Content uploaded by Carlo Carandang
Author content
All content in this area was uploaded by Carlo Carandang on Mar 18, 2018
Content may be subject to copyright.
Analysis of Surgical Wait Times in Nova Scotia
Carlo&Carandang
1
,&Gregory&Horne
2
,&William&Wells1,&Catherine&Stokes2
Corresponding&Author:&Carlo&Carandang,&MD&
Email:&carandangc@gmail.com&
ORCID:&0000-0002-2008-9642&
This project was supported by Saint Mary’s University, MSc Program in Computing & Data
Analytics and NSCC Institute of Technology
The statistical analysis and code for this study is located at this repository:
https://github.com/Carlo-Carandang/Nova_Scotia_Surgical_Wait_Times
&
1
Saint Mary’s University, MSc Program in Computing & Data Analytics, 923 Robie Street, Halifax, Nova Scotia,
Canada, B3H 3C3
2
NSCC, Institute of Technology Campus, 5685 Leeds Street, Halifax, Nova Scotia B3K 2T3
Analysis of Surgical Wait Times in Nova Scotia
Abstract
OBJECTIVES:!Surgical!wait!times!in!Nova!Scotia!are!at!crisis!levels,!as!patients!are!waiting!
too!long!on!the!wait!list.!This!can!lead!to!worsening!illness!course,!and!in!some!cases!
premature!death.!This!project!started!with!the!objective!of!addressing!the!surgical!waitlist!
crisis,!as!people!in!Nova!Scotia!are!waiting!months!to!years!before!receiving!their!life-
saving!surgeries.!!
METHODS:!This!study!involved!obtaining!a!clinical!dataset!from!an!open!data!portal!on!the!
internet,!loading!the!data!into!our!analytical!environment,!exploring!the!data!using!
analytical!software,!cleaning!the!data,!determining!feature!variables!(independent!
variables),!and!utilizing!the!data!to!train!models!for!prediction!of!the!outcome!variable(s).!
R!was!utilized!to!perform!exploratory,!descriptive,!and!predictive!statistical!analysis!on!the!
surgical!wait!times!dataset!in!Nova!Scotia,!for!the!time!period!2014!to!2016.!!
RESULTS:!A!bivariate!multiple!linear!regression!model!was!constructed!with!two!
dependent!variables!(consult_90th!and!surgery_90th),!representing!the!90th!percentiles!
for!each!instance!of!a!surgical!specialty’s!wait!time,!added!together!to!give!the!combined!
surgical!wait!time!and!one!independent!variable.!!
CONCLUSION:!Although!we!can!give!an!estimate!of!average!wait!times!in!Nova!Scotia!
based!on!specialty!from!the!model,!only!the!waittimes!from!the!following!specialties!are!
statistically!significant:!General!Surgery,!Dental,!Opthalmology,!Orthopaedic,!and!
Otolaryngology!(ENT)!at!95%!confidence.!However,!as!the!model!is!statistically!significant!
with!all!the!coefficients,!then!it!can!be!assumed!that!the!model!can!predict!with!95%!
confidence!the!wait!times!from!any!specialty,!even!if!the!individual!coefficient!is!not!
statistically!significant.!
Surgical!wait!times!in!Nova!Scotia!are!at!crisis!levels,!as!patients!are!waiting!too!long!on!the!
wait!list.!This!can!lead!to!worsening!illness!course,!and!in!some!cases!premature!death.!
This!project!started!with!the!objective!of!addressing!the!surgical!waitlist!crisis,!as!people!in!
Nova!Scotia!are!waiting!months!to!years!before!receiving!their!life-saving!surgeries.!The!
Nova!Scotia!government!website!only!gives!numbers!about!wait!times!that!are!difficult!to!
interpret.!This!research!team!wanted!to!look!for!correlations!of!the!variables!in!the!surgical!
wait!times!dataset.!In!fact,!every!province!has!a!wait!times!dataset!that!is!updated!every!3!
months,!and!post!the!data!to!the!Canadian!Institute!for!Health!Information!public-facing!
website.!The!data!goes!back!to!the!beginning!of!the!recordings,!which!is!roughly!around!the!
early!2010s.!
The!data!set!for!surgical!wait!times!in!Nova!Scotia!has!a!dozen!columns!and!approximately!
