much of the paleo tropics little
has been published on their ecology including their habitat requirements and the environmen-
tal factors regulating their distribution (but see: [25,3234].
Amphibian distribution is known to be highly dependent upon habitat features (see e.g.
[21,35]) resulting in their populations being spatially determined by microhabitat availability.
In tropical regions the diversity of specialist micro-environments facilitates elevated levels of
species richness and endemism through heterogeneity in: seasonality or microclimate [36],
gradients in precipitation [37,38], soil moisture [39,40] and elevation [41,42]. Evidence for
this in the WG comes from the high number of reproductive strategies with at least 40 different
reproductive strategies currently recognised in the region [4348], each using different habitat
resources for mate advertising, mating, egg deposition, spawning, tadpole and neonate feeding.
In addition to their dependence on specific microhabitats the amphibians of the WG are
threatened by the fungal pathogen Batrachochytrium dendrobatidis [49]. To mitigate these
risks, networks of suitable sites with adequate connectivity are necessary [50].
There is a globally recognised shortfall in amphibian population and ecological data [51].
To address this the Amphibian Conservation Action Plan (ACAP) was devised by the Interna-
tional Union for the Conservation of Nature (IUCN) in 2005 to prioritise research directions
[51]. Two of the four key strategies of ACAP are to understand the causes of population declines
and changes in diversity [51]. To achieve this, baseline data are required on their ecological
requirements [52,53]. Specifically, it is highlighted as essential to identify the key environmental
and habitat resources required by each taxon [5456]. The IUCN recognise the importance of
preserving habitat to conserve species [57]. However, the IUCN do not adequately account for
habitat specificity in heterogeneous topography, resulting in the ranges of many species being
overstated [58]. At present it is almost impossible to assess the conservation status of the
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 2 / 20
Grants) award in 2014. The funders had no role in
study design, data collection and analysis, decision
to publish, or preparation of the manuscript.
Competing interests: The authors have declared
that no competing interests exist.
amphibians of the WG due to a serious deficiency in ecological data. It is likely WG amphibians
reflect the global pattern where the group is declining because of one or more stressors which
frequently work synergistically: climate change; habitat destruction; pollution; over-harvesting;
Fig 1. Map of study sites within the study area inset with location within India. Green triangles denote surveyed site
locations below the Western Ghats escarpment and blue circles sites above it. Some mine site locations are included to
illustrate the proximity of threat of mining. The biodiversity hotspot outline is derived data downloaded from ArcGIS,
Environmental Systems Research Institute, Redlands, California, USA.
https://doi.org/10.1371/journal.pone.0194810.g001
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 3 / 20
Fig 2. Illustrations of the varied microhabitats present on the lateritic plateaus of western Maharashtra, NWG.
https://doi.org/10.1371/journal.pone.0194810.g002
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 4 / 20
alien species introduction and/or disease [5961]. Further work is urgently needed in the WG
in the face of climate change scenarios and alterations in land use [62].
Amphibian patch occupancy is dependent upon patch quality and regional factors includ-
ing patch distribution, the nature of the intervening landscape, and climate [63]. The impor-
tance of patch quality in regulating species distribution is becoming widely recognised as a key
factor [64]. Many species distribution studies only consider landscape scale processes as cli-
mate suitability when even with a suitable climate species may be excluded by smaller scale
processes including microhabitat availability [64,65]. We propose the availability of a suitable
suite of microhabitats on a plateau define its quality and are a result of variations in macrocli-
mate, edaphic processes and anthropogenic activities [13].
Given that the NWG are part of a key priority for conservation, and that their amphibians
are part of a data deficient globally vulnerable group, it is imperative that this shortfall in eco-
logical data is urgently addressed. That urgency is acute for the NWG rocky plateaus, as these
fragile ecosystems are being rapidly lost and damaged by human activity and are home to criti-
cally endangered endemic species [24,25,66]. As the first quantitative study of rocky plateau
amphibian habitat associations, the data herein will serve as a baseline to help in forming evi-
dence-based conservation decisions [25,34].
Materials and methods
Study area
The study investigated microhabitat associations of individual amphibian taxa on the isolated
lateritic plateaus in the NWG (Fig 1). These island-like plateaus are dominated by areas of
exposed rock but contain a varied mixture of other habitats forming a heterogenous mosaic
(Fig 2). The study focussed on 14 representative lateritic plateaus in the areas both above and
below the North-South trending escarpment in the northern section of the Western Ghats/Sri
Lanka Biodiversity Hotspot in western Maharashtra. The study area extends over 2˚ latitude
(15.89˚-17.92˚N) and a 1112 m change in plateau elevation (67–1179 m above sea level [m]).
Above the escarpment the plateaus are raised hilltop carapaces elevated from the ecologically
contrasting countryside.
As temperature, rainfall seasonality and rainfall amount varies across the survey area, for
comparative purposes the area was sub-divided into 2 Regions (High and Low), separated by
the escarpment. Each region was further subdivided into three arbitrary latitudinal sections:
North, Central and South. These are referred to as ‘eco-zones’ (similar to life-zones but in the
absence of specific environmental data for the plateaus the term eco-zone is preferred [67].
Rainfall across this area ranges from <2000 mm per annum on low sites to >6000 mm on
high sites peaking at >9000 mm on one high site [12,68,69].
These sites encompass a range of land-uses (Fig 1;Table 1). As anthropogenic disturbance
within a patch is likely to change the availability of some microhabitats its type was recorded,
and an arbitrary metric calculated by summing the number of disturbance factors observed on
each site (Table 1). Although the figure is arbitrary, no relevant literature exists, and it allows
for initial between patch comparisons. Disturbance factors recorded were; removal of loose
rocks, surfaced road, unsurfaced road, built structures on the plateau, domesticated animal
grazing, surfaced road within 200m of plateau, tourism, part conversion to plantation, adjacent
built structures, importation of topsoil. Sites with 0–3 factors were considered to have low lev-
els of disturbance, 4–7 Medium Disturbance, 8+ High Disturbance. Anthropogenic distur-
bance changed the availability of some classes of microhabitat, most notably the removal of
loose rocks, reduction in woody plants in conversion for grazing and agriculture, creation of
pools on some low-level sites and importation of soil at Panchgani (Fig 2).
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 5 / 20
Field data collection methodology
Sampling of both microhabitat and amphibian presence was performed along the same belt
transects concurrently. The rocky plateaus are relatively simple ecosystems dominated by
areas of exposed rocks with varying amounts of other microhabitats. Their size varies by an
order of magnitude but based upon the smaller sites within the survey it was determined that
four belt transects each 100 m long and 6 m wide would adequately encompass all the micro-
habitat types available on an individual plateau. The direction and path of each transect was
determined at each site to maximise sampling of all available microhabitats. The same method-
ology was applied on each survey on the same plateaus in each year but with different transect
locations making a total surveyed area 4800m
2
.
To maximise detection, both diurnal and nocturnal surveys were deployed during two tem-
porally comparable survey seasons [70]. Surveying took place each year in the same weeks at
the onset of the monsoons in late July to early August in 2013 and 2014 [71]. Survey timing
was selected for the known range of amphibian autecology, encompassing taxa with both
explosive and prolonged breeding strategies [36,72].
To make samples comparable, standardised Visual Encounter Surveys (VES) with refugia
searching [67] along the belt transects were performed [73,74]. The identity of each amphibian
taxa their abundance and their microhabitat associations were recorded for each section of the
transect [75]. Where species identity was not immediately obvious in the field photographs
were taken to permit later clarification.
Microhabitat variables recorded along the same transects as the VES surveys comprised;
maximum refugia rock size (mm), number of loose rocks >50mm, woody plant cover (as %
cover on transect), presence of soil depressions with vegetation, presence of flowing streams,
presence of static pools, presence of surface flooding (vernal pools). Although some microhab-
itats co-occurred, e.g. surface flooding and stream presence, all were included in the analysis
so that finer scale associations could be detected (Fig 2). As some NWG amphibians are semi-
terrestrial humidity levels may be considered as a micro-habitat therefore Relative humidity
included in the analysis, it was measured with a calibrated hygrometer (Hanna Instruments
HI 9064; [76].
All amphibians were identified using the best available literature, and their nomenclature
considered using the latest taxonomical authorities [6,26,69,7785]. The classification of
Table 1. Disturbance values and dominant land use for each site surveyed. To facilitate spatial comment, the study area has been sub divided into three latitudinal
zones each side of the escarpment.
Site Latitude Longitude Land use Disturbance intensity Eco-zone
Chalkewadi 17.5736 73.8261 Wind turbine Medium High North
Jagmin 17.5927 73.8181 Natural grazing Low High North
Mhavashi 17.4310 73.9313 Wind turbine Medium High North
Panchgani 17.9217 73.8045 Tourism High High North
Masai 16.8181 74.0779 Tourism/grazing High High Central
Zenda 16.9226 73.8072 Natural grazing Low High Central
Amboli Low 15.9374 74.0027 Tourism High High South
Amboli High 15.8903 74.0403 Natural grazing Low High South
Shipole 17.9735 73.0527 Agriculture Low Low North
Ratnagiri 16.9627 73.2962 Agriculture Medium Low Central
Lanja 16.7419 73.4204 Natural grazing Low Low Central
Kudopi 16.2327 73.5105 Natural grazing Low Low South
Dhamapur 16.0315 73.584 Agriculture Medium Low South
https://doi.org/10.1371/journal.pone.0194810.t001
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 6 / 20
several of the taxa found in this study is still evolving. While many herpetologists have adopted
the new suggested taxonomies entirely, this study adhered to recommendations within [86] and
[87] by presenting former nomenclature alongside more recent identifications to maintain the
continuity of identification in years following taxonomic amendments. This system introduces
new and unstable taxa with the formerly acknowledged genera first and the newly identified
genera in parentheses. For example, although the changes proposed by Frost [88] for the genus
Rana were made at the generic level, biologists wishing to recognize the subdivisions of this
genus, but maintain the stability of familiar species names and still follow rules of the Interna-
tional Code of Zoological Nomenclature (ICZN), can recognise newly created subdivisions of
these genera as subgenera [86,87,89]. Under ICZN rules, the subgenus category may follow the
genus name in parentheses, e.g., Fejervarya (Minervarya)sahyadris or Rana (Lithobates)pipiens.
Statistical analytical methods
Primer-e and Permanova+, Primer-e v7 [90,91] were used to investigate the relationships
between taxa in the study area and their microhabitats. Biotic data were represented by a Bray-
Curtis similarity matrix of square root transformed abundance. Environmental data were rep-
resented by a Euclidian Distance matrix which was normalised before analysis. Analyses were
performed for all taxa combined and each individual taxon. Ordination and visualisation of
the model was performed in distance-based redundancy analysis (dbRDA). To identify the
microhabitats with significant taxa associations’ step-wise analysis was performed in distLM.
The step-wise routine commences with a null model then adds each criterion before checking
by tentative removal thus optimising the selection. As the sample and number of predictor var-
iables were small the Akaike Information Criterion with second order correction (AICc), was
used as it to accounts for the ratio of samples to predictor variables being lower than 40 and
performed in distLM [91,92]. The explanatory power of microhabitats for the distribution of
the biota was assessed using LINKTREE, a form of constrained binary divisive clustering. The
routine maximises the value of Rat each division in the biotic matrix in concordance with the
underlying distribution of microhabitats within each patch (site) with the B% being the differ-
ence in each linkage [90,93].
