Content uploaded by Abolfazl Jafari Sales
Author content
All content in this area was uploaded by Abolfazl Jafari Sales on Mar 16, 2018
Content may be subject to copyright.
Molecular analysis of CTX-M genes among ESBL producing in Pseudomonas aeru-
ginosa isolated from clinical samples by Multiplex-PCR
Received: Jan 01, 2018; Revised: Feb. 18, 2018; Accepted: Feb. 20, 2018
HOZAN; a Scientific Journal of Environmental Sciences
https://sites.google.com/site/hozanjournalcom/Home
PISSN: 2476-3764; eISSN: 2476-5716
Original article
Abstract
Introduction: Pseudomonas aeruginosa is one of the most common pathogens involved in hospital infections,
which today has been considered for resistance to a wide range of antibiotics. The causes of drug resistance in
P.aeruginosa isolates are the production of broad-spectrum beta-lactamase enzymes. The aim of this study was to
determine the frequency of CTX-M1, CTX-M2, CTX-M3 genes in P.aeruginosa isolated from Hospitals and health
centers in Marand city, East Azarbijan.
Methods: Pseudomonas aeruginosa isolates were collected from different samples of patients referring to hospi-
tals and clinics of Marand city during one year from October 2016 to October 2017 and after determining the phe-
notypic identity and antibiogram test, the double-disk test of ESBLs phenotype was evaluated in P.aeruginosa bac-
teria. Then bacterial DNA was extracted and evaluated by PCR method using specific primers for CTX-M1,CTX-
M2 and CTX-M3 genes.
Results: The findings showed of the 85 Pseudomonas aeruginosa bacteria, the highest resistance was to amikacin
antibiotics (82.35%), nalidixic acid (80%) and ceftazidime (72.94%), and the highest susceptibility was observed to
ampicillin(38.82%) and cefotaxime (38.82%) %). There was no significant relationship between age, sex, and P.ae-
ruginosa infections (P> 0.05). The highest gene frequencies of ESBLs are related to the genes of CTX-M1 (29
samples), CTX-M2 (24 samples) and CTX-M3 (11 samples), respectively.
Conclusion: The studied genes in this research were all on the chromosome of P.aeruginosa bacteria. Therefore,
further examination of ESBL genes such as the CTX-M1 gene seems necessary to control this bacterium.
Keywords: P.aeruginosa, Extended-spectrum beta-lactamases, CTX-M1, CTX-M2, CTX-M3.
This article may be cited as: Jafari-Sales A, Shadi-Dizaji A. Molecular analysis of CTX-M
genes among ESBL producing in Pseudomonas aeruginosa isolated from clinical samples by Mul-
tiplex-PCR. HOZAN J Environment Sci; 2018:2(5):17-29.
