Chapter

Manufacturing and Safety Guidelines for Manufactured Functionalized Nanomaterials in Pharmaceutics

Authors:
Chapter

Manufacturing and Safety Guidelines for Manufactured Functionalized Nanomaterials in Pharmaceutics

If you want to read the PDF, try requesting it from the authors.

Abstract

Today, nanotechnology is widely applied by the pharmaceutical industry. Creating a new generation of products, there have been many concerns about the safety of these engineered functional nanomaterials some of which were used as diagnostics or in drug therapy. The regulatory authorities evaluated a wide range of analytical techniques to define the standards under which manufacture and approval of new nanomedicines may be granted. This chapter will summarize the most important regulatory approaches and define critical quality attributes for the manufacture and characterization of nanomaterials.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Many chromatographic/analytical techniques (UV-vis, HPLC, GC/LC-MS) should be considered depending on the type of materials. For example, collagen should be examined by means of chromatography to determine its content in hydroxyproline, tyrosine, tryptophan and cysteine [12], while for synthetic or semi-synthetic materials, the analysis of the exact molecular structure is recommended [79]. ...
... Aggregate formation by Van der Waals interaction determines the potential loss of the product properties; therefore, regulatory authorities require the evaluation of particle size by comparing at least two methods [89]. Generally, it is necessary to resort to multiple complementary techniques, always including an investigation by electron microscopies (scanning electron microscopy-SEM, or transmission electron microscopy-TEM) [79,90] although these are not free from critical issues. SEM analysis requires sample sputtering with graphite or gold/platinum and the sample exposure to an electron beam in vacuum conditions: these could damage the system morphology [87,91]. ...
Article
Full-text available
Chronic wounds, such as pressure ulcers, diabetic ulcers, venous ulcers and arterial insufficiency ulcers, are lesions that fail to proceed through the normal healing process within a period of 12 weeks. The treatment of skin chronic wounds still represents a great challenge. Wound medical devices (MDs) range from conventional and advanced dressings, up to skin grafts, but none of these are generally recognized as a gold standard. Based on recent developments, this paper reviews nanotechnology-based medical devices intended as skin substitutes. In particular, nanofibrous scaffolds are promising platforms for wound healing, especially due to their similarity to the extracellular matrix (ECM) and their capability to promote cell adhesion and proliferation, and to restore skin integrity, when grafted into the wound site. Nanotechnology-based scaffolds are emphasized here. The discussion will be focused on the definition of critical quality attributes (chemical and physical characterization, stability, particle size, surface properties, release of nanoparticles from MDs, sterility and apyrogenicity), the preclinical evaluation (biocompatibility testing, alternative in vitro tests for irritation and sensitization, wound healing test and animal wound models), the clinical evaluation and the CE (European Conformity) marking of nanotechnology-based MDs.
Article
Full-text available
The development of an advanced and efficient drug delivery system with significant improvement in its efficacy and enhanced therapeutic value is one of the critical challenges in modern medicinal biology. The integration of nanomaterial science with molecular and cellular biology has helped in the advancement and development of novel drug delivery nanocarrier systems with precision and decreased side effects. The design and synthesis of nanocarriers using graphene oxide (GO) have been rapidly growing over the past few years. Due to its remarkable physicochemical properties, GO has been extensively used in efforts to construct nanocarriers with high specificity, selectivity, and biocompatibility, and low cytotoxicity. The focus of this review is to summarize and address recent uses of GO-based nanocarriers and the improvements as efficient drug delivery systems. We briefly describe the concepts and challenges associated with nanocarrier systems followed by providing critical examples of GO-based delivery of drug molecules and genes. Finally, the review delivers brief conclusions on the current understanding and prospects of nanocarrier delivery systems.
Article
Full-text available