Ethics statement
Sampling was undertaken by kind permission of the Indian National Biodiversity Authority,
Chenai, India under permit number: Maharashtra 2014 MC200621.
The advice from the representative of the University of Plymouth’s Animal Welfare and
Ethics Committee was that no formal consent was required since the animals were only
observed or received minimal handling on their site of origin. We followed strict handling and
preventative measures for cross-contamination, following standard practice for working with
amphibians as described on http://www.amphibiaweb.org. No endangered animals were spe-
cifically targeted in the study.
Results
A total of 325 individual amphibians from 2 orders, 6 families, and 21 taxa were detected over
the two years of study (S1 Table). Abundance, taxa and microhabitats varied between all sites.
Only 47% of recorded microhabitat associations were in accordance with the IUCN habitat
descriptions (Tables 2&3; [9]). The 21 taxa in the study represent a small proportion of the
known amphibian taxa from India (419 from India [26] and 161 from Western Ghats [25])
but almost 40% of those that are known to occur in Maharashtra [53;94]. Distribution data
can be accessed in the Supporting Information.
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 7 / 20
Spatial distribution of microhabitats
Sites could be spatially separated at the macroscale by the relative microhabitat composition
with notable differences above and below the escarpment illustrated in Figs 3and 4(Fig 4;
R = 0.53, B% = 85%; Fig 3). The two most distinctive sites, Amboli High (Fig 4; R = 0.89,
B% = 91) and Zenda (Fig 4; R = 0.37, B% = 68), are low disturbance sites that have retained
much of their loose rock cover and have taxa associated with rock refugia (Fig 3). Lanja, a low
Table 2. Habitat association results from significant habitat associations identified in step wise analysis using AICc in distLM, Permanova+, Primer-e v7, where =
P<0.05,  = P<0.01.Status is the IUCN threat status: Accessed 10/02/2017 [9]. NA- Not Assessed; DD-Data Deficient; LC-Least Concern; EN-Endangered; CR-Criti-
cally Endangered. Population stability:/S-Stable; /D-Decreasing; /I-Increasing. RH-Relative Humidity; Rock -large loose rocks >50 mm; Rock N-abundance of small
rocks<50 mm; Plant-%of area with woody plant cover; Soil-% of area with soil; Stream-stream in surveyed area; Pool-lentic pools within surveyed area; Flood-plateau sur-
face flooded to a depth >25 mm; Agree-our habitat association agree with published findings; Elev-altitude above sea leavel taxa were found; Habitat Associations are
those listed by the IUCN.
Taxa Status RH Rock Rock N Plant Soil Stream Pool Flood Agree Elev Habitat Associations
All taxa combined     0–1179
Duttaphrynus melanostictus LC/I 0.09 x 809–1131 Generalist
Euphlyctis cyanophlyctis LC/S x 85–1131 Lentic, ephemeral water, forest, shrubland
Fejervarya (Zakerana) cf.
caperata DD 0.07 x 1156–
1090
Semi-aquatic, grassland, plateaus,
disturbance tolerant
Fejervarya (Zakerana)cepfi NA 0.08 85–156 Degraded forest
Gegeneophis cf. ramaswamii LC/S 0.08 x 809 Generalist, fossorial.
Gegeneophis seshachari DD   90–156 Forest, plantations, gardens, degraded forest
Hoplobatrachus tigerinus LC/S     x 67–1131 Generalist very adaptable
Indirana chiravesi LC/D x 1015 Aquatic, lotic
Indotyphlus maharashtraensis DD   x 1179 Dry grassland
Microhyla ornata LC  0.06 x 85–170 Savanna, shrubland, grassland, lentic, lotic
Fejervarya (Minervarya)
sahyadris EN/D   85–170 Grassland, pasture, seasonal flooding, lentic
Xanthophr yne tigerina CR/D 0.08  x 809–854 Lateritic plateaus
https://doi.org/10.1371/journal.pone.0194810.t002
Table 3. The most important microhabitats for taxa that tested without significant habitat associations in the AICc analysis in distLM Permanova+, Primer-e v7.
Status is the IUCN threat status. Accessed 10/02/2017 [9]. NA- Not Assessed; DD-Data Deficient; LC-Least Concern; EN-Endangered; CR-Critically Endangered. Popula-
tion stability:/S-Stable; /D-Decreasing; /I-Increasing. RH-Relative Humidity; Rock -large loose rocks >50 mm; Rock N-abundance of small rocks<50 mm; Plant-%of area
with woody plant cover; Soil-% of area with soil; Stream-stream in surveyed area; Pool-lentic pools within surveyed area; Flood-plateau surface flooded to a depth >25
mm; Agree-our habitat association agree with published findings; Elev-altitude above sea leavel taxa were found; Habitat Associations are those listed by the IUCN.
Taxa Status RH Rock Rock
N
Plant Soil Stream Pool Flood Agree Elev Habitat Associations
Fejervarya (Zakerana) cf.
brevipalmata DD x x x 1131–
1157
Forest, grassland, wetland, degraded forest
Fejervarya sp. x 1090
Indotyphlus cf. battersbyi DD x 974 Forest, shrubland, plantations, gardens,
degraded forest
Philautus sp. x 170
Polypedates maculatus LC/S x 156 Forest, shrubland, lentic, disturbance tolerant
Pseudophilautus sp. x 170 Forest, degraded forest.
Raorchestes ghatei NA x 1131–
1179
Sphaerotheca dobsonii LC/D x 85–974 Lowland forest, shrubland, seasonal lentic
Uperodon globulosus LC/S 0.07 67 Generalist, anthropogenic environments,
disturbance tolerant, generalist
https://doi.org/10.1371/journal.pone.0194810.t003
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 8 / 20
disturbance site, is the most charismatic of the low region sites (Fig 4; R = 0.55, B% = 43; Fig
2). The most diverse eco-zone was the High North as illustrated by the distribution of the data
points in the dbRDA plot, reflecting the impact of three types of land use on microhabitat
availability (Fig 3,Table 1).
Pools were more abundant below the escarpment where many are manmade; their hydro-
period is shorter on the northern sites and more consistent above the escarpment. The number
of annual wet days declines south to north by 11% and there 12.7 times as many wet days
above the escarpment (Fig 1; [6996]). Rainfall amount peaks at Amboli where it exceeds 9000
mm per annum resulting in the microhabitat ‘surface water’ separating the two Amboli sites
from the rest (Fig 3). Soil is scant on the plateaus but deepens where it has accumulated in shal-
low depressions in the ferricrete but it has also has been imported onto Panchgani plateau to
assist in tourism related activity [12]. Loose rock abundance, important as refugia, breeding
sites and mate advertising posts, was reduced by collection from accessible sites for construc-
tion resulting in a disturbed distribution pattern (Fig 1; Tables 2&3; [12,13,48,97]). Larger
loose rocks were most absent from plateaus below the escarpment and most abundant where
human access was difficult for example in the remoter High Region plateaus for example
Zenda and Amboli High and to a lesser extent Jagmin. (Fig 2;Fig 4B, 4H & 4L; [98100]).
Fig 3. dbRDA analysis for microhabitats with sites illustrated within eco-zonesto allow spatial comparison. dbRDA1 explained 39.3% of fitted
data and 25% of total variation with dbRDA2 explaining 19.3% of fitted data and 12.3% of total variation.
https://doi.org/10.1371/journal.pone.0194810.g003
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 9 / 20
That, combined with greater woody plant cover, and for some sites surface water, separated
them from the low sites and explained much of the latitudinal divisions (Figs 3&4A, 4B, 4H,
4I, 4J and 4K).
Most sites were characterised by combinations of microhabitats and their associated taxa
(Fig 3; Tables 2&3). Such combinations are key for some taxa for example soil and rocks used
by caecilians as refugia and egg deposition sites associated with soil close to water. We found
56% of microhabitats to be impacted by anthropogenic activity Tables 2&3).
Spatial distribution of taxa and explanatory microhabitats
Pond presence on low elevation sites was the most significant abiotic variable separating their
amphibian assemblages from those above the escarpment where woody plants, surface water
and relative humidity were the principal characters (Figs 3&4). Woody plant abundance,
maximum loose rock size, surface water and pond presence were significant factors defining
the differences in the biota above and below the escarpment in both the dbRDA and LINK-
TREE analyses (Fig 3;Fig 4, 4A, 4B & 4D).
High-level sites had 9 taxa not found on low sites (Figs 2&3; Tables 2&3). Woody plants
were significantly associated with 44% of exclusive high-level taxa with no such associations
for low-level specialists (Tables 2&3). Of the 8-taxa found exclusively on low sites 63% had
significant relationships with water bodies and 60% of those were associated with pools com-
pared to only 22% on high-level sites. However, all 8 had a relationship with the co-occurring
surface flooding, highlighting the need to carefully define the types of water body.
Fig 4. Linktree analysis of plateau similarities based upon microhabitat explanations for the biotic distribution, Primer-e v7. Annotated for Eco-zones; HS-High
South; HC-High Central; HN-High North; LS-Low South; LC-Low Central; LN-Low North. A: R = 0.53; B% = 85; Woody plants<-0.117(>-0.0826). B: R = 0.89; B% =
91; Max loose rock size<0.832(>2.26) or Surface water<0.848(>1.67) or Woody plants>-0.999(<-1.23). C: R = 0.55; B% = 43; Surface water>-1.19(<-1.6) or Woody
plants<-0.345(>-0.117). D: R = 0.37; B% = 29; Woody plants<-0.738(>-0.607). E: R = 0.54; B% = 20; Stream>0.743(<-1.1) or Max loose rock size<-0.871(>0.00354)
or Surface water>-0.377(<-0.785) or Woody plants>-0.738(<-0.999). F: R = 0.00; B% = 11; Max loose rock size<0.00354(>0.832) or Soil Cover<-0.791(>0) or N.
Rocks>-0.0943(<-0.7) or Surface water>-0.785(<-1.19). G: R = 1.00; B% = 26; N. Rocks<-1.09(>2.13) or Pools<-0.832(>1.23) or Surface water>0.848(<-1.19) or Soil
Cover<0(>1.58) or Max loose rock size<-1.42(>-0.0425) or Stream>0.743(<-0.177) or Woody plants<-0.607(>-0.345). H: R = 0.37; B% = 68; N. Rocks<-0.067
(>1.63) or Woody plants>0.376(<-0.0826). I: R = 0.54; B% = 67; Woody plants>2.31(<1.39) or N. Rocks<-1.03(>-0.997). J: R = 0.63; B% = 55; Soil Cover<0(>2.37)
or N. Rocks<-0.206(>-0.067). K: R = 0.50; B% = 42; Surface water<-0.377(>0.44). L: R = 0.50; B% = 23; Stream<-1.1(>1.66) or Max loose rock size<-1.24(>0.786) or
Woody plants<0.376(>1.39) or Surface water>1.26(<0.44) or Soil Cover<-0.791(>0) or N. Rocks<-0.997(>-0.206) or Pools<-0.832(>-0.317).
https://doi.org/10.1371/journal.pone.0194810.g004
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 10 / 20
Twelve of the 21-study taxa had significant habitat associations with the remaining 9 having
associations that, whilst not significant, were identifiable (Tables 2&3). Taxa in the study are
described as generalists after the IUCN description where they lack habitat specificity. Gener-
alists that are very widely distributed indicating broad climatic and habitat tolerances are
described as ubiquitous [9]. The remaining taxa, Uperodon globulosus, characterised as a gener-
alist, was only detected when it was raining and had a relationship with relative humidity per-
haps explaining its limited detection (Table 3 [9]). The generalist taxa did not have a
noticeably higher number of habitat associations than other taxa except Hoplobatrachus tigeri-
nus, which whilst currently described as a generalist, should more appropriately be assessed as
ubiquitous.