Free of Charge
Abolfazl Jafari-Sales *1, Azizeh Shadi-Dizaji 2
1. Department of Microbiology, Kazeroon branch, Islamic Azad University, Kazeroon, Iran.
2. Department of Biotechnology, Ataturk University, Turkey.
(*Corresponding Author: a.jafari_1392@yahoo.com ); Tel: +98(0)914-7611841; Fax: +98(0)414-2274746
2018, vol. 2 (no. 5): page 17-29 HOZAN J Environment Sci
CTX-M
Multiplex-PCR
a.jafari_1392@yahoo.com
CTX-M1,CTX-M2,CTX-M3
ESBL
DNAPCR
CTX-M1 CTX-M2CTX-M3
CTX-M124CTX-M2CTX-M3
ESBLCTX-M1
CTX-M1, CTX-M2, CTX-M3
CTX-M
-
-
AmpC
OprD
IIIV
ESBLESBL
CTX-M
-
Kluyvera
CTX-M
CTX-M
CTX-M
2018, vol. 2 (no. 5): page 17-29 HOZAN J Environment Sci
S
2
H
DNaseO-F
TSBTryptic soy broth
Kirby Baur
NCCLS
ESBL
ESBL
Invitek Stratec
Business DNA
CTX-M1
CTX-M2CTX-M3
PCR
Multiplex PCRMultiplex –PCR
µL PCR µL
dNTPµL µLTag polymeraseµL
MgCl2µLDNA
mg/mL
Gel Document USA, Bio Rad
SPSS
>p
±
p >
p>
ESBL
-
CTX-M
ESBL
CTX-M1CTX-M2
CTX-
M3
ESBLESBL
ESBL
ESBL
-
<p
PCRM: DNA
Ladder 1: CTX-M12: CTX-M23: CTX-M3CTX-M1
54%
46%
0
10
20
30
40
50
60
2018, vol. 2 (no. 5): page 17-29 HOZAN J Environment Sci
MDR
MDR
MDR-
Wesam
Rajat Rakesh
Kianpour
Ahadi
-
JemimaVerghese
ESBL
ESBLPCR
ESBL
ESBL
0
20
40
60
80
100
CTXM1 CTXM2 CTXM3
ESBL + ESBL -
CTX-M
ESBL
ESBL
ESBL
ESBL
ESBL
VEB,OXA-
10,CTX-M,PER-1,GES-1,OXA-1,OXA-4
ESBLCTX-M
CTX-M1
CTX-M1
CTX-M2 CTX-M3
CTX-M
CTX-M1 CTX-M2
CTX-M3
CTX-M1CTX-M2CTX-
M3
ESBL
CTX-M2
ESBL
CTX-M1
CTX-M
-
2018, vol. 2 (no. 5): page 17-29 HOZAN J Environment Sci
1. Acton A. Pseudomonas aeruginosa: new
insights for the healthcare professional.
Scholarly Brief. Scholarly Editions. 2013; pp:
11-32.
2. Quinn P, Markey B, Leonard F, Hartigan
P, Fanning S, Fitzpatrick E. Veterinarymi-
crobiology and microbial disease. 2ndedition.
John Wiley & Sons, 2011; pp: 225-243 .
3. Vanhems P,lepape A, Savey A, Jambou
P, Fabry J. Nosocomial pulmonary infec-
tion by antimicrobial resistant bacteria
of patients hospitalized in intensive care
units risk factors and survival. J Hosp
Infect2000; 45(2):98-106.
4. Ryall B, Davies JC, Wilson R, Shoemark A,
Williams HD. Pseudomonas aeruginosa, cya-
nide accumulation and lung function in cystic
fibrosis and non-cystic fibrosis bronchiecta-
sis patients. Eur Respir J. 2008; 32:740-7.
5. Hacker J, Carniel E. Ecological fitness, ge-
nomic islands and bacterial pathogenicity a
Darwinian view of the evolution of microbes.
EMBO Rep. 2001; 2:376-81.
6. Tramper-Stranders GA, van der ENT CK,
Wolfs TF. Detection of Pseudomonas aeru-
ginosa in patients with cystic fibrosis. J Cyst
Fibros. 2005; 54:37-43.
7. Sales AJ, Fathi R, Mobaiyen H, et al. Molec-
ular Study of the Prevalence of CTX-M1,
CTX-M2, CTXM3 in Pseudomonas aeru-
ginosa Isolated from Clinical Samples in Ta-
briz Town, Iran. Electronic J Biol, 13:3
8. Rajat Rakesh M, Ninama Govind L, Mistry
Kalpesh, Parmar Rosy, Patel Kanu, Vegad
MM. National Journal of Medical Research
Natl J Med Res. 2012; 2(2):156-9.
9. Mahmoud AB, Zahran WA, Hindawi GR,
Labib AZ, Galal R. Prevalence of Multi-
drug-Resistant Pseudomonas aeruginosain
patients with nosocomial infections at a
university hospital in Egypt, with special
reference to typing methods. J Virol Micro-
biol 2013; 2013: ID290047
10. Pool k. Efflux-mediated resistance to fluoro-
quinolones in gram-negative bacteria. Anti-
microbials. Agents Chemoth. 2000;
44(22):33–41.