Background Genetic code expansion has developed into an elegant tool to incorporate unnatural amino acids (uAA) at predefined sites in the protein backbone in response to an amber codon. However, recombinant production and yield of uAA comprising proteins are challenged due to the additional translation machinery required for uAA incorporation. Results We developed a microtiter plate-based high-throughput monitoring system (HTMS) to study and optimize uAA integration in the model protein enhanced green fluorescence protein (eGFP). Two uAA, propargyl-L-lysine (Plk) and (S)-2-amino-6-((2-azidoethoxy) carbonylamino) hexanoic acid (Alk), were incorporated at the same site into eGFP co-expressing the native PylRS/tRNAPylCUA pair originating from Methanosarcina barkeri in E. coli. The site-specific uAA functionalization was confirmed by LC-MS/MS analysis. uAA-eGFP production and biomass growth in parallelized E. coli cultivations was correlated to (i) uAA concentration and the (ii) time of uAA addition to the expression medium as well as to induction parameters including the (iii) time and (iv) amount of IPTG supplementation. The online measurements of the HTMS were consolidated by end point-detection using standard enzyme-linked immunosorbent procedures. Conclusion The developed HTMS is powerful tool for parallelized and rapid screening. In light of uAA integration, future applications may include parallelized screening of different PylRS/tRNAPylCUA pairs as well as further optimization of culture conditions. Electronic supplementary material The online version of this article (doi:10.1186/s13036-016-0031-6) contains supplementary material, which is available to authorized users.
Article
Full-text available
In order to control liposomes fate and transport upon contact with biofluids, it is essential to consider several parameters affecting the synthetic and biological identity of liposomes, as well as liposome-protein corona (PC) aspects. As a powerful tool in these data mining adventure, quantitative structure-activity relationship (QSAR) approach is used to correlate physicochemical properties of liposomes and their PC fingerprints to multiple quantified biological responses. In the present study, the relationship between cellular interactions of a set of structurally diverse liposomal formulations and their physicochemical and PC properties has been investigated via linear and non-linear QSAR models. Significant parameters affecting cellular uptake and cell viability of liposomes in two important cancer cell lines (PC3 and Hela) have been identified. The developed QSARs are capable to be implemented in advanced targeted delivery of liposomal drugs.
Article
Full-text available
Contrary to physical characterization techniques for nanopharmaceuticals (shape, size and zeta-potential), the techniques to quantify the free and the entrapped drug remain very few and difficult to transpose in routine analytical laboratories. The application of Solid Phase Extraction (SPE) technique was investigated to overcome this challenge. The separation of free and entrapped drug by SPE was quantitatively validated by High Performance Liquid Chromatography. The developed protocol was implemented to characterize cyclosporine A-loaded 120 nm-sized lipid nanoparticles (LNPs, Lipidot®) dispersed in aqueous buffer. The colloidal stability was assessed by Dynamic Light Scattering (DLS). Validation experiments demonstrated suitable linearity, repeatability, accuracy and specificity to quantify residual free, entrapped and total drug. For the investigated LNPs, the method revealed a very limited shelflife of the formulation when stored in an aqueous buffer at 5°C and even more at elevated temperature. Nevertheless, the DLS measurements confirmed the stability of nanoparticles during SPE in a suitable concentration range. SPE, when successfully validated, represents a valuable tool for drug development and quality control purposes of lipid-based nanopharmaceuticals in an industrial environment.
Article
Full-text available
Interaction of nanoparticles with proteins is the basis of nanoparticle bio-reactivity. This interaction gives rise to the formation of a dynamic nanoparticle-protein corona. The protein corona may influence cellular uptake, inflammation, accumulation, degradation and clearance of the nanoparticles. Furthermore, the nanoparticle surface can induce conformational changes in adsorbed protein molecules which may affect the overall bio-reactivity of the nanoparticle. In depth understanding of such interactions can be directed towards generating bio-compatible nanomaterials with controlled surface characteristics in a biological environment. The main aim of this review is to summarise current knowledge on factors that influence nanoparticle-protein interactions and their implications on cellular uptake.
Article
The zeta potential (ZP) is an oft-reported measure of the macroscopic charge state of solid surfaces and colloidal particles in contact with solvents. However, the origin of this readily measurable parameter has remained divorced from the molecular-level processes governing the underlying electrokinetic phenomena, which limits its usefulness. Here, we connect the macroscopic measure to the microscopic realm through non-equilibrium molecular dynamics simulations of electroosmotic flow between parallel slabs of the hydroxylated (110) rutile (TiO2) surface. These simulations provided streaming mobilities, which were converted to ZP via the commonly used Helmholtz-Smoluchowski equation. A range of rutile surface charge densities (0.1 to -0.4 C/m(2)), corresponding to pH values between about 2.8 and 9.4, in RbCl, NaCl, and SrCl2 aqueous solutions, were modeled and compared to experimental ZPs for TiO2 particle suspensions. Simulated