7000!rows!when!the!dataset!was!obtained!for!the!years!2014!to!2016.!It’s!basically!an!
Excel!spreadsheet,!and!is!not!in!any!relational!database!tables.!It!maps!surgical!wait!times!
based!on!date,!hospital,!Health!Region!Zone,!specialty,!procedure,!and!doctor.!
Research!shows!that!surgical!wait!times!are!associated!with!significant!morbidity!and!
mortality!risk1–6.!Morbidity!risk!is!the!probability!of!the!illness!worsening,!while!mortality!
risk!is!the!probability!of!dying!from!the!illness.!It!is!widely!known!that!the!surgical!wait!
times!in!Nova!Scotia!are!at!crisis-levels!currently.!Patients!in!Nova!Scotia!are!waiting!too!
long!on!average!to!receive!their!procedure.!However,!it!is!not!known!how!the!data!can!
inform!the!improvement!of!services,!and!hence!morbidity!and!mortality.!Therefore,!it!is!
important!to!analyze!the!wait!times!data!using!advanced!statistical!and!data!analytics!to!
help!provide!more!insights!to!help!decrease!morbidity!and!mortality!from!waiting!for!
surgical!procedures.!
Although!the!most!urgent!surgeries!get!scheduled!first,!waiting!too!long!for!surgery!can!be!
detrimental!to!one’s!health!because!waiting!too!long!is!a!burden!on!the!patient!and!their!
family,!waiting!too!long!can!lead!to!death,!and!waiting!too!long!can!lead!to!worsening!of!the!
illness.!Indeed,!while!the!most!urgent!surgeries!get!scheduled!first,!waiting!too!long!for!
surgery!can!be!detrimental!to!one’s!health.!
Ultimately,!the!researchers!wanted!to!find!the!factors!associated!with!surgical!wait!times,!
so!that!new!insights!can!be!obtained!to!decrease!the!wait!times,!and!hence!save!lives!and!
prevent!illness!deterioration.!
Methods
This!study!involved!obtaining!a!clinical!dataset!from!an!open!data!portal!on!the!internet,!
loading!the!data!into!our!analytical!environment,!exploring!the!data!using!analytical!
software,!cleaning!the!data,!determining!feature!variables!(independent!variables),!and!
utilizing!the!data!to!train!models!for!prediction!of!the!outcome!variable(s).!
The!research!team!divided!the!work!into!the!following!tasks:!
• Project!topic!selection!(C.C.,!G.H.,!W.W.,!C.S.)!
• Dataset!selection!(C.C.,!W.W.)!
• Data!cleaning!(C.C.,!G.H.)!
• Exploratory!analysis!and!multiple!linear!regression!in!R!(G.H.,!W.W.)!
• Multiple!linear!regression!and!polynomial!regression!in!Python!(C.C.!and!G.H.)!
• Visualization!of!data!and!graphs!(G.H.)!
• Research,!report!writing,!and!editing!(C.C.,!G.H.,!W.W.,!C.S.)!
Initially,!the!data!had!to!be!cleaned,!as!there!were!many!missing!values.!This!was!
performed!manually,!as!the!column!and!rows!were!populated!haphazardly,!and!therefore!
had!to!inspect!and!note!the!missing!values,!row!by!row!(12!columns!and!about!7000!rows).!
Subsequently,!business!and!clinical!rules!were!followed!to!fill!in!missing!values,!utilizing!
the!clinical!domain!expertise!of!one!of!the!authors!(C.C.)!who!had!practiced!as!a!physician!
in!Nova!Scotia!for!several!years.!As!an!example!of!missing!values,!each!of!the!surgical!
procedures!had!to!be!classified!into!the!surgical!specialty!to!which!it!belonged,!as!many!of!
the!rows!were!missing!this!information.!In!addition,!there!were!missing!values!for!hospital,!
Health!Region!Zone,!procedure!performed!by!surgeon,!and!specialty!of!the!surgeon.!Any!
missing!values!not!obtainable!within!the!dataset!were!scraped!from!the!internet!to!
populate!the!missing!values,!such!as!hospital!information!and!information!on!the!surgeon.!