11. Rastegar Lari A, Alaghebandan R, Akhlaghi
L. Burn wound infections and antimicrobial
resistance in Tehran, Iran .An increasing
problem Burns. 2005;28: 174-8
12. Brooks GF, Butel J, Morse SA. Jawetz Med-
ical Microbiology, 23th edition, New York,
McGraw-Hill. 2004; 262-4.
13. Gailiene G, Pavilonis A, Kareiviene V. The
peculiarities of Pseudomonas aeruginosa re-
sistance to antibiotics and prevalence of
serogroups. Medicina (Kaunas). 2007; 43
(1):36-42.
14. Philippon A, Arlet G, Lagrange PH (1994)
Origin and import of plasmid- mediated ex-
tended- spectrum B-lactamases. Eurjclin mi-
crobial Infect Dis,V(13) .S17-29.
CTX-M
15. Jarlier V, Nicolas MH, Fornier G. (1988) Ex-
tended broad- spectrum B Lactomases con-
ferring transferable resistance to newer B lac-
tam agents in Enterobacteriaceae: Hospital
prevalence and susceptibility patterns. Rev.
infect. Dis. V (10). P:867-878
16. Jafari Sales A, Mobaiyen H. Frequency and
resistance patterns in clinical isolates of
Escherichia coli Extended Spectrum Beta
Lactamase producing treatment Centers in
Marand city, Iran. NCMBJ. 2017; 7 (26) :19-
26
17. Dizaji AS, Fathi R, Sales AJ. Molecular study
of extended-spectrum beta-lactamase (TEM-
1) gene in Escherichia Coli isolates collected
from Ostad Alinasab Hospital in Tabriz Iran.
Marmara Medical Journal. 2016; 29(1):35-
40.
18. Tzouvelekis LS, Tzelepi E, Tassios PT,
Legakis NJ. CTX-M-type beta-lactamases:
an emerging group of extended-spectrum en-
zymes. Int J Antimicrob Agents.
2000;14(2):137-42
19. Falagas ME, Karageorgopoulos DE. Ex-
tended-spectrum β-lactamase-producing or-
ganisms. J Hosp Infect. 2009; 73(4):345-54.
20. Mirzaee M, Pourmand MR, Chitsaz M,
Mansouri S. [Antibiotic resistance to third
generation cephalosporin due to CTX-M-
Type extended-spectrum β-lactamases in
clinical isolates of Escherichia coli (Per-
sian)]. Iranian Journal of Public Health. 2009;
38(1):10-7.
21. Khan SA, Nawaz MS, et al. Molecular char-
acterization of multidrug resistant Enterococ-
cus spp. from poultry and dairy farms: detec-
tion of virulence and vancomycin resistance
gene markers by PCR. Mol Cell Probes
2005;19 (1): 2734.
22. Bameri, Z., Chitsaz, M. and Owlia, P. Detec-
tion of CTX-M Lactamases in Isolated
Klebsiella pneumonia. Iran J Pathol. 2010;
5(3), 137-42.
23. Chaudhari V, Gunjal S, Mehta M. Antibiotic
resistance patterns of Pseudomonas aeru-
ginosa in a tertiary care hospital in Central In-
dia. International Journal of Medical Science
and Public Health. Int J Med Sci Public
Health. 2013; 2(2). 386-9
24. Wirth FW, Picoli SU, Cantarelli VV, Gon-
çalves ALS, Brust FR, Santos LMO, et
al. Metallo-ß-Lactamase and Pseudomonas
aeruginosa in two hospitals from Southern
Brazil. Braz J Infect Dis 2009; 13:170-2.
25. Das Neves MT, de Lorenzo ME, Almeida
RA, Fotaleza CM. Antimicrobial use and in-
cidence of multidrug resistant Pseudomonas
aeruginosa in a teaching hospital: An ecolog-
ical approach. "Rev Soc Bras Med Trop.
2010; 43(6):629-32.
26. Lim KT, Yasin RM, et al. Genetic finger-
printing and antimicrobial susceptibility pro-
files of Pseudomonas aeruginosa hospital iso-
lates in Malaysia. J Microbial Immunol In-
fect. 2009; 42(3):197-209.