ZPs qualitatively agree with experiment and show that 'anomalous' ZP values and inequalities between the point of zero charge derived from electrokinetic versus pH titration measurements both arise from differing co- and counterion sorption affinities. We show that at the molecular-level the ZP arises from the delicate interplay of spatially-varying dynamics, structure and electrostatics in a narrow interfacial region within about 15 Å of the surface, even in dilute salt solutions. This contrasts fundamentally with continuum descriptions of such interfaces, which predict the ZP response region to be inversely related to ionic strength. In reality the properties of this interfacial region are dominated by relatively immobile and structured water. Consequently, viscosity values are substantially greater than in the bulk, and electrostatic potential profiles are oscillatory in nature.
Article
The contribution of permeability and drug release to drug targeting were investigated in the course of development of a nanosized formulation of the anti-inflammatory compound TMP-001, for the local treatment in the gastrointestinal tract. TMP-001 was encapsulated by nanoprecipitation into Eudragit® RS 100. The permeability of these carriers was investigated in an Ussing chamber model and the release rate was determined under biorelevant conditions. Formulation toxicity and particle-cell-interaction were investigated by flow cytometry, fluorescence and electron microscopy. Furthermore, spray drying was performed. Effective internalization of Eudragit®-nanoparticles into cancer cells was demonstrated. A burst release of the nanoparticles implied poor interaction of TMP-001 with Eudragit®. A sustained release (70.5% release after 30 min compared to 98.0% for the API) was accomplished after spray drying yielded an increased particle size. Recovery rate of TMP-001 after spray drying was 94.2 ± 5.9%. The release of API from polymeric nanoparticles contributes profoundly to the in vivo-performance of drug delivery devices in the gastrointestinal tract. The impact of drug-polymer interaction and particle size was analyzed. Sustained release of TMP-001 could only be achieved by increasing particle size. Therefore, biorelevant release testing has been demonstrated to be a valid tool for nanoformulation design.
Article
Industrial production of nanosized drug delivery devices is still an obstacle to the commercialization of nanomedicines. This study encompasses the development of nanoparticles for peroral application in photodynamic therapy, optimization according to the selected product specifications, and the translation into a continuous flow process. Polymeric nanoparticles were prepared by nanoprecipitation of Eudragit® RS 100 in presence and in absence of glycofurol. The photosensitizer temoporfin has been encapsulated into these carrier devices. Process parameters were optimized by means of a Design of Experiments approach and nanoparticles with optimal characteristics were manufactured by using microreactor technology. The efficacy was determined by means of cell culture models in A-253 cells. Physicochemical properties of nanoparticles achieved by nanoprecipitation from ethanolic solutions were superior to those obtained from a method based upon glycofurol. Nanoencapsulation of temoporfin into the matrix significantly reduced toxicity of this compound, while the efficacy was maintained. The release profiles assured a sustained release at the site of action. Finally, the transfer to continuous flow technology was achieved. By adjusting all process parameters, a potent formulation for application in the GI tract was obtained. The essential steps of process development and scale-up were part of this formulation development.
Article
Drug release from liposomal formulations is governed by a complex interplay of kinetic (i.e. drug permeability) and thermodynamic factors (i.e. drug partitioning to the bilayer surface). Release studies under "sink conditions" that attempt to mimic physiological conditions are insufficient to decipher these separate contributions. The present study explores release studies performed under "non-sink" conditions coupled with appropriate mathematical models to describe both the release kinetics and the conditions in which equilibrium is established. Liposomal release profiles for a model anti-cancer agent, topotecan, under non-sink conditions provided values for both the first-order rate constant for drug release and the bilayer/water partition coefficient. These findings were validated by conducting release studies under "sink conditions" via dynamic dialysis at the same temperature and buffer pH. A nearly identical rate constant for drug release could be obtained from dynamic dialysis data when appropriate volume corrections were applied and a mechanism-based mathematical model was employed to account for lipid bilayer binding and dialysis membrane transport. The usefulness of the non-sink method combined with mathematical modeling was further explored by demonstrating the effects of topotecan dimerization and bilayer surface charge potential on the bilayer/water partition coefficient at varying suspension concentrations of lipid and drug.