Once!the!dataset!was!cleaned!and!missing!values!were!replaced!with!inferred!values!from!
domain!expertise!and/or!web!scraping,!exploratory!statistical!analysis!was!performed!on!
the!surgical!wait!times!dataset!in!Nova!Scotia.!The!research!team!was!trying!to!determine!if!
there!were!any!correlations!between!the!numerous!independent!variables!(i.e.!specialty,!
period,!facility,!etc.)!and!the!dependent!variable!(surgical!wait!times).!This!exploratory!
analysis!was!the!beginning!of!an!ongoing,!in-depth!analysis!of!the!Nova!Scotia!Surgical!Wait!
Times,!to!help!to!improve!patient!care!through!data!analysis!and!statistical!modelling.!
R!was!utilized!to!perform!exploratory,!descriptive,!and!predictive!statistical!analysis!on!the!
surgical!wait!times!dataset!in!Nova!Scotia,!for!the!time!period!2014!to!2016.!
Analytical Environment
Software
Data!analyses,!visualizations,!and!production!of!this!report!were!undertaken!using!
software!with!the!specifications!detailed!below.!!
• Anaconda!v0.0.0!
• Jupyter!Notebook!v0.0.0!
• pdfTeX!(TeXlive!2015)!v3.14159265-2.6-1.40.16!
• Pandoc!v1.16.0.2!
• R!v3.4.4!
• R!Studio!v1.1.383!
• R!Markdown!v2!
Hardware
Data!analyses,!visualizations,!and!production!of!this!report!were!undertaken!using!
hardware!with!the!specifications!detailed!below:!!
Apple6MacBook6Air!Processor:!1.6!GHz!Intel!Core!i5;!Number!of!Processors:!1;!Total!
Number!of!Cores:!2;!L2!Cache!(per!Core):!256!KB;!L3!Cache:!3!MB;!Memory:!8!GB!1600!
MHz!DDR3;!Operating!System:!Apple!Mac!OS!X!v10.0!
Apple6Macbook6Pro!Processor:!3.1!GHz!Intel!Core!i7;!Number!of!Processors:!1;!Total!
Number!of!Cores:!2;!L2!Cache!(per!Core):!256!KB;!L3!Cache:!3!MB;!Memory:!16!GB!1857!
MHz!DDR3;!Graphics:!Intel!Iris!Graphics!6100!1536!MB;!Operating!System:!Apple!Mac!OS!X!
v10.13!
Hewlett6Packard6Spectre613!Processor:!2.5GHz!Intel!Core!i7;!Number!of!Processors:!1;!
Total!Number!of!Cores:!4;!Memory:!8!GB!DDR3;!Graphics:!Intel!HD!Graphics!520;!Operating!
System:!Xubuntu!Linux!v16.04!LTS!
Acquire the Surgical Wait Times Data
The!surgical!wait!times!data!was!obtained!from!the!Nova!Scotia!Government!Open!Data!
Portal.!Here!are!the!steps!to!acquire!the!dataset:!
1) Navigate!to!the!Open!Data!Portal!
2) Select!the!Data!Catalogue!
3) Search!‘surgical!wait!times’!
4) Select!Surgical!Wait!Times!
5) Select!the!Export!option!
6) Select!CSV!
7) Save!the!data!file!to!the!project!subdirectory!
(nova_scotia_wait_times/data_analysis/data).!
8) Load!the!data!from!a!tab-separated-values!formatted!file!with!column!headers!
Wrangle the Data
Once!the!data!was!loaded,!the!feature!names!of!the!data!set!were!determined:!
[1]!Period![2]!Specialty![3]!Procedure![4]!Provider!
[5]!Zone![6]!Facility![7]!Year![8]!Quarter!
[9]!Consult_Median![10]!Consult_90th![11]!Surgery_Median![12]!Surgery_90th!
The!dataset!contained!6843!observations!and!12!features.!Viewing!a!sample!of!the!dataset,!
it!was!determined!that!multiple!variables!were!categorical,!and!the!wait!times!were!the!
only!continuous!variables.!Here!are!the!definitions!of!the!12!features!in!the!dataset:!
Feature!
Definition!
Period!
Time!period!
Specialty!
Surgical!specialty!
Procedure!
Surgical!procedure!
Provider!
Surgeon!
Zone!
