Conference Paper

Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology

Authors:
To read the full-text of this research, you can request a copy directly from the author.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

... The electromagnetoelastic actuator with the piezoelectric or electrostriction effect for nano robotics system is used in nanotechnology, nano manipulator, nano pump, scanning microscopy, adaptive optics. The use of the electromagnetoelastic actuator is promising in nano robotics system [1][2][3][4][5][6] and nano manipulator [7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24] for nanotechnology. The electromagnetoelastic actuator is the electromechanical device for actuating and controlling mechanisms, systems with the conversion of electrical signals into mechanical displacements and forces. ...
... The electromagnetoelastic actuator is the electromechanical device for actuating and controlling mechanisms, systems with the conversion of electrical signals into mechanical displacements and forces. [16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34] The piezo actuator is used for nano scale motion in adaptive optics, laser systems, focusing and image stabilization systems, nano and micro surgery, vibration damping, nano and micro manipulation to penetrate the cell and to work with the genes. The electromagnetoelastic actuator is provided range of movement from nanometers to ten microns; force 1000 N, response 1-10 ms. ...
... The nano piezoactuator works on the basis of the inverse piezoeffect due to its nano deformation at the electric field strength is applied. [16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34] On the characteristic of the nano piezoactuator deformation from the electric field strength, the initial curve is observed, on which the vertices of the main hysteresis loops lie. The main hysteresis loops have a symmetric change in the electric field strength relative to zero, and partial loops have an asymmetric change in the strength relative to zero. ...
Article
For the nano piezoactuator with hysteresis in control system its set of equilibrium positions is the segment of line. By applying Yakubovich criterion for system with the nano piezoactuator the condition absolute stability of system is evaluated.
... The equations [27][28][29][30][31][32][33][34][35] of the piezoeffects have form The differential equation of a piezoactuator 12-52 is written ...
Article
Full-text available
The structural scheme of a piezoactuator is obtained for astrophysics. The matrix equation is constructed for a piezoactuator. The characteristics of a piezoactuator are received for astrophysics.
... Piezo drives are used for atomic force microscopy, nanomanipulators, nanotechnology, biotechnology, astronomy, space research, metrology, laser resonator [16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35]. ...
Article
Full-text available
The structural model of the drive for nanobiotechnology is obtained. The structural scheme of the drive is constructed. In nanobiotechnology for the control systems with the drive its deformations are determined.
... The electromagnetoelastic actuator is the electromechanical device for actuating and controlling mechanisms, systems with the conversion of electrical signals into mechanical displacements and forces. The electromagnetoelastic actuator is provided range of movement from nanometers to ten microns, force 1000 N, response 1-10 ms [16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34]. ...
Article
Full-text available
The regulation and mechanical characteristics of the electromagnetoelastic actuator are obtained for control systems in nano physics and optics sciences for scanning microscopy, adaptive optics and nano biomedicine. The piezo actuator is used for nano manipulators. The matrix transfer function of the electromagnetoelastic actuator is received for nano physics and optics sciences
... The parametric structural schematic diagrams of the multilayer piezoactuator are determined in contrast to Cady and Mason's electrical equivalent circuits for the calculation of the piezotransmitter, the piezoreceiver, the vibration piezomotor [1][2][3][4][5][6][7][8][9][10][11][12]. The parametric structural schematic diagram of the multilayer electromagnetoelastic actuator is obtained with the mechanical parameters the displacement and the force. ...
Article
The structural schemes of electroelastic engine micro and nano displacement are determined for applied bionics and biomechanics. The structural scheme of electroelastic engine is constructed by method mathematical physics. The displacement matrix of electroelastic engine micro and nano displacement is determined.
Article
Full-text available
For the control system with a piezo actuator in astrophysical research the condition for the existence of self-oscillations is determined. Frequency method for determination self-oscillations in control systems is applied. By using the harmonious linearization of hysteresis and Nyquist stability criterion the condition of the existence of self-oscillations is obtained.
Article