Some 52% taxa were found in habitats other than those recorded by the IUCN, with 91% of
the taxa sampled not previously recorded from lateritic plateaus [9]. Just over 67% of taxa in
the study were associated with water bodies. Surface Flooding was the most important form of
water on the plateaus being significant for 48% of taxa, Pools for 33% and Streams for 24%. Of
the pool specialists 50% were only found on low level sites where pools were more common.
Loose rocks measured by both size and abundance were the next most important microhabitat
being significant for 33% of taxa, 19% with small rock abundance and 14% associated with
large rocks. Rock sizes and abundance were meaningful in defining the different regions
where large rocks were important for 33% of high-level specialists (Tables 2&3). The abun-
dance of small rocks (<50 mm) was essential for 33% of exclusively low-level taxa but only one
high-level specialist (Tables 2&3).
There were 29% of taxa associated with soil-filled depressions. Only 19% of taxa were asso-
ciated with woody plants despite their being one of the defining microhabitats (Fig 2, Tables 2
&3). The IUCN lists just 2 of the 21 taxa found as being associated with lateritic plateaus [9].
Generalist taxa were associated with a higher number of microhabitats (mean 3.7) than the
other taxa (1.7). Fejervarya (Zakerana) cf. cepfi,Raorchestes cf. ghatei have not been assessed
yet and their association should be noted with their first assessment. Fejervarya (Zakerana) cf.
caperata,Gegeneophis seshachari,Indotyphlus maharashtraensis and Indotyphlus cf. battersbyi
are all data deficient, thus the data presented here will form part of their initial assessment.
Many amphibians were detected under lateritic rock refugia in diurnal surveys. Only 5 taxa,
Hoplobatrachus tigerinus,Fejevarya cf. caperata,Fejevarya (Minevarya) cf. sahyadris,Indoty-
plus cf. beddomii and Xanthophryne tigerina were found across open areas during the day, and
these were only encountered during rainy periods. The above open area taxa were often well
camouflaged against the texture of the lateritic rock or among short grass growing on soil
depressions. Nocturnal transects confirmed the presence of most of the diurnal anurans with-
out adding new taxa to the sample.
Caecilian microhabitats on lateritic plateaus
Soil is important for many amphibians providing sites to aestivate but is critical the semi-fos-
sorial caecilians [101103]. Three of the 4 caecilian taxa were associated with rocks in addition
to areas of soil or stream presence (Tables 2&3). The exception was Gegeneophis cf. ramaswa-
mii, considered a generalist fossorial taxon, a view this study supports from results associating
it with soil-filled depressions (Table 2; [9]). We observed that Indotyphlidae sp, were detected
diurnally under lateritic rocks that were positioned on soil depressions indicating the impor-
tance of co-occurrence of some microhabitats. These soil depressions were often no deeper
than 10 cm. Gegeneophis cf. ramaswamii,G.seshachari,Indotyphlus cf. battersbyi and I.mahar-
ashtraensis were all located between the rock and the soil substrate although not significantly
for G. cf. ramaswamii. One single I.maharashtraensis at Jagmin was found emerging from a
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 11 / 20
soil depression next to rain fed flowing run-off stream after nearby terrain was disturbed by
searching activity. The rocks caecilians were detected under were all within a short distance (no
more than 20 m) from surface run-off, stream, or wet seep areas supporting the view soil mois-
ture was likely to be highly important to the group [104]. The Gegenophis sp are oviparous and
use rocks to shelter their young, for example, Gegeneophis seshachari at Kudopi comprised a mix-
ture of adult and juveniles all found under rocks within a single 50m stretch of wet run-off [80].
Discussion
Much literature only describes the broad habitat and not the microhabitats required by the indi-
vidual taxa for example forest or savannah [9]. The distribution of microhabitats on the plateaus
in the NWG was non-random irrespective of the scale of observation as their pattern reflects
the edaphic processes, macroclimate and disturbance factors at play in the region (Figs 2,3&
4). The presence and abundance of some of those microhabitats were changed by human activ-
ity. All taxa in the study had identifiable habitat associations, with the majority being significant
(Tables 2&3). The study found that each lateritic plateau, whilst having core microhabitat simi-
larities, had a unique habitat and thus identity. Therefore, a macroscale distribution amphibian
pattern derived from macroclimate and surrounding countryside alone was imperfect and
patch quality in terms of microhabitat availability and thus regulating patch habitat must be
included as explanatory factor. We find patch quality, within a climatic region, was best defined
by its microhabitat mix. Some microhabitat availability was directly related to anthropogenic
activity. The rarest taxa in the study were the most sensitive to anthropogenic habitat alteration.
The plateaus have localised microclimates and offer habitats, comprised of mosaics of
microhabitats, and are at high ecological contrast to the surrounding landscape [12]. There is
evidence to suggest that has resulted in genetic isolation between plateaus in other taxa [105,
106]. The resulting amphibian distribution reflects both the isolation and divergent pressure
within the WG through the exceptional levels of endemism on the plateaus of the NWG; 61%
of the sample were endemic to Asia, 52% to India and 38% to the WG with Raorchestes ghatei
and Xanthophryne tigerina only known from lateritic plateaus (Tables 2&3). More common
taxa, which we characterise as generalists, are able to move through the countryside between
plateaus and can persist on plateaus through metapopulation dynamics [13,65,107]. Both the
common taxa and the rare ones that cannot cross the space between plateaus are reliant upon
suitable habitat availability within each plateau [12,13,64]. Therefore, habitat quality was
highly important in determining the presence and persistence of many taxa but most impor-
tantly the rare ones. That quality depends on both landscape level variables including climate,
seasonality and topography and within-plateau elements [63].
Many amphibians use water as their primary habitat to avoid desiccation or predation and
as a breeding resource and that was reflected with the majority (67%) of the sample being asso-
ciated with water bodies, a figure very close to that published for other areas in the WG (62%),
(Tables 2&3; [25,43,102]). However, non-aquatic microhabitat associations were also found
for 78% of the sample taxa (Tables 2&3). Those microhabitats, climatic and habitat combina-
tions fulfil a variety of ecological purposes beyond their basic physiological requirements; refu-
gia from climatic extremes [108] and predators [109,110], mate advertisement perches [48],
sites for egg deposition [111,112], breeding resources [36,43,113]; reproductive behaviour is
selected for by suitable rainfall and relative humidity conditions [48,106,114].
Seasonal changes in microhabitat use
Many of the plateau taxa breed close to the start of the monsoon and they may have been
detected in association with their breeding microhabitats [48,115]. The plateaus are all highly
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 12 / 20
seasonal only receiving rainfall for around four months a year resulting in the need for sea-
sonal movement to avoid desiccation and to access breeding sites [36,106,115]. Rainfall,
hydroperiod and the associated relative humidity are important factors for taxa with terrestrial
or semi-terrestrial larvae for example Xanthophryne tigerina which was found only in the very
wet southern high sites [6,36,48].
Generalist taxa microhabitat associations
Generalist taxa in this study were associated with more than twice as many types of microhabi-
tat than the mean for other taxa (Table 2). However, the IUCN definition may be spatially
too coarse to adequately describe patch quality as it makes little reference to microhabitat asso-
ciations. There were two non-generalist taxa, Gegeneophis seshachari and Microhyla ornata,
with very similar number of associated microhabitats (4) to the generalist total (3.7) suggesting
that they too were generalists. However, such a result can be explained by co-occurrence
microhabitats necessary for some taxa. For example, the microhabitats for Gegeneophis sesha-
chari encompass a range predictable for a caecilian; rock, soil and water (Table 2). Another,
Gegeneophis cf. ramaswamii, was perhaps wrongly identified as a generalist as it appears to
require specific combinations of microhabitats to persist but can also be found among a range
of landscapes. Similarly, Microhyla ornata should be reclassified as a habitat generalist in the
context of lateritic plateaus. The generalist taxa, Duttaphrynus melanostictus and Hoplobatra-
chus tigerinus each have associations with all three aquatic microhabitats. This was an unsur-
prising result as both are pond breeding taxa that are also associated with abundant woody
plant cover (Table 2; [32,33]).
Impact of elevation on microhabitat associations
Tropical site habitats are known to change with elevation a view supported by this study (Figs
2&3; [41,42,116]. The drivers of elevational differences in the amphibian assemblages on the
plateaus of the NWG were microhabitats dependent upon rainfall increasing which increased
in frequency and volume with increasing elevation and hydroperiod which decreases with lati-
tude. Although not directly related to elevation the ease of access onto low elevation sites, and
their agricultural land use, has increased man-made pool frequency and reduced the abun-
dance of large rocks (Figs 2,3&4). The combination of long periods of rainfall, the related
high relative humidity and abundance of loose rocks on Amboli High and to a lesser extent
Amboli Low creates a special habitat the critically endangered and declining Amboli Toad,
Xanthophryne tigerina, The large rocks provide three major resources, refugia, breeding sites
and mate advertisement sites [48]. All of these are highly important resources for not only X.
tigerina,but as breeding sites for Caecilians [117]. Woody plant abundance was one of the
main microhabitats to define the regional difference between the high and low-level sites (Figs
3&4). Together with its associated soil filled depressions woody plants were highly important
in amphibian distribution on the NWG plateaus across all elevations but impacting different
taxa (Tables 2&3).
The effect of anthropogenic disturbance on amphibian microhabitats
Microhabitat availability was changed by three forms of anthropogenic disturbance on the
plateaus; removal e.g. loose rocks, damage e.g. trampling or cutting down of plants and alter-
ation by addition of foreign material e.g. soil at Panchami. Anthropogenic disturbance was
also evidenced by construction and pollution. We did not examine the impact of addition by
construction, pollution or trampling and therefore cannot comment specifically on these,
although the sites with wind turbines had some construction on them. All rural communities
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 13 / 20
close to the plateaus carried out the common practice of harvesting loose rock and utilising it
for construction of dwellings, walls and memorials [12]. Therefore, sites at which there were
quantities of rocks >50 mm
3
were often farther from human residences. Given that many of
the amphibian taxa in this study were associated with, detected under, or proximate to cover
provided by rocks >50 mm
3
we suggest that the natural occurrence of rocks >50 mm
3
on pla-
teau sites is an essential microhabitat resource for all amphibians, and one that is a rapidly
emerging conservation concern for all plateaus.
Disturbance by the addition of soil, together with tourist related activity; on the high-level
site Panchgani has shifted the taxa assemblage towards one dominated by generalist or widely
distributed taxa (Tables 2&3). The addition of soil has closed almost all the fissure refugia and
all large loose rocks and most small ones have been removed, limiting the available types of
refugia, breeding and mate advertisement sites. This site is popular with equine tourism and
this local industry has resulted in infrastructure development (cafes, stables and roads), soil
compaction and increasing levels of domestic refuse. The pools also have a high silt load from
the imported soil and grazing. A total of 24 individual amphibians were recorded from this
plateau. Although amphibian counts were relatively high in comparison to lower disturbance
sites, several of the taxa recorded (D.melanostictus,E.cyanophlyctis and H.tigerinus) are con-
sidered widespread or generalist taxa, listed as ’’least concern’’ in the IUCN status reports
(Tables 2&3). D.melanostictus,E.cyanophlyctis and H.tigerinus were anticipated as taxa
known to associate with anthropocentrically disturbed or modified habitats (Daniel, 2002).