Healthcare!Zone,!1!to!4!
Facility!
Hospital!
Year!
Year!
Quarter!
Quarter!(3-months)!
Consult_Median!
Maximum!time!that!50%!of!patients!recently!waited!for!consult!
Consult_90th!
Maximum!time!that!90%!of!patients!recently!waited!for!consult!
Surgery_Median!
Maximum!time!that!50%!of!patients!recently!waited!for!surgery!
Surgery_90th!
Maximum!time!that!90%!of!patients!recently!waited!for!surgery!
The!surgical!specialty!types!were!parsed!as!follows:!specialty,!all!specialties,!cardiac,!
dental,!general,!neurosurgery,!obstetrics/gynaecology,!ophthalmology,!oral!and!
maxillofacial,!oral!maxillofacial,!orthopaedic,!otolaryngology!(ent),!plastic,!thoracic,!
urology,!vascular.!In!total,!there!are!15!surgical!specialty!types!and!159!surgical!procedure!
types.!
Next!was!the!scatterplots!of!the!features!paired!against!one!another:!
Figure.!Features!as!pairs!in!scatterplots.!
!
The!exploratory!analysis!gave!us!an!initial!signal!that!specialty!may!be!correlated!with!wait!
times,!as!the!scatterplots!of!the!various!combinations!of!the!variables!showed!that!the!
specialties!showed!a!‘banded’!pattern!when!it!was!paired!and!plotted!versus!wait!times,!
and!some!specialties!appeared!to!have!greater!variation!in!wait!times!than!others.!The!
‘banded’!pattern!occurred!due!to!the!specialty!variable!being!categorical!(discrete!
datapoints).!Because!of!this!banded!pattern,!specialty!was!chosen!as!the!independent!
variable,!and!consult!and!surgery!times!were!chosen!as!the!dependent!variable.!Therefore,!
after!this!exploration!of!the!dataset!for!features!to!study,!only!observations!with!surgical!
procedure!type!‘all’!were!extracted:!
feature!
missing_count!
nonmissing_count!
consult_90th!
12!
284!
consult_median!
12!
284!
facility!
296!
0!
period!
0!
296!
procedure!
0!
296!
provider!
0!
296!
quarter!
296!
0!
specialty!
0!
296!
surgery_90th!
0!
296!
surgery_median!
0!
296!
year!
296!
0!
zone!
296!
0!
The!minimum,!maximum,!average,!standard!deviation,!and!total!combined!wait!days!by!
consultation!and!surgery!specialty.!Average!wait!days!is!the!median!number!of!days!on!the!
surgical!wait!list:!
specialty!
minimum!
maximum!
average!
sigma!
total!
observations!
cardiac!
66!
198!
157!
49!
702!
5!
dental!
148!
1032!
327!
319!
7006!
16!
general!
65!
2234!
177!
298!
14432!
56!
neurosurgery!
155!
949!
252!
236!
3081!
10!
obstetrics/gynaecology!
64!
882!
199!
149!
9573!
41!
ophthalmology!
115!
2875!
392!
497!
16779!
33!
oral!maxillofacial!
171!
620!
421!
159!
4332!
11!
orthopaedic!
162!
1365!
662!
318!
26539!
38!
otolaryngology!(ent)!
136!
1081!
390!
258!
11910!
25!
plastic!
151!
738!
372!
186!
5598!
15!
thoracic!
73!
449!
179!
134!
1307!
6!
urology!
61!
819!
219!
170!
6002!
22!
vascular!
112!
685!
307!
242!
2151!
6!
Rows!with!missing!values!were!removed!before!training!the!prediction!model.!
Visualise the Data
After!wrangling!the!data,!the!data!was!visualized:!
Figure!1.!
!
Figure!1!shows!the!total!wait!time!in!person!years,!grouped!by!surgical!specialty.!Cardiac!
surgery!has!the!lowest!value,!while!orthopaedic!has!the!highest.!
Figure!2.!
!
Figure!2!shows!the!median!total!wait!time!in!days,!grouped!by!surgical!specialty.!Cardiac!
surgery!has!the!lowest!value,!while!orthopaedic!has!the!highest.!
Figure!3.!
!