Full-text available
In the work is calculated of the piezoactuator for astrophysics. The structural scheme of the piezoactuator is determined for astrophysics. The matrix equation is constructed for the piezoactuator. The mechanical characteristic is determined. The parameters of the piezoactuator are obtained in nano control systems for astrophysics.
Article
Full-text available
The structural model of a nano drive is determined for biomedical research. The structural scheme of the piezo drive is obtained. The matrix equation is constructed for a nano drive.
Article
Full-text available
The structural model of the nano piezoengine is determined for applied biomechanics and biosciences. The structural scheme of the nano piezoengine is obtained. For calculation nano systems the structural model and scheme of the nano piezoengine are used, which reflect the conversion of electrical energy into mechanical energy of the control object. The matrix equation is constructed for the nano piezoengine in applied biomechanics and biosciences.
Article
We obtained the deformation, the structural diagram, the transfer functions and the characteristics of the actuator nano and micro displacements for composite telescope in astronomy and physics research. The mechanical and regulation characteristics of the actuator are received.
Article
The structural model of the electroelastic engine for nanobiomedicine is determined. The structural scheme of the engine is constructed. For the mechatronics systems with the elecroelastic engine its deformations are obtained.
Article
The mathematical models of a piezoengine are determined for nanomedicine and applied bionics. The structural scheme of a piezoengine is constructed. The matrix equation is obtained for a piezoengine.
Article
Full-text available
In nanosciences research the structural model of an electro elastic engine is constructed. Its structural scheme of is received. For an engine its matrix equation of the deformations are obtained in the decisions of the precision control systems. The parameters of an engine are determined.
Article
Full-text available
The structural model of an engine for nanochemistry is obtained. The structural scheme of an engine is constructed. For the control systems in nanochemistry with an elecro elastic engine its characteristics are determined.
Article
The structural model of a piezo engine for composite telescope is constructed. This structural model clearly shows the conversion of electrical energy by a piezo engine into mechanical energy of the control element of a composite telescope. The structural scheme of a piezo engine is determined. For the control systems with a piezo engine its deformations are obtained in the matrix form. This structural model, structural scheme and matrix equation of a piezo engine are applied in calculation the parameters of the control systems for composite telescope.
Article
Full-text available
The transfer function and the transfer coefficient of a precision electromagnetoelastic engine for nanobiomedical research are obtained. The structural diagram of an electromagnetoelastic engine has a difference in the visibility of energy conversion from Cady and Mason electrical equivalent circuits of a piezo vibrator. The structural diagram of an electromagnetoelastic engine is founded. The structural diagram of the piezo engine for nanobiomedical research is written. The transfer functions of the piezo engine or are obtained.
Article
Full-text available
In this work, the parametric structural schematic diagrams of a multilayer electromagnetoelastic actuator and a multilayer piezoactuator for nanomechanics were determined in contrast to the electrical equivalent circuits of a piezotransmitter and piezoreceiver, the vibration piezomotor. The decision matrix equation of the equivalent quadripole of the multilayer electromagnetoelastic actuator was used. The structural-parametric model, the parametric structural schematic diagram, and the matrix transfer function of the multilayer electromagnetoelastic actuator for nanomechanics were obtained.
Article
Full-text available
The generalized parametric structural schematic diagram, the generalized structural-parametric model, and the generalized matrix transfer function of an electromagnetoelastic actuator with output parameters displacements are determined by solving the wave equation with the Laplace transform, using the equation of the electromagnetolasticity in the general form, the boundary conditions on the loaded working surfaces of the actuator, and the strains along the coordinate axes. The parametric structural schematic diagram and the transfer functions of the electromagnetoelastic actuator are obtained for the calculation of the control systems for the nanomechanics. The structural-parametric model of the piezoactuator for the transverse, longitudinal, and shift piezoelectric effects are constructed. The dynamic and static characteristics of the piezoactuator with output parameter displacement are obtained.
Article
Scitation is the online home of leading journals and conference proceedings from AIP Publishing and AIP Member Societies