However, the presence of Raorchestes cf. ghatei and Fejevarya cf. brevipalmata may be sur-
prising as they had limited distribution and are data deficient taxa in need of more robust
ecological and population studies (Tables 2&3). Panchgani has a number of large pools con-
structed for watering livestock and anthropogenic uses. The largest is likely to hold some water
throughout an average year possibly shaping the community by offering aquatic refugia in the
dry season not seen on many sites. That may be a significant factor structuring the assemblage
as it would favour pond specialist taxa [118].
Surface topography on the low-level plateaus creates some pools but many additional ones
have been created by farmers in association with their agricultural land use. At a landscape
level pool frequency is important in maintaining population connectivity and persistence
[118120].
Impact of climate change on the amphibians of the northern Western
Ghats
Two changes in climate are predicted to impact the amphibian microhabitat requirements in
the NWG: increasing temperature and fragmentation of the monsoon rains [121]. Both will
require microhabitat resources to mitigate their effects; as refugia from increased temperatures
and desiccation [107,122]. The woody plants and rocks in this study provide thermal refugia
allowing behavioural temperature regulation and are therefore key microhabitats worthy of
preservation [122]. Breaks in rainfall that occur when larvae are in pools or in hygropetric hab-
itats are likely to cause significant losses. To offset these, maximum availabilities of both popu-
lations and microhabitats should be preserved.
Conclusion
We conclude that microhabitat availability is a good way of defining patch quality for amphibi-
ans within a climatic zone and preserving patch quality is important for conserving amphibi-
ans. The study, as the first statistically supported in the NWG, has added substantially to
known amphibian microhabitat associations. Spatial variation in microhabitat distribution in
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 14 / 20
part explains amphibian diversity on the threatened lateritic plateaus in the NWG. The preser-
vation of a wide a range of microhabitats is clearly important for amphibian conservation. It is
clear that the NWG lateritic plateaus, with their unique microhabitat assemblages, are highly
important habitats for a significant number of threatened amphibians and conservation policy
should aim to preserve representative plateaus from each eco-zone. Preservation of microhabi-
tats that provide thermal and desiccation refugia will become increasingly important for the
persistence of plateau amphibians in the face of increasing temperatures and a more frag-
mented monsoon; these include pools, large rocks and woody plants [121].
Supporting information
S1 Table. Breakdown of abundance data by taxa, site, eco-zone, year and day-night time
survey.
(DOCX)
Acknowledgments
Many people have helped to bring the project to fruition: Dr. Aparna Watve and Sanjay Tha-
kur for their tireless support; Anand Padhye, Nikhil Gaitonde, Hemant Ghate, David Gower
and Varad Giri helped resolve identification. We also thank the numerous local residents
across the Western Ghats for tea and helping navigate us to awkward plateau summits.
Author Contributions
Conceptualization: Christopher J. Thorpe, Aparna Watve.
Formal analysis: Christopher J. Thorpe.
Funding acquisition: Christopher J. Thorpe, Todd R. Lewis.
Investigation: Christopher J. Thorpe, Todd R. Lewis, Siddharth Kulkarni, Aparna Watve,
Nikhil Gaitonde, David Pryce, Lewis Davies, Mairi E. Knight.
Methodology: Christopher J. Thorpe.
Project administration: Christopher J. Thorpe, Aparna Watve.
Resources: Christopher J. Thorpe, Siddharth Kulkarni.
Supervision: David T. Bilton, Mairi E. Knight.
Writing – original draft: Christopher J. Thorpe.
Writing – review & editing: Christopher J. Thorpe, Todd R. Lewis, David T. Bilton, Mairi E.
Knight.
References
1. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. Biodiversity hotspots for conser-
vation priorities. Nature. 2000; 403(6772):853–8. https://doi.org/10.1038/35002501 PMID: 10706275
2. Sloan S, Jenkins CN, Joppa LN, Gaveau DLA, Laurance WF. Remaining natural vegetation in the
global biodiversity hotspots. Biological Conservation. 2014; 177:12–24.
3. Cincotta RP, Wisnewski J, Engelman R. Human population in the biodiversity hotspots. Nature. 2000;
404(6781):990–2. https://doi.org/10.1038/35010105 PMID: 10801126
4. Widowson M, Cox K.G. Uplift and erosional history of the deccan traps India: Evidence from laterites
and drainage patterns of the Western Ghats and Konkan coast. Earth and Planetary Science Letters.
1996; 137:57–69.
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 15 / 20
5. Ram MS, Marne M, Gaur A, Kumara HN, Singh M, Kumar A, et al. Pre-Historic and Recent Vicariance
Events Shape Genetic Structure and Diversity in Endangered Lion-Tailed Macaque in the Western
Ghats: Implications for Conservation. Plos One. 2015; 10(11):e0142597. https://doi.org/10.1371/
journal.pone.0142597 PMID: 26561307
6. Biju S, Van Bocxlaer I, Giri V, Loader S, Bossuyt F. Two new endemic genera and a new species of
toad (Anura: Bufonidae) from the Western Ghats of India. BMC Research Notes. 2009; 2(1):241.
7. Vidya T, Fernando P, Melnick D, Sukumar R. Population differentiation within and among Asian ele-
phant (Elephas maximus) populations in southern India. Heredity. 2005; 94(1):71–80. https://doi.org/
10.1038/sj.hdy.6800568 PMID: 15454948
8. Padhye AD, Ghate HV. An overview of amphibian fauna of Maharashtra State. Zoo’s Print Journal.
2002; 17:735–40.
9. IUCN. The IUCN Red List of Threatened Species 2016–2. Available from: http://www.iucnredlist.org/
search.
10. Widdowson M. Laterite and Ferricrete. In: Nash DJ, McLaren S.J., editors. Geochmeical Sediments
and Landscapes. Oxford, UK: Wiley-Blackwell; 2007. pp. 46–94.
11. Porembski S, Watve A. Remarks on the species composition of ephemeral flush communities on
paleotropical rock outcrops. Phytocoenologia, 35. 2005; 2(3):389–402.
12. Watve A. Status review of Rocky plateaus in the northern Western Ghats and Konkan region of Maha-
rashtra, India with recommendations for conservation and management. Journal of Threatened taxa.
2013; 5(5):3935–62.
13. Thorpe C, Watve A. Lateritic Plateaus in the Northern Western Ghats, India; a Review of Bauxite Min-
ing Restoration Practices. Journal of Ecological Society, Pune, Maharashtra, India. 2016:25–44.
14. Lekhak M, Yadav SR. Herbaceous vegetation of threatened high altitude lateritic plateau ecosystems
of Western Ghats, southwestern Maharashtra, India. Rheedea. 2012; 22(1):39–61.
15. Porembski S, Silveira FAO, Fieldler PL, Watve A, Rabarimanarivo M, Kouame F, et al. Worldwide
destruction of inselbergs and related rock outcrops threatens a unique ecosystem. Biodiversity Con-
servation. 2016; Letter to the editor.
16. Pinder A, Halse S, Shiel R, McRae J. Granite outcrop pools in south-western Australia: foci of diversifi-
cation and refugia for aquatic invertebrates. Journal of the Royal Society of Western Australia. 2000;
83(3):149–61.
17. Jocque
´M, Vanschoenwinkel B. and Brandonck L. Freshwater rock pools: a review of habitat charac-
teristics, faunal diversity and conservation value. Freshwater Biology. 2010; 2010:1–16.
18. Hopper SD, Silveira FA, Fiedler PL. Biodiversity hotspots and Ocbil theory. Plant and Soil. 2015:1–50.
19. Bharucha EK. Current ecological status and identification of potential ecologically sensitive areas in
the Northern Western Ghats. Pune, Maharashtra, India: Bharti Vidyapeeth Deemed University,
Research IoEEa; 2010. Available from: www.moef.nic.in/downloads/public-information/Annexure5-
7th.pdf.
20. CEPF. Asia-Pacific Biodiversity Hotspots: Critical Ecosystem Partnership Fund; 2016.cited 2016.
Available from: http://www.cepf.net/resources/hotspots/Asia-Pacific/Pages/default.aspx.
21. Balaji D, Sreekar R, Rao S. Drivers of reptile and amphibian assemblages outside the protected areas
of Western Ghats, India. Journal for Nature Conservation. 2014; 22(4):337–41.
22. Lad RaS J.,S. Environmental impact of Bauxite mining in the Western Ghats in south Maharashtra,
India. International Journal of Recent Scientific Research. 2013; 4(8):1275–81.
23. Phillips J. Using a mathematical model to assess the sustainability of proposed bauxite mining in
Andhra Pradesh, India from a quantitative-based environmental impact assessment. Environmental
Earth Sciences. 2012; 67(6):1587–603.
24. Giri V. Diversity and conservation status of the Western Ghats amphibians. In: Stuart SN, Hoffman M,
Chanson JS, Cox NA, Berridge R, Ramani P, et al., editors. Threatened amphibians of the world. Bar-
celona: Lynx Ediciones, with IUCN-The World Conservation Union, Conservation International and
Nature Serve.; 2016.
25. Aravind N, Gururaja K. Theme paper on the amphibians of the Western Ghats. Report submitted to
Western Ghats ecology panel. 2011; 20.Available from: http://www.westernghatsindia.org/sites/
default/files/Amphibians.
26. Dinesh KP, Radhakrishnan C, Channakeshavamurthy BH, Deepak P, Kulkarni NU. A checklist of
Amphibians of India 2017.Available from: http://mhadeiresearchcenter.org/wp-content/uploads/2014/
01/2017_April_Checklist-of-Amphibians-of-India.pdf.
27. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J. Biodiversity hotspots for conserva-
tion priorities. Nature. 2000; 403.
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 16 / 20
28. Van Bocxlaer I, Roelants K, Biju S, Nagaraju J, Bossuyt F. Late Cretaceous vicariance in Gondwanan
amphibians. Plos One. 2006; 1(1):e74.
29. Pyron RA. Biogeographic Analysis Reveals Ancient Continental Vicariance and Recent Oceanic Dis-
persal in Amphibians. Systematic Biology. 2014; 63(5):779–97. https://doi.org/10.1093/sysbio/syu042
PMID: 24951557
30. Ghalambor CK, Huey RB, Martin PR, Tewksbury JJ, Wang G. Are mountain passes higher in the trop-
ics? Janzen’s hypothesis revisited. Integrative and Comparative Biology. 2006; 46(1):5–17. https://
doi.org/10.1093/icb/icj003 PMID: 21672718
31. Ines Van Bocxlaer S, Loader S, Bossuyt F. Toad radiation reveals into-India dispersal as a source of
endemism in the Western Ghats-Sri Lanka biodiversity hotspot. BMC evolutionary Biology. 2009; 9
(1):131.
32. Raj P, Deepak V, Vasudevan K. Monitoring of breeding in Nasikabatrachus sahyadrensis (Anura:
Nasikabatrachidae) in the southern Western Ghats, India. Herpetology Notes. 2011; 4:11–6.
33. Hiragond NC, Shanbhag BA, Saidapur SK. Description of the tadpole of a stream breeding frog, Rana
curtipes. Journal of Herpetology. 2001; 35(1):166.
34. Humraskar D, Velho N. The need for studies on amphibians in India. Current Science Association, CV
Raman Avenue, PO Box 8005, Bangalore 560 080, India; 2007: 1032.