Figure!3!shows!the!wait!time!distribution!in!days,!grouped!by!surgical!specialty.!Notice!
cardiac!surgery!and!thoracic!surgery!at!the!lower!end,!and!orthopaedic!at!the!higher!end.!
Figure!4.!
!
Figure!4!shows!the!histogram!of!the!frequencies!of!the!wait!times.!Most!people!are!waiting!
between!100!to!200!days!for!their!surgical!procedure.!
Figure!5.!
!
Figure!5!shows!the!histogram!of!the!frequencies!of!the!wait!times,!grouped!by!consultation!
wait!times!and!surgery!wait!times.!Most!people!are!waiting!between!50!days!and!200!days!
for!a!consulation,!and!between!50!to!250!days!for!a!surgical!procedure.!
It!was!determined!from!the!dataset!that!the!total!wait!time!to!receive!a!surgical!procedure!
is!the!sum!of!the!consultation!wait!time!and!the!surgical!wait!time.!The!domain!expert!who!
had!worked!in!the!system!(C.C.)!for!several!years!interpreted!the!total!wait!time!for!a!
surgical!procedure!as!the!sum!of!the!following!wait!times:!
*!Wait!time!to!see!a!family!doctor,!who!will!determine!if!a!surgery!consultation!is!needed!
(family!doctor!wait!time)!*!Wait!time!to!consult!with!a!surgeon!(consult!wait!time)!*!Wait!
time!for!the!surgical!procedure!(surgery!wait!time)!
So!the!total!wait!time!to!receive!a!surgical!procedure!is!as!follows:!
Total Wait Time = Family Doctor Wait Time + Consult Wait Time + Surgery Wait Time
But!this!dataset!is!missing!the!Family!Doctor!Wait!Time,!so!the!estimated!wait!times!for!
surgical!procedures!in!this!analysis!is!missing!the!Family!Doctor!Wait!Time.!Therefore,!any!
estimated!prediction!of!wait!times!from!this!study!is!an!underestimate!of!the!real!wait!
time.!
Results
Build the Model
Prior!to!building!the!statistical!model!the!baseline!factor!was!set!to!‘general!surgery’!
instead!of!the!default!‘cardiac!surgery’!to!determine!the!impact,!if!any,!on!the!linear!
regression!model!with!regards!to!the!null!hypothesis.!
A!bivariate!multiple!linear!regression!model!was!constructed!with!two!dependent!
variables!(consult_90th!and!surgery_90th),!representing!the!90th!percentiles!for!each!
instance!of!a!surgical!specialty’s!wait!time,!added!together!to!give!the!combined!surgical!
wait!time!and!one!independent!variable.!
A summary of the multiple linear regression model is as follows:
Call:!lm(formula!=!specialty90!~!specialty)!
Residuals:!
Min!
1Q!
Median!
3Q!
Max!
-536.39!
-144.57!
-66.16!
70.76!
2366.55!
Coefficients:!
Estimate!Std.!
Error!
t!value!
Pr(>!
(Intercept)!
257.71!
38.80!
6.643!
1.68e-10!***!
specialtycardiac!
-117.31!
135.51!
-0.866!
0.387417!
specialtydental!
180.16!
82.30!
2.189!
0.029447!*!
specialtyneurosurgery!
50.39!
99.67!
0.506!
0.613607!
specialtyobstetrics/gynaecology!
-24.23!
59.68!
-0.406!
0.685083!
specialtyophthalmology!
250.74!
63.71!
3.935!
0.000106!***!
specialtyoral!maxillofacial!
136.10!
95.75!
1.421!
0.156338!
specialtyorthopaedic!
440.68!
61.02!
7.222!
5.19e-12!***!
specialtyotolaryngology!(ent)!
218.69!
69.83!
3.131!
0.001930!**!
specialtyplastic!
115.49!
84.41!
1.368!
0.172388!
specialtythoracic!
-39.88!
124.72!
-0.320!
0.749385!
specialtyurology!
15.10!
73.05!
0.207!
0.836358!
specialtyvascular!
100.79!
124.72!
0.808!
0.419727!
Signif.!codes:!0!|!***!0.001!|!**!0.01!|!*!0.05!|!‘.’!0.1!|!‘’!1!
Residual!standard!error:!290.3!on!271!degrees!of!freedom!