27. Mirsalehian A, Feizabadi M, et al. Detection
of VEB-1, OXA- 10 and PER-1 genotypes in
extended spectrum beta-lactamase-producing
Pseudomonas aeruginosa strains isolated
from burn patients. Burns. 2010; 36(1):70-4.
28. Ullah F, Malik SA, Ahmed J. Antimicrobial
2018, vol. 2 (no. 5): page 17-29 HOZAN J Environment Sci
susceptibility and ESBL prevalence in Pseu-
domonas aeruginosa isolated from burn pa-
tients in the North West of Pakistan. Burns.
2009; 35(7):1020-25.
29. Tredget EE, Shankowsky HA, Rennie R,
Burrell RE, Logsetty S. Pseudomonas infec-
tions in the thermally injured patient. Burns.
2004; 30(1):3-26.
30. Salehi, M., Hekmatdoost, M., Hosseini, F.
Quinolone resistance associated with efflux
pumps mexAB-oprM in clinical isolates of
Pseudomonas aeruginosa. Journal of Micro-
bial World, 2014; 6(4): 290-298.
31. Mihani F, Khosravi A. MBL-producing
Pseudomonas aeruginosa strains isolated
from patients with burn wound infections and
PCR methods to identify blaVIM, blaIMP
genes. Iran J Microbiol. 2007; 1(1): 23-31.
32. Wesam, A. and Hassanein. Molecular Iden-
tification of Resistant Pseudomonas Aeru-
ginosa Wt. Aust. j. basic appl. sci. 2009; 3,
2144-53.
33. Taghvaee R, Shojapour M, Sadeghi A,
Pourbabaie A. The study of antibiotic re-
sistance pattern and the frequency of ex-
tended spectrum beta-lactamases (ESBL) in
Pseudomonas aeruginosa strains isolated
from medical centers in Arak city, Iran. Qom
Univ Med Sci J. 2013;7(4):36-41
34. Kianpour F, Havaei SA, Hosseini MM. Eval-
uation of Pseudomonas aeroginosa isolated
from cutaneous infections and determination
of drug resistance pattern in patients of Al-
zahra hospital in Esfahan. J Isfahan Med Sch.
2010; 28(110):503-9.
35. Ahadi A, Sharif Zadeh A, Golshani Z. Identi-
fication of antibiotic resistance patterns of
Pseudomonas aeruginosa isolated from pa-
tients admitted with multiple resistances.
Journal of Veterinary Laboratory Research.
2012; 4(1):119-22.
36. Pitout JD, Gregson DB, Poirel L, McClure
JA, Le P, Church DL. Detection of Pseudo-
monas aeruginosa producing metallo beta
lactamases in a large centralized laboratory. J
Clin Microbiol. 2005; 43(7):3129-35.
37. Jemima, A.S. and Verghese, S. (2008) Multi-
plex PCR for blaCTX-M &blaSHV in the ex-
tended spectrum beta lactamase (ESBL) pro-
ducing Gram-negative isolates. Indian J Med
Res. 128, 313-317.
38. Kownani M, Baserisalehi M, Bahador N. Fre-
quency of Extended Spectrum β-Lactamase
Genes in Pseudomonas Aeruginosa Isolates
from Shiraz Hospital, Iran. J Isfahan Med Sch
2013; 31(243): 1007-17
39. Lee S, Park YJ, kim M, Lee HK, Han K.
Prevalence of Ambler class A and D beta -
lactamases among clinical isolates of Pseudo-
monas aerugionsa in Korea. J Antimicrob
Chemother. 2005; 56: 122-7.
40. Celenza G, Pellegrini C, Caccamo M. Spread
of bla (CTX-M-type) and bla(PER-2) beta-
lactamase genes in clinical isolates from Bo-
livian hospitals. J Antimicrob Chemother.
CTX-M
2006; 57: 975-8.
41. Strateva T, Ouzounova-Raykova V, et al.
Problematic clinical isolates of Pseudomonas
aeruginosa from the university hospitals in
Sofia, Bulgaria: current status of antimicro-
bial resistance and prevailing resistance
mechanisms. J Med Microbiol. 2007; 56:
956-63.