35. Santos-Barrera G, Urbina-Cardona JN. The role of the matrix-edge dynamics of amphibian conserva-
tion in tropical montane fragmented landscapes. Revista Mexicana de Biodiversidad. 2011; 82
(2):679–87.
36. Wells KD, Schwartz JJ. The behavioral ecology of anuran communication. Hearing and sound com-
munication in amphibians: Springer; 2007.
37. Duellman WE. Patterns of species diversity in anuran amphibians in the American tropics. Annals of
the Missouri Botanical Garden. 1988:79–104.
38. Lee JC. Geographic variation in size and shape of neotropical frogs: a precipitation gradient analysis:
Museum of Natural History, University of Kansas; 1993.
39. Friend GR, Cellier KM. Wetland herpetofauna of Kakadu National Park, Australia: seasonal richness
trends, habitat preferences and the effects of feral ungulates. Journal of Tropical Ecology. 1990; 6
(02):131–52.
40. Vonesh JR. The amphibians and reptiles of Kibale Forest, Uganda: herpetofaunal survey and ecologi-
cal study of the forest floor litter community. MSc Thesis, University of Florida; 1998. Available from:
http://etd.fcla.edu/etd/uf/1998/amd0037/masterslast.pdf.
41. Lynch JDD, Duellman WE. The Eleutherodactylus of the Amazonian slopes of the ecuadorian Andes
(Anura: Leptodactylidae). University of Kansas, Museum of Natural History, Miscelaneous Publica-
tions, 1980.
42. Fauth J, Crother B, Slowinski J. Elevational patterns of species richness, evenness, and abundance of
the Costa Rican leaf-litter herpetofauna. Biotropica. 1989; 21:178–85.
43. da Silva FR, Almeida-Neto M, do Prado VHM, Haddad CFB, de Cerqueira Rossa-Feres D. Humidity
levels drive reproductive modes and phylogenetic diversity of amphibians in the Brazilian Atlantic For-
est. Journal of Biogeography. 2012; 39(9):1720–32.
44. Haddad CFB, Prado CPA. Reproductive Modes in Frogs and Their Unexpected Diversity in the Atlan-
tic Forest of Brazil. BioScience. 2005; 55(3):207–17.
45. Iskandar DT, Evans BJ, McGuire JA. A Novel Reproductive Mode in Frogs: A New Species of Fanged
Frog with Internal Fertilization and Birth of Tadpoles. Plos One. 2015; 9(12):e115884.
46. Krishnamurthy S, Manjunatha RA, Gururaja K. A new species of frog in the genus Nyctibatrachus
(Anura: Ranidae) from Western Ghats, India. Curr Sci India. 2001; 80(7):887–91.
47. Seshadri KS, Gururaja KV, Aravind NA. A new species of Raorchestes (Amphibia: Anura: Rhacophori-
dae) from mid-elevation evergreen forests of the southern Western Ghats, India. Zootaxa. 2012;
3410:19–34.
48. Gaitonde N, Giri V, Kunte K. ‘On the rocks’: reproductive biology of the endemic toad Xanthophryne
(Anura: Bufonidae) from the Western Ghats, India. Journal of Natural History. 2016; 50(39–40):2557–
72.
49. Molur S, Krutha K, Paingankar MS, Dahanukar N. Asian strain of Batrachochytrium dendrobatidis is
widespread in the Western Ghats, India. Diseases of aquatic organisms. 2015; 112(3):251–5. https://
doi.org/10.3354/dao02804 PMID: 25590776
50. Heard GW, Scroggie MP, Ramsey DSL, Clemann N, Hodgson JA, Thomas CD. Can habitat Manage-
ment Mitigate Disease Impacts on Threatened Amphibians? Conservation Letters. 2017. https://doi.
org/10.1111/conl.12375
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 17 / 20
51. Gascon C. Amphibian conservation action plan: proceedings IUCN/SSC Amphibian Conservation
Summit 2005: IUCN; 2007.
52. Amstrup SC, McDonald TL, Manly BF. Handbook of capture-recapture analysis: Princeton University
Press; 2010.
53. Williams SE, Hero J-M. Multiple determinants of Australian tropical frog biodiversity. Biological conser-
vation. 2001; 98(1):1–10.
54. Laurance WF, Carolina Useche D, Shoo LP, Herzog SK, Kessler M, Escobar F, et al. Global warming,
elevational ranges and the vulnerability of tropical biota. Biological Conservation. 2011; 144(1):548–57.
55. Ernst R, Ro¨del MO. Community assembly and structure of tropical leaf-litter anurans. Ecotropica.
2006; 12:113–29.
56. Menin M, Waldez F, Lima A. Effects of environmental and spatial factors on the distribution of anuran
species with aquatic reproduction in central Amazonia. The Herpetological Journal. 2011; 21(4):255–
61.
57. Baillie J, Hilton-Taylor C, Stuart SN. 2004 IUCN red list of threatened species: a global species
assessment: Iucn; 2004.
58. Ramesh V, Gopalakrishna T, Barve S, Melrick DJ. IUCN greatly underestimates threat levels of
endemic birds in the Western Ghats. Biological Conservation. 2017; 210:205–21.
59. Hussain QA. Global amphibian declines: a review. International Journal of Biodiversity and Conserva-
tion. 2012; 4(10):348–57.
60. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, et al. Status and trends of
amphibian declines and extinctions worldwide. Science. 2004; 306(5702):1783. https://doi.org/10.
1126/science.1103538 PMID: 15486254
61. Young BE, Stuart SN, Chanson JS, Cox NA, Boucher TM. Disappearing jewels: the status of new
world amphibians. Appl Herpetol. 2005; 2:429–35.
62. Feeley KJ, Stroud JT, Perez TM. Most ‘global’ reviews of species’ responses to climate change are
not truly global. Diversity and Distributions. 2016. https://doi.org/10.1111/ddi.12433
63. Deans RA, Chalcraft DR. Matrix context and patch quality jointly determine diversity in a landscape-
scale experiment. Oikos. 2016.
64. Mortelliti A, Amori G, Boitani L. The role of habitat quality in fragmented landscapes: a conceptual
overview and prospectus for future research. Oecologia. 2010; 163(2):535–47. https://doi.org/10.
1007/s00442-010-1623-3 PMID: 20414787
65. Ficetola GF, De Bernardi F. Amphibians in a human-dominated landscape: the community structure is
related to habitat features and isolation. Biological conservation. 2004; 119(2):219–30.
66. Biju S, Bossuyt F. Systematics and phylogeny of Philautus gistel, 1848 (Anura, rhacophoridae) in the
Western Ghats of India, with descriptions of 12 new species. Zool J Linn Soc. 2009; 155(2):374–444.
67. Holdridge LR. Life zone ecology. Life zone ecology. 1967(rev. ed.)).
68. Watve A. Rocky plateaus (special focus on the Western Ghats and Konkan). Report to Western Ghats
Ecology Expert Panel: BIOME Conservation Foundation; 2010.
69. India Go. Indiastat,Meteorogical Data, Rainfall 2017. Available from: http://www.indiastat.com/
meteorologicaldata/22/rainfall/238/stats.aspx.
70. Crump ML, Scott NJ. Visual encounter surveys. In: Heyer WR, Donnelly MA, McDiarmid RW, Hayek
LC, Foster MS, editors. Measuring and Monitoring Biological Diversity: Standard Methods for Amphibi-
ans. Washington.: Smithsonian Institution Press.; 1994.
71. Crump ML, Scott NJ. Visual encounter surveys. In: Heyer WR, Donnelly MA, McDiarmid RW, Hayek
LC, Foster MS, editors. Measuring and Monitoring Biological Diversity: Standard Methods for Amphibi-
ans. Washington.: Smithsonian Institution Press.; 1994.
72. Daniel J. The Book of Indian Reptiles and Amphibians. Bombay Natural History Society and Oxford
University Press. Oxford; 2002.
73. Doan TM. Which methods are most effective for surveying rain forest herpetofauna? Journal of Herpe-
tology. 2003; 37(1):72–81.
74. Vonesh JR, Mitchell JC, Howell K, Crawford AJ. Rapid assessments of amphibian diversity. In: Dodd
CKJ, editor. Amphibian ecology and conservation: A handbook of techniques. New York, USA:
Oxford University Press; 2010.
75. Babbitt KJ, Veysey JS, Tanner GW. Measuring habitat. In: Dodd CKJ, editor. Amphibian Ecology and
Conservation: A Handbook of Techniques. New York, USA: Oxford University Press; 2009.
76. Pounds JA, Fogden MPL, Campbell JH. Biological response to climate change on a tropical mountain.
Nature. 1999; 398(6728):611–5.
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 18 / 20
77. Bhatta G. A field guide to the caecilians of the Western Ghats, India. Journal of biosciences. 1998; 23
(1):73–85.
78. Dubois A, Ohler A-M, Biju SD. A new genus and species of Ranidae (Amphibia, Anura) from south-
western India. Alytes. 2001; 19(2–4):53–79.
79. Bossuyt F. A new species of Philautus (Anura: Ranidae) from the Western Ghats of India. Journal of
Herpetology. 2002; 36(4):656–61.
80. Giri V, Wilkinson M, Gower D. A new species of Gegeneophis Peters (Amphibia: Gymnophiona: Cae-
ciliidae) from the Western Ghats of southern Maharashtra, India, with a key to the species of the
genus. Zootaxa. 2003; 351:1–10.
81. Kuramoto M, Joshy SH, Kurabayashi A, Sumida M. The genus Fejervarya (Anura: Ranidae) in central
Western Ghats, India, with descriptions of four new cryptic species. Current Herpetology. 2007; 26
(2):81–105.
82. Kuramoto M, Joshy SH. Two New Species of the Genus Philautus (Anura: Rhacophoridae) from the
Western Ghats, Southwestern India. Current herpetology. 2003; 22(2):51–60.
83. Dinesh K, Radhakrishnan C, Gururaja K, Bhatta G. An annotated checklist of amphibian of India with
some insights into the patterns of species discoveries, distribution and endemism. 2009. Available
from: https://scholar.google.co.uk/scholar?hl=en&as_sdt=0%2C5&q=Dinesh+K%2C+Radhakrishnan
+C%2C+Gururaja+K%2C+Bhatta+G.+An+annotated+checklist+of+amphibian+of+India+with+some
+insights+into+the+patterns+of+species+discoveries%2C+distribution+and+endemism&btnG=.
84. Gower DJ, Mauro DS, Giri V, Bhatta G, Govindappa V, Kotharambath R, et al. Molecular systematics
of caeciliid caecilians (Amphibia: Gymnophiona) of the Western Ghats, India. Molecular Phylogenetics
and Evolution. 2011; 59(3):698–707. https://doi.org/10.1016/j.ympev.2011.03.002 PMID: 21406239
85. Padhye A, Sayyed A., Jadhav A., Dahanukar N. Raorchestes ghatei, a new species of shrub frog
(Anura: Rhacophoridae) from the Western Ghats of Maharashtra, India. Journal of Threatened Taxa.
2013; 5(15):4913–31.
86. Frost D, Grant T, Faivovich J, Bain R, Haas A, Haddad CFBdS R, et al. The amphibian tree of life. Bull
Am Mus Nat Hist. 2006; 297:1–370.
87. Smith H, Chiszar D. Dilemma of name-recognition: Why and when to use new combinations of scien-
tific names. Herpetological Conservation and Biology. 2006; 1(1):6–8.
88. Frost DR. Amphibian Species of the World: an Online Reference New York, USA.: American Museum
of Natural History; 2015.Available from: http://research.amnh.org/herpetology/amphibia/index.html.