Multiple!R-squared:!0.2383,!Adjusted!R-squared:!0.2046!
F-statistic:!7.066!on!12!and!271!DF,!p-value:!3.522e-11!
From the above summary of the model, the following statistical measures were extracted:
degrees!of!freedom:!13!and!271!
p-value!of!the!model:!3.522271910^{-11}!
residual!standard!error:!290.3315348!
F-statistic:!7.0658736!
F-critical:!1.7583858!
An analysis of variance (ANOVA) of the linear regression model was used to validate the
model:
Analysis!of!Variance!Table!
Response:!specialty90!
Measure!
Df!
Sum!Sq!
Mean!Sq!
F!value!
Pr(>F)!
specialty!
12!
7147193!
595599!
7.0659!
3.522e-11!***!
Residuals!
271!
22843240!
84292!
!
!
Interpretation
The!residual!standard!error!(standard!error!of!the!estimate)!is!290.33,!where!it!is!the!
standard!deviation!of!the!variation!of!observations!around!the!regression!line!(it!is!the!
standard!deviation!of!the!regression!model).!So!waitimes!average!can!be!estimated!as!+-
2(290.33)!=!580.66.!As!this!value!is!large!when!compared!to!the!average!waittimes!in!the!
sample,!then!the!variation!of!observed!y!values!from!the!regression!line!is!also!large.!For!
future!research,!we!should!look!for!other!variables!which!can!explain!more!of!the!variation!
in!waittimes!(ie.!costs!for!procedures,!facilities!funding,!staffing!levels,!etc.).!
R^2!is!0.2383,!but!we!do!have!to!utilize!the!adjusted!R^2,!as!we!have!multiple!independent!
variables.!The!adjusted!R^2!is!0.2046,!where!20.46%!of!the!variation!in!waittimes!is!
explained!by!the!variation!in!specialty,!taking!into!account!the!sample!size!and!number!of!
independent!variables.!
Next,!we!want!to!determine!if!the!model!is!significant.!Hypothesis!testing!is!set!up!as!
follows:!
Hypotheses: H0: ( 1 ) = ( 2 ) = … = ( k ) = 0 (no linear relationship)
HA: at least one ( i ) ≠ 0 (at least one independent variable affects y)
F statistic = (SSR/k)/(SSE/(n-k-1))
Since!F!=!7.07!is!in!the!rejection!region!(it!is!greater!than!the!F(critical)!=!1.76),!we!reject!
the!null!hypothesis!at!alpha!=!0.05,!and!accept!the!alternative!hypothesis!that!at!least!one!
independent!variable!affects!total!surgical!wait!times!at!95%!confidence.!According!to!the!
model!the!H0!(null!hypothesis)!should!be!rejected!in!favour!of!HA!(alternative!hypothesis).!
We!determine!that!the!model!is!significant.!
In!addition,!we!conclude!that!the!regression!model!does!explain!a!significant!portion!of!the!
variation!in!waittimes.!This!conclusion!is!also!confirmed!by!the!F-statistic!with!a!p-value!=!
3.522271910^{-11},!and!therefore!it!is!less!than!the!alpha!value!of!0.05,!and!we!can!also!
conclude!from!this!p-value!that!the!model!does!explain!a!significant!portion!of!the!variation!
in!waittimes.!
An!analysis!of!variance!(ANOVA)!of!the!linear!regression!model!was!used!to!validate!the!
model.!For!example,!the!degrees!of!freedom,!sum!of!squares,!and!mean!squared!can!easily!
be!retrieved!for!both!the!speciality!and!residuals!parameters,!and!the!F-statistic!for!the!
specialty!parameter.!The!values!of!the!F-statistic!(7.0658736)!and!F-critical!(1.7880147)!
indicate!the!H0!(null!hypothesis)!should!be!rejected!in!favour!of!HA!(alternative!
hypothesis).!
Next,!we!extract!the!coefficients!so!the!linear!regression!model!equation!can!be!
constructed.!Here!is!the!prediction!model:!
waittimes = 257.71 - 117.31(Cardiac Surgery) + 180.16(Dental) + 50.39(Neurosurgery) -
24.23(Obstetrics/Gynaecology) + 250.74(Opthalmology) + 136.10(Oral Maxillofacial) +
440.68(Orthopaedic) + 218.69(Otolaryngology (ENT)) + 115.49(Plastic Surgery) -
39.88(Thoracic Surgery) + 15.10(Urology) + 100.79(Vascular Surgery)
General!Surgery!is!the!default,!where!all!the!other!specialty!variables!are!0.!The!model!
predicts!the!following!for!average!wait!times!by!specialty:!