42. Mirsalehian A. Broad-spectrum Of beta-lac-
tamase in Pseudomonas aeruginosa isolates
in burn patient. Journal of Tehran University
of Medical Sciences. 2008; 66(5): 333-7.
43. Shakibaie M, Shahcheraghi F, Hashemi A,
Saeed Adeli N. Detection of TEM, SHV and
PER Type extended-spectrum β-lactamas
gene among clinical strains of Pseudomonas
aeruginosa isolated from Burnt Patients at
Shafa-Haspital, Kerman, Iran. Iran J Basic
Med Sci. 2008; 11(2): 104-11.
44. Shahcheraghi F, Nasiri S, Noveiri H. The sur-
vey of genes encoding beta-lactamases, in
Esherichia coli resistant to beta-lactam anti-
biotics. IJBMS. 2009; 13(1): 230-7.
45. Farzali Shirehjini F, Amini K, Fatahi H. Iden-
tification of blaCTX-M, blaSHV, and
blaTEM Genes in Pseudomonas Aeruginosa
Strains Isolated from Human and Animal
Samples Using Multiplex-PCR Method. Qom
Univ Med Sci J. 2017; 10 (11) :51-60
46. Shacheraghi, F., Shakibaie, M.R., and
Noveiri, H. Molecular Identification of ESBL
Genes bla GES-1, bla VEB-1,bla CTX-M,bla
OXA-1,bla OXA-4,bla OXA-10 and bla
PER-1 in Pseudomonas aeruginosa Strains
Isolated from Burn Patients by PCR, RFLP
and Sequencing Techniques Int. J. Biol. Sci,
2010;6(3), 138-42.
47. Tavajjohi Z, Moniri R, Khorshidi A, Rohani
M. Detection of the bla Genes (TEM-1, SHV-
1, SHV-5, CTXM-1, CTX-M-2, CTX-M-3,
CTX-M-9, OXA-1, GES-1 and GES-2) in
Pseudomonas aeruginosa strains isolated
from clinical and environmental samples of
Shahid Beheshti Hospital in Kashan . J Zan-
jan Univ Med Sci. 2012; 20(82):42-51.
48. Kownani M, Baserisalehi M, Bahador N. Fre-
quency of extended spectrum β-Lactamase
genes in Pseudomonas aeruginosa isolates
from Shiraz hospitals, Iran. J Isfahan Med
Sch. 2013; 31(234):1007-17.
49. Polotto M, Casella T. Detection of Pseudo-
monas aeruginosa harboring blaCTX-M-2,
blaGES-1and blaGES-5, bla IMP-1 and
blaSPM-1 causing infections in Brazilian ter-
tiary-care hospitals. BMC Infect Dis. 2012;
12:176.
50. Chaudhary M, Payasi A. Molecular charac-
terization and In vitro susceptibilities of ß lac-
tamase producing Escherichia coli,
Klebsiella species, Acinetobacter baumannii,
Pseudomonas aeruginosa and Staphylococ-
cus aureus to CSE1034 and other ß-lactams.
Asian Pac J Trop Biomed. 2014; 7:217-23.
51. Naas T, Cuzon G, Truong H, Bernabeu S,
Nordmann P. Evaluation of a DNA microar-
ray, the check-points ESBL/KPC array, for
rapid detection of TEM, SHV, and CTX-M
extended spectrum-β-lactamases and KPC
carbapenemases. Antimicrob Agents
Chemother. 2010; 54(8):3086-92.
52. Yamasaki K, Komatsu M, et al. Production of
CTX-M-3 extended-spectrum ß-lactamase
2018, vol. 2 (no. 5): page 17-29 HOZAN J Environment Sci
and IMP-1 metallo ß-lactamase by five Gram
negative bacilli: survey of clinical isolates
from seven laboratories collected in 1998 and
2000, in the Kinki region of Japan. J Antimi-
crob Chemother. 2003; 51(3):631-8.
53. .