89. Hillis DM. Constraints in naming parts of the Tree of Life. Molecular Phylogenetics and Evolution.
2007; 42(2):331–8. https://doi.org/10.1016/j.ympev.2006.08.001 PMID: 16997582
90. Clarke KR, Gorley RN. Primer v7: User Manual/Tutorial. Plymouth, UK: Primer-e; 2015.
91. Anderson MJ, Gorley RN, Clarke KR. Permanova+ for Primer: Guide to software and statistical meth-
ods. Plymouth, UK: Primer-e; 2008.
92. Akaike H. Information theory and an extension of the maximum likelihood principle. In: Pertrov BN,
Csaki F, editors. 2nd International Symposium on Information Theory. Budapest: Akademiai Kiado;
1973.
93. Clarke KR, Warwick RM. Change in Marine Communities. An approach to statistical analysisand inter-
pretation 2
nd
edition. Plymouth Marine laboratory, Plymouth, UK, Primer-e. 1994.
94. Mahabal A, Sharma RM. Fauna of Maharashtra. Kolkata: Zoological Survey of India; 2012.
95. IMD IMD. Onset and withdrawal of southwest monsoon 2016: Ministry of Earth Sciences, Government
of India; 2016.Available from: http://www.imd.gov.in/pages/monsoon_main.php.
96. Bell EA, Bell BD. Local distribution, habitat, and numbers of the endemic terrestrial frog Leiopelma
hamiltoni on Maud Island, New Zealand. New Zealand Journal of Zoology. 1994; 21(4):437–42.
97. Vasudevanl’i K, Kumar A, Chellaml R. Structure and composition of rainforest floor amphibian commu-
nities in Kalakad—Mundanthurai Tiger Reserve. Curr Sci India. 2001; 80(3).
98. Gururaja K, Reddy AM, Keshavayya J, Krishnamurthy S. Habitat occupancy and influence of abiotic
factors on the occurrence of Nyctibatrachus major (Boulenger) in central Western Ghats, India. Rus-
sian Journal of Herpetology. 2013; 10(2):87–92.
99. Krishnamurthy S. Amphibian assemblages in undisturbed and disturbed areas of Kudremukh National
Park, central Western Ghats, India. Environmental Conservation. 2003; 30(03):274–82.
100. Vonesh J. Patterns of richness and abundance in a tropical African leaf-litter herpetofauna. Biotropica.
2001; 33:502–10.
101. Naniwadekar R, Vasudevan K. Patterns in diversity of anurans along an elevational gradient in the
Western Ghats, South India. Journal of Biogeography. 2007; 34(5):842–53.
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 19 / 20
102. Corte
´s-Go
´mez AM, Castro-Herrera F, Urbina-Cardona JN. Small changes in vegetation structure cre-
ate great changes in amphibian ensembles in the Colombian Pacific rainforest. Tropical Conservation
Science. 2013; 6(6):749–69.
103. Kupfer A, Nabhitabhata J, Himstedt W. From water into soil: trophic ecology of a caecilian amphibian
(Genus Ichthyophis). Acta Oecologica. 2005; 28(2):95–105.
104. Lekhak M, Yadav S. Herbaceous vegetation of threatened high altitude lateritic plateau ecosystems of
Western Ghats, southwestern Maharashtra, India. Rheedea. 2012; 22(1):39–61.
105. Robin V, Nandini R. Shola habitats on sky islands: status of research on montane forests and grass-
lands in southern India. Current Science(Bangalore). 2012; 103(12):1427–37.
106. Hanski I. Metapopulation dynamics. Nature. 1998; 396(6706):41–9.
107. Schut AG, Wardell-Johnson GW, Yates CJ, Keppel G, Baran I, Franklin SE, et al. Rapid characterisa-
tion of vegetation structure to predict refugia and climate change impacts across a global biodiversity
hotspot. Plos One. 2014; 9(1):e82778. https://doi.org/10.1371/journal.pone.0082778 PMID:
24416149
108. Smith GR, Rettig JE, Mittelbach GG, Valiulis JL, Schaack SR. The effects of fish on assemblages of
amphibians in ponds: a field experiment. Freshwater Biology. 1999; 41(4):829–37.
109. Hartel T, Nemes S, Cogălniceanu D, O
¨llerer K, Schweiger O, Moga C-I, et al. The effect of fish and
aquatic habitat complexity on amphibians. Hydrobiologia. 2007; 583(1):173.
110. Biju SD. A synopsis to the frog fauna of the Western Ghats, India. Occasional publication of ISCB,
2001.
111. Gaitonde N, and Giri V. Primitive breeding in an ancient Indian frog genus Indirana. Curr Sci India.
2014; 107(1):109–12.
112. Chan LM. Seasonality, microhabitat and cryptic variation in tropical salamander reproductive cycles.
Biological Journal of the Linnean Society. 2003; 78(4):489–96.
113. Seshadri KS, Gururaja KV, Bickford DP. Breeding in bamboo: a novel anuran reproductive strategy
discovered in Rhacophorid frogs of the Western Ghats, India. Biological Journal of the Linnean Soci-
ety. 2015; 114(1):1–11.
114. Rittenhouse TA, Semlitsch RD. Distribution of amphibians in terrestrial habitat surrounding wetlands.
Wetlands. 2007; 27(1):153–61.
115. Daniels RR. Geographical distribution patterns of amphibians in the Western Ghats, India. Journal of
Biogeography. 1992:521–9.
116. Gower DJ, Wilkinson M. Conservation Biology of Caecilian Amphibians. Conservation Biology. 2005;
19(1):45–55.
117. Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lachavanne J-B. Does size matter? The relationship
between pond area and biodiversity. Biological Conservation. 2002; 104(1):59–70.
118. Scheffer M, van Geest GJ, Zimmer K, Jeppesen E, Søndergaard M, Butler MG, et al. Small habitat
size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes
and ponds. Oikos. 2006:227–31.
119. Jocque
´M, Graham T, Brendonck L. Local structuring factors of invertebrate communities in ephem-
eral freshwater rock pools and the influence of more permanent water bodies in the region. Hydrobiolo-
gia. 2007; 592(1):271–80.
120. IPCC. International Panel on Climate Change, Chapter 24: Asia 2014.Available from: http://www.ipcc.
ch/pdf/assessment-report/ar5/wg2/WGIIAR5-Chap24.
121. Frishkoff LO, Hadly EA, Daily GC. Thermal niche predicts tolerance to habitat conversion in tropical
amphibians and reptiles. Global Change Biology. 2015; 21(11):3901–16. https://doi.org/10.1111/gcb.
13016 PMID: 26148337
122. Scheffers BR, Edwards DP, Diesmos A, Williams SE, Evans TA. Microhabitats reduce animal’s expo-
sure to climate extremes. Global Change Biology. 2014; 20(2):495–503. https://doi.org/10.1111/gcb.
12439 PMID: 24132984
Neo-tropical amphibian distribution is driven by micro-habitats in the Western Ghats Biodiversity Hotspot
PLOS ONE | https://doi.org/10.1371/journal.pone.0194810 March 26, 2018 20 / 20

Supplementary resource (1)

... At the local scale, presence of specific microhabitats and breeding sites can strongly influence amphibian presence and abundance (da Silva et al., 2011;Ficetola & De Bernardi, 2004;Thorpe et al., 2018;Wassens et al., 2010). Our results also suggest that inclusion of ponds in agroforests can greatly enhance species richness of all species in the community and not just pond-breeding amphibians. ...
Article
Full-text available
Global tropical forests have been modified and fragmented by commodity agroforests, leading to significant alterations in ecological communities. Nevertheless, these production landscapes offer secondary habitats that support and sustain local biodiversity. In this study, we assess community level and species‐specific responses of amphibians to land management in areca, coffee and rubber, three of the largest commodity agroforests in the Western Ghats. A total of 106 agroforests across a 30,000‐km2 landscape were surveyed for amphibians using a combination of visual and auditory encounter surveys. We used a Bayesian multi‐species occupancy modelling framework to examine patterns of species richness, beta diversity, dominance structure and individual species occupancies. The influence of biogeographic variables such as elevation and latitude as well as microhabitat availability of streams, ponds and unpaved plantation roads was tested on amphibian species occupancy. Coffee agroforests had the highest species richness and lowest dominance when compared to areca and rubber. Beta diversity was highest in areca for within agroforest measures. Compared across agroforests, coffee had highest beta diversity with areca and rubber. Both elevation and latitude showed an overall positive association with amphibian occupancy, although species‐specific responses varied considerably. Microhabitat availability was one of the strongest predictors of amphibian occupancy, with mean community response being positive with presence of water bodies and roads. Pond presence increased species richness per site by 34.7% (species‐specific responses in occupancy ranged from –2.7% to 327%). Stream presence alone did not change species richness but species‐specific response ranged from –59% to 273%. Presence of plantation roads also increased species richness by 21.5% (species‐specific response ranged from –82% to 656%). Being unpaved with little vehicular traffic, plantation roads seem to provide additional habitats for amphibians. Presence of all three microhabitats at a site increased species richness by 75%. Our study highlights the importance of land management strategies that maintain diverse native canopy and freshwater bodies and other microhabitats in sustaining amphibian fauna. Market‐driven land‐use change from coffee to other agroforest types will have detrimental effects on amphibian communities and their long‐term sustainability in the Western Ghats. Agroforests in the Western Ghats support diverse but modified communities. Species richness, community evenness and beta diversity were highest in coffee when compared to areca and rubber agroforests. Our results predict that conserving ponds, streams and roads can significantly increase biodiversity potential of agroforests.
... The centipede community found here also had significantly high relative phylogenetic endemism, which was smaller in magnitude than the southern WG, lateritic rock that has further undergone various levels of erosion (Watve, 2013). They show a diversity of unique seasonal microhabitats (Thorpe et al., 2018) and have a distinct vegetation consisting of several endemic herbaceous species that show adaptations to surviving in poor soil conditions (Joshi & Janarthanam, 2004;Lekhak & Yadav, 2012). ...
Article
Full-text available
The Western Ghats (WG) mountain chain in peninsular India is a global biodiversity hotspot, one in which patterns of phylogenetic diversity and endemism remain to be documented across taxa. We used a well‐characterized community of ancient soil predatory arthropods from the WG to understand diversity gradients, identify hotspots of endemism and conservation importance, and highlight poorly studied areas with unique biodiversity. We compiled an occurrence dataset for 19 species of scolopendrid centipedes, which was used to predict areas of habitat suitability using bioclimatic and geomorphological variables in Maxent. We used predicted distributions and a time‐calibrated species phylogeny to calculate taxonomic and phylogenetic indices of diversity, endemism, and turnover. We observed a decreasing latitudinal gradient in taxonomic and phylogenetic diversity in the WG, which supports expectations from the latitudinal diversity gradient. The southern WG had the highest phylogenetic diversity and endemism, and was represented by lineages with long branch lengths as observed from relative phylogenetic diversity/endemism. These results indicate the persistence of lineages over evolutionary time in the southern WG and are consistent with predictions from the southern WG refuge hypothesis. The northern WG, despite having low phylogenetic diversity, had high values of phylogenetic endemism represented by distinct lineages as inferred from relative phylogenetic endemism. The distinct endemic lineages in this subregion might be adapted to life in lateritic plateaus characterized by poor soil conditions and high seasonality. Sites across an important biogeographic break, the Palghat Gap, broadly grouped separately in comparisons of species turnover along the WG. The southern WG and Nilgiris, adjoining the Palghat Gap, harbor unique centipede communities, where the causal role of climate or dispersal barriers in shaping diversity remains to be investigated. Our results highlight the need to use phylogeny and distribution data while assessing diversity and endemism patterns in the WG. Soil arthropod communities play an important role in the ecosystem, but have been poorly studied in terms of large‐scale patterns of diversity and distribution from a phylogenetic perspective. We studied centipedes, a group of ancient predatory soil arthropods, across the climatic gradient of the Western Ghats, India, a global biodiversity hotspot with a complex geological history, using extensive primary distribution data and a robust phylogeny. Our results reveal a latitudinal gradient in phylogenetic diversity of centipedes along the mountain range, identify unique hotspots of phylogenetic endemism, provide support to the existence of a past rainforest refuge, and indicate structuring of centipede communities across various subregions.