Although!we!can!give!an!estimate!of!average!wait!times!in!Nova!Scotia!based!on!specialty!
from!the!model,!only!the!waittimes!from!the!following!specialties!are!statistically!
significant:!General!Surgery,!Dental,!Opthalmology,!Orthopaedic,!and!Otolaryngology!(ENT)!
at!95%!confidence.!However,!as!the!model!is!statistically!significant!with!all!the!
coefficients,!then!it!can!be!assumed!that!the!model!can!predict!with!95%!confidence!the!
wait!times!from!any!specialty,!even!if!the!individual!coefficient!is!not!statistically!
significant.!
Conclusion
In!this!project,!we!started!with!the!analysis!for!specialty!vs!wait!times,!as!the!exploratory!
analysis!gave!us!an!initial!signal!that!specialty!may!be!correlated!with!wait!times,!as!the!
scatterplots!of!the!various!combinations!of!the!variables!showed!that!the!specialties!
showed!a!‘banded’!pattern!when!it!was!paired!and!plotted!versus!wait!times,!and!some!
specialties!appeared!to!have!greater!variation!in!wait!times!than!others.!The!‘banded’!
pattern!occurred!due!to!the!specialty!variable!being!categorical!(discrete!datapoints).!
We!used!multiple!linear!regression!for!specialty!vs.!wait!times,!and!found!that!our!model!
explained!20%!of!the!variation!in!the!dependent!variable!(wait!times).!Although!we!can!
give!an!estimate!of!average!wait!times!in!Nova!Scotia!based!on!specialty!from!the!model,!
only!the!wait!times!from!the!following!specialties!are!statistically!significant:!General!
Surgery,!Dental,!Opthalmology,!Orthopaedic,!and!Otolaryngology!(ENT)!at!95%!confidence.!
However,!as!the!model!is!statistically!significant!with!all!the!coefficients,!then!it!can!be!
assumed!that!the!model!can!predict!with!95%!confidence!the!wait!times!from!any!
specialty,!even!if!the!individual!coefficient!is!not!statistically!significant.!
In!summary,!our!model!for!specialty!vs.!total!wait!times!(consult!plus!surgery!wait!times)!
was!statistically!significant,!as!indicated!by!our!F-statistic!with!a!p!<!0.05.!This!F-statistic!
analysis!was!performed!with!all!of!the!specialties!included!in!the!model,!without!backward!
elimination.!
!
!
References
1.!Coughlin!SMP,!Guidolin!K,!Fortin!D,!Frechette!E,!Malthaner!R,!Inculet!R.!Is!it!safe!to!wait?!
The!effeft!of!surgical!wait!time!on!survival!in!patients!with!non-small!lung!cell!cancer.!Can!J!
Surg.!2015;58(6):414–18.!!
2.!Malaisrie!SC!KJ!McDonald!E.!Mortality!while!waiting!for!aortic!valve!replacement.!Ann!
Thorac!Surg.!2014;98(5):1564–70.!!
3.!Kulkarni!GS!AP!Urbach!DR.!Longer!wait!times!increase!overall!mortality!in!patients!with!
bladder!cancer.!J!Urol.!2009;182(4):1318–24.!!
4.!Rexius!H!OA!Brandrup-Wognsen!G.!Mortality!on!the!waiting!list!for!coronary!artery!
bypass!grafting:!Incidence!and!risk!factors.!Ann!Thorac!Surg.!2004;77(3):769–74.!!
5.!Koomen!EM!KJ!Hutten!BA.!Morbidity!and!mortality!in!patients!waiting!for!coronary!
artery!bypass!surgery.!Eur!J!Cardiothorac!Surg.!2001;19(3):260–5.!!
6.!Everhart!JE!DK!Lombardero!M.!Increased!waiting!time!for!liver!transplantation!results!in!
higher!mortality.!Transplantation.!1997;64(9):1300–6.!!