... Rock outcrops offer a wider range of micro-climatic differences than the surrounding areas and host a mosaic of microhabitats. Studying these unique ecosystems has become more important because they host many endemic plants, insects and freshwater aquatic communities (Padhye and Victor 2015; Thorpe et al. 2018;Shigwan et al. 2020). ...
Article
The northern section of the Western Ghats is a biodiversity hotspot with a predominance of rock outcrops. Although these outcrops are characterized by environmental extremes, they support a large diversity of species, many of which are endemics. High-elevation rock outcrops of the Western Ghats exhibit two lithotypes of distinct geological origins, namely basalt mesa (BM) and high-level ferricrete (HLF). We examined the interrelation between environmental factors, lithotypes and functional type abundance. We recorded 265,447 individuals belonging to 127 taxa categorized under seven plant functional types in 128 quadrats from sixteen high-elevation rock outcrops. Cluster analysis separated the sites based on the lithotypes. Graminoids and Therophytes were the dominant functional types across both the lithotypes. Latitude, seasonality, soil carbon and nitrogen were the influential environmental factors. Multivariate analysis of variance (MANOVA) showed that based on environmental characteristics, the two lithotypes are significantly different from each other. Different plant functional types were associated with different environmental variables, as shown by canonical correspondence analysis (CCA). Lithotype and levels of soil carbon and nitrogen together seem to shape the functional type abundance. Overall, we observed that there is a marginal difference in the vegetation across the two lithotypes of outcrops. The abundance of each plant functional type was deferentially associated with the seasonal environment and soil nutrients.
... India is home to different rock outcrops such as plateaus of laterite (ferricrete), basalt (basalt mesa), cliffs, and inselbergs. The studies on Indian rock outcrops are still in the primary stage, mainly focusing on various taxa documentation occurring on outcrops (Chikane & Bhosale 2012;Watve 2013); and a few ecological studies (Porembski & Watve 2005;Thorpe et al. 2018). Only a few studies attempted to document the biodiversity of the rock pools of the Western Ghats. ...
Article
Full-text available
The freshwater rockpools support high endemic biodiversity but are poorly studied habitats in the Western Ghats biodiversity hotspot. These freshwater rock pools are situated on outcrops at various elevations in the Western Ghats and are composed of different bedrocks such as laterite and basalt. We aimed to analyze the water quality, geographical position based differences in the water chemistry and the role of bedrock in determining the water chemistry of the rock pools. Our study showed a wide range of water quality variables such as pH, conductivity, and ionic contents that attributed to the natural variation. We observed a drastic variation in the anions and cations at low elevation pools. Rock type and precipitation are influencing the ionic concentration; for example, Calcium and Bromide could be attributed to the seasonal precipitation and geomorphology. This documentation of physicochemical properties of the Western Ghats rock pools can form a baseline for further detailed studies. HIGHLIGHTS The water quality across rock outcrops of Western Ghats is documented.; 80 different rockpools show high variation in the physicochemical composition.; Water quality of the rock outcrops is suitable for supporting aquatic life.; Rock type and precipitation influence the ionic concentration of water.;
... Amphibians show a high diversity among vertebrates, with over 8,206 species distributed worldwide (AmphibiaWeb, 2020). The high species richness and endemism in amphibians could be attributed to their microenvironment, as they display fine-scale heterogeneity depending on the microhabitats they inhabit (Thorpe et al., 2018). A study on the anuran assemblages from the tropics found a direct relationship between species richness and availability of microhabitats, suggesting its positive influence on species assemblages (Figueiredo et al., 2019). ...
Article
Amphibians show a high amount of species richness and endemism. Such diversity can be attributed to their microenvironment as amphibians display fine‐scale heterogeneity depending on the microhabitats they inhabit. Tadpoles are considered as good indicators for understanding microhabitat–species association as they reflect the breeding sites and signify species survival potential. In this study, we assessed the microhabitat factors influencing the distribution of tadpoles of three endemic frogs of the genus Nyctibatrachus namely N. jog, N. kempholeyensis, and N. kumbara from central Western Ghats, India. Forty‐three streams were sampled from three river basins, and stream characteristics were analyzed using generalized linear models. The results indicate that the tadpoles show specific microhabitat preferences and spatial niche partitioning. Among microhabitat variables, the slope significantly influenced the distribution of tadpoles of N. jog and N. kempholeyensis. The tadpoles of N. jog preferred steep slopes, while N. kempholeyensis tadpoles were found in gradual slopes with low water depth. For N. kumbara tadpoles, water temperature significantly influenced their distribution in the streams. Such spatial heterogeneity promotes the coexistence of these species supporting the niche theory. The study advances the understanding of how amphibian diversity from the Western Ghats is shaped at the microhabitat scale. The perennial streams that the Nyctibatrachus tadpoles inhabit are at risk due to anthropogenic activities. The findings of this study provide important baseline data that could be useful for the conservation of the endemic anurans in the Western Ghats, India. The study assesses the influence of microhabitat on the distribution of the tadpoles of three endemic species from the Western Ghats, India.
... Saenz et al. (2015) suggested that anthropogenic disturbed habitats may act as a refuge from diseases such as Bd, when the species are able to tolerate those environments. In contrast, there is also growing evidence suggesting that anthropogenically disturbed habitats and proximity to human habitation influence the amphibian distribution, susceptibility and exposure to diseases (Lips et al. 2008;Pauza et al. 2010;Thorpe et al. 2018b). A recent study has revealed that Bd occupancy may not depend on the presence of amphibian hosts in that locality (Chestnut et al. 2014), which intensifies the importance of using species distribution models (SDMs) to predict future Bd distribution without necessarily modeling their host distributions simultaneously. ...
Article
Full-text available
Global amphibian populations are facing a novel threat, chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), which is responsible for the severe decline of a number of species across several continents. Chytridiomycosis in Asia is a relatively recent discovery yet there have been no reports on Bd-presence in Bangladeshi amphibians. We conducted a preliminary study on 133 wild frogs from seven sites in Bangladesh between April and July 2018. Nested PCR analysis showed 20 samples (15.04%) and 50% of the tested taxa (9 species from 6 genera and 4 families) as Bd-positive. Eight of the nine species are discovered as newly infected hosts. Analysis of Bd-positive samples shows prevalence does not significantly vary among different land cover categories, although the occurrence is higher in forested areas. The prevalence rate is similar in high and low disturbed areas, but the range of occurrence is statistically higher in low disturbance areas. Maximum entropy distribution modeling indicates high probabilities of Bd occurrence in hilly and forested areas in southeast and central-north Bangladesh. The Bd-specific ITS1-5.8S-ITS2 ribosomal gene sequence from the Bd-positive samples tested is completely identical. A neighbor-joining phylogenetic tree reveals that the identified strain shares a common ancestry with strains previously discovered in different Asian regions. Our results provide the first evidence of Bd-presence in Bangladeshi amphibians, inferring that diversity is at risk. The effects of environmental and climatic factors along with quantitative PCR analysis are required to determine the infection intensity and susceptibility of amphibians in the country.
Preprint
Full-text available
The evolution and maintenance of sexual systems in plants is often driven by resource allocation and pollinator preferences, and very little is known about their role in determining floral sex expression in plants. In annual, entomophilous plants three major constraints can be identified towards optimal reproduction: 1) nutrient resources available from the environment, 2) nutrient resources allocated towards reproduction, i.e., fruits vs. flowers, and 3) pollinator visitations. Andromonoecy is a sexual system where plants bear both staminate and hermaphrodite flowers on the same inflorescence. The optimal resource allocation hypothesis suggests that under nutrient constraints, plants will produce more male flowers since they are energetically cheaper to produce over the more expensive hermaphrodite flowers. We test this hypothesis in the andromonoecious Murdannia simplex (Commelinaceae) by quantifying male and hermaphrodite flowers in a natural population and contrasting the distribution of the two sexes in plants from two resource conditions (stream population vs. plateau population). We next carried out choice experiments to test pollinator preference towards a specific sex. We found that in M. simplex , production of hermaphrodite flowers is resource-dependent and under resource constraints fewer numbers of flowers were produced and most of them were males. We failed to observe pollinator preference towards either sex but Amegilla spp . and Apis cerana showed higher visitation towards the most abundant sex within a trial, suggesting frequency-dependent visitation. Thus, we conclude that environmentally driven resource constraints play a bigger role in driving floral sex expression in Murdannia over direct pollinator-driven constraints.
Article
Full-text available
Volume 30 (April 2020), 99-111 Published by the British Herpetological Society We conducted a systematic review to evaluate the knowledge base for amphibian chytrid Batrachochytrium dendrobatidis (Bd) infection in the continent of Asia. Despite an indication of geographic bias in terms of studying chytrid fungus distribution in Asia, 167 amphibian species (145 spp. native to Asia) from 16 countries have been reported as infected with Bd. Our meta-analysis shows that overall prevalence is 8.19 % (out of 28,433 samples), and Bd-positive rate in amphibia significantly varies among sampling sources (χ 2 = 380.57, DF= 6, P< 0.001) and age categories (χ 2 = 22.09, DF= 2, P< 0.001). We used Kernel Density analysis to produce a hotspot map for chytrid infection, and Digital Elevation Model to understand the distribution of chytrid positive locations across different elevations. In our meta-analysis, most of the Bd-positive sites range between 4.45-27.49 °C, 167-4,353 mm rainfall, 10-40°N, and at lower elevations (<500 m). Using land cover analysis, we did not find a statistically significant difference among six different land cover categories in relation to the prevalence of Bd across Asia. Although no mass die-off events have been reported so far, Maximum Entropy modelling shows that Bd distribution and infection may potentially occur across a vast region of southeast Asia. In conclusion, we call for more systematic research and monitoring strategies in place for countries with little to no information, but have a moderately higher risk of chytrid distribution and infection.
Research Proposal
Full-text available
• The State Forest Department owns a continuous piece of degraded land (documentary evidence showing that the land has been degraded for the past 200 years) spread over 11 sq.kms. The land is marked by the Mutha irrigation canal in the north and spreads mainly over the hill slopes of Sinhagad -Bhuleshwar mountain range near Saswad. • The proposed Biodiversity Park (BDP) is near Pune city. As per the Pune Municipal Corporation’s Environment Status Report (ESR) 2016-17, Hadapsar (Pune city) is one of the most polluted regions in Pune city. Accordingly, being close to Hadapsar, the BDP will help sequester the carbon emitted from Pune and also act as a refuge for the biodiversity of the area. • The BDP site lies between the city and the proposed national and international airport in Purandhar Taluka. The project would not only help sequester the carbon emitted by the airport, but will also help showcase the nature conservation efforts of the country to both Indian citizens and foreigners. • The BDP will also provide a good tourist and get-away spot for the millions of citizens of Pune. • It is proposed to undertake watershed management of the mountain range, which will ensure food and water security of the area. • In 2016, the State Government of Maharashtra launched ‘Mission Plantation’ which envisages an ambitious target of planting 50 crore trees. The Mission aims to increase the forest cover in the state from the current 20% of the State’s land area to the nationally mandated 33%. While the State may be well on its way to achieving the target, the project would contribute towards taking the ambition forward. • India is a party to many multi-lateral environment and sustainable development agreements. Further, the Government of India has also initiated many Missions/Programmes aimed at socio-economic upliftment of urban citizens while conserving the environment. The Government of India has voluntarily set targets under the various international conventions and national missions/programmes to achieve the larger goal of sustainable development. Accordingly, the project aims to contribute towards these international and national targets both directly and indirectly.
Article
Full-text available
Chytridiomycosis has decimated amphibian biodiversity. Management options for the disease are currently limited, but habitat manipulation holds promise due to the thermal and physicochemical sensitivities of chytrid fungi. Here, we quantify the extent to which habitat management could reduce metapopulation extinction risk for an Australian frog susceptible to chytridiomycosis. Our modelling revealed that: (i) habitat management is most effective in climates where hosts are already less susceptible to the disease; (ii) creating habitat, particularly habitat with refugial properties adverse to the pathogen, may be substantially more effective than manipulating existing habitat, and; (iii) increasing metapopulation size and connectivity through strategic habitat creation can greatly reduce extinction risk. Controlling chytridiomycosis is a top priority for conserving amphibians. Our study provides impetus for experiments across a range of species and environments to test the capacity of habitat management to mitigate the impacts of this pervasive disease. This article is protected by copyright. All rights reserved
Article
Full-text available
It is critical that we understand the effects of climate change on natural systems if we ever hope to predict or mitigate consequent changes in diversity and ecosystem function. In order to identify coherent ‘fingerprints’ of climate change across Earth's terrestrial and marine ecosystems, various reviews have been conducted to synthesize studies of climate change impacts on individual species, assemblages and systems. These reviews help to make information about climate change impacts accessible for researchers as well as for the general public and policymakers. As such, these reviews can be highly influential in setting the direction of policy and research. Unfortunately, due to limited data availability, the majority of reviews of climate change impacts suffer from severe taxonomic and geographic biases. In particular, tropical and marine systems are grossly underrepresented, as are plants and endothermic animals. These biases may preclude a comprehensive understanding of how climate change is affecting Earth's natural systems at a global scale. In order to advance our understanding of climate change impacts on species and ecosystems, we need to first assess the types of data that are and are not available and then correct these biases through directed studies and initiatives.
Article
Full-text available
In many parts of the world rock outcrops form important landscape elements that play a role in generatingandmaintainingbiodiversityinadditiontoprovidingkeyecosystemservices.Theserock outcrops rise abruptly from the surrounding landscape, have a patchy distribution, and represent centersofdiversityandendemismforbothanimalandplantlife(HopperandWithers 1997).Known as ‘inselbergs’ and often composed of Precambrian granitoids, these outcrops occur across all continents. Inselbergs are particularly noteworthy inancient biodiversityhotspots, e.g., the Brazilian Atlantic Forest, Guinean Forests of West Africa, Madagascar, the Greater Cape and Southwest Australian Floristic regions (Hopper et al. 2016). The ecological and evolutionary processes that operate in these ancient environments differ significantly from comparatively more recent environments (Hopper 2009). Their conservation is of global importance, in great part because they support unique, endemic biota of recent and deep phylogenetic history. Many inselbergs are threatened by alarming rates of mining, weed invasion (de Paula et al. 2015), water harvesting, tourism, and urbanisation, resulting in biodiversity loss and degradation of their ecosystem services (Fig. 1). Illustrative of this destruction, the World Resources Institute (WRI 2003) reports that nearly one-third of all active mining sites are located within undisturbed areas with conservation value and nearly 75 % are within areas of ecological significance. Reasons for inselberg conservation include their extraordinarily high numbers of geographically restricted and threatened species; functioning as terrestrial habitat islands; (Bussell and James 1997); and serving as centers of diversity for highly specialized life forms such as carnivorous (Seine et al. 1995) and desiccation-tolerant plants (Porembski and Barthlott 2000). These naturally stress-tolerant species may be important sources of genetic information to generate new crops (Costa et al. 2016). Remarkably, a few inselberg endemics have evolved the smallest known angiosperm genomes (Greilhuber et al. 2008), suggesting that inselberg conservation translates to conservation of novel evolutionary strategies. Inselbergs influence the water and nutrient supplies of surrounding landscapes (Schut et al. 2014). Due to low rates of soil development and the general absence of soil across the inselberg surface, most precipitation is lost through runoff, benefiting the surrounding vegetation. In several countries, the supply of bottled drinking water largely depends on runoff from inselbergs. Inselberg rock pools provide essential habitat for endemic animals (Jocque´ et al. 2010) and plants (Vogiatzakis et al. 2009); serve as refugia (Pinder et al. 2000); and control hydrological cycles by modulating water storage and recharging the adjacent landscape (Cross et al. 2015). They have been used by humans for more than 3000 years to support human and livestock populations (Bauer and Morrison 2006). Finally, inselbergs play an important role in the evolution of vital human habits including lifestyle preferences (Larson et al. 2004). Iconic examples of outcrops important from the religious and economic points of view include Mt. Arafat (Mecca), the Mahabalipuram Temple and Shravanabelagola (India), Wave Rock (Australia), and Sugar Loaf Mountain in Rio de Janeiro (Brazil). Unfortunately, human activities threaten the biodiversity and ecosystem services of inselbergs, including quarrying, plant overharvesting, weed invasion, uncontrolled fires (Yates et al. 2003), climate change, and unsustainable uses, including adjacent farming, hunting, logging roads, temple construction, and tourism/sports/cultural activities (Porembski and Barthlott 2000). In India, entire inselbergs have vanished due to quarrying of high value granite. Surprisingly, inselbergs have rarely been considered in the context of the degradation of Earth’s natural ecosystems. Unfortunately, there are no reliable estimates on global rates of inselberg destruction that would be urgently needed to promulgate effective conservation strategies. It is time to develop international legislation for inselberg conservation, which includes the creation of protected areas in centers of endemism; weed prevention and eradication; local educational programs in water and nutrient cycling; ex situ conservation programs for threatened species when quarrying is inevitable; and implementation of effective restoration strategies. All will be important to conserve at least part of these iconic, globally important, and highly threatened ecosystems.
Article
Full-text available
The northern Western Ghats are characterised by plateaus and hilltop carapaces formed from ferricretes rich in aluminium ore. Ferricretes in Western Ghats are home to a high number of endemic species, many with extremely limited distribution. The heterogeneity of microhabitats on ferricretes supports a great diversity of plant and animal communities. With little overburden and a high percentage of recoverable metals they are targeted for mining which leads to removal of all soil, vegetation and microhabitats. Vegetation and faunal diversity of unmined sites from Kolhapur district were studied providing reference data used to discuss restoration efforts on two mined sites in the region. Restoration efforts have faced ecological and legal hurdles. The international literature for the restoration of bauxite mines fails to demonstrate any successful model to return the species assemblage to a pre-mining profile. Restoration practices fail to adequately replicate microhabitat heterogeneity; often restoring sites to a different ecosystem from the original. The present mining policies do not take cognizance of the special nature of plateau habitats, ecology or the ecosystem functions they provide. We suggest a moratorium on mining of the high level lateritic plateaus in Western Maharashtra is justified until the biodiversity value and ecosystem
Article
The validity of the threat status assigned to a species by the International Union for Conservation of Nature's (IUCN) Red List relies heavily on the accuracy of the geographic range size estimate for that species. Range maps used to assess threat status often contain large areas of unsuitable habitat, thereby overestimating range and underestimating threat. In this study, we assessed 18 endemic birds of the Western Ghats biodiversity hotspot to test the accuracy of the geographic range sizes used by the IUCN for their threat assessment. Using independently reviewed data from the world's largest citizen science database (eBird) within a species distribution modeling framework, our results show that: (a) geographic ranges have been vastly overestimated by IUCN for 17 of the 18 endemic bird species; (b) range maps used by IUCN contain large areas of unsuitable habitat, and (c) ranges estimated in this study suggest provisional uplisting of IUCN threat status for at least 10 of the 18 species based on area metrics used by the IUCN for threat assessment. Since global range size is an important parameter for assigning IUCN threat status, citizen science datasets, high resolution and freely available geo-referenced ecological data, and the latest species distribution modeling techniques should be used to estimate and track changes in range extent whenever possible. The methods used here to significantly revise range estimates have important conservation management implications not only for endemic birds in the Western Ghats, but for vertebrate and invertebrate taxa worldwide.
Article
The biodiversity of a habitat patch is predicted to be driven in part by interactions between patch quality and landscape context (i.e., type of regional matrix), but these interactions are rarely explored experimentally. Understanding the interaction between patch quality and matrix context can provide insight into the kind of dynamics that best describe a metacommunity and help predict how the diversity of a patch will respond to environmental change at different scales. We conducted a landscape-scale experiment to examine how regional and local aspects of the terrestrial matrix interact to affect biodiversity within artificial ponds designed to mimic generic features of freshwater ephemeral ponds. We manipulated both the kind of matrix surrounding ponds (open canopy grassland, pine forest, and hardwood forest) and pond quality (three different types of leaf litter substrate). Ponds were left open to natural colonization for three months by aquatic insects and amphibians. The terrestrial matrix had consistent and strong effects on biodiversity throughout the experiment: ponds in open canopy areas had more animal morphotypes than ponds in pine or hardwood forests. Leaf litter type affected biodiversity during the experiment, with more animal morphotypes in ponds with higher quality litter than ponds with lower quality litter, and this effect was stronger in open canopy areas. The effect of leaf litter, however, disappeared by the end of the experiment. Our results suggest that the matrix surrounding patches has strong effects on community dynamics and biodiversity within patches, and conservation efforts aimed at maintaining biodiversity requires simultaneous consideration of both matrix habitats and habitat patches. This article is protected by copyright. All rights reserved.
Article
Xanthophryne is a toad genus endemic to the northern Western Ghats of India, with two extant sister species – Xanthophryne koynayensis and Xanthophryne tigerina. Both species are local endemics and endangered. We studied reproductive biology of these toads and found that they are specialized to the lateritic rocky outcrops at mid-elevations in high rainfall areas. Xanthophryne toads have sporadic, multiple spawning bouts lasting 2–4 days during early monsoon. In this explosive breeding behaviour, we observed male toads to engage in ‘pelvic thrusts’, a unique and novel behaviour among anurans. Females oviposit in shallow pools in depressions of lateritic boulders where their tadpoles metamorphose. These ephemeral rocky pools have limited resources and they desiccate rapidly with a break in the rains. To mitigate the stochastic risk of desiccation and subsequent large-scale egg/tadpole mortality, females may disperse their reproductive investment spatially and temporally in multiple clutches, and tadpoles metamorphose rapidly. Here, we describe the amplexus, spawning and male advertisement call, and provide a comparative account of the life history traits of the two Xanthophryne species. These toads face numerous threats and are in need of urgent conservation action. These toads, seemingly well adapted to the isolated rocky outcrops, offer an excellent opportunity to understand endemism, mating systems, anuran ecology and behaviour.