Performance of FSO Communication in the Atmospheric Turbulence for Various Modulation Schemes

If you want to read the PDF, try requesting it from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Full-text available
Free-space optical (FSO) communication systems are being anticipated to offer promising alternatives to existing radio networks in delivering high-speed data access to end-users. Ease of installation, robust features, and cost-effective operation have been the hallmark of FSO systems, and these features will play an obvious role in deciding the ways in which futuristic smart communication models will operate. Despite these arrays of features, FSO links suffer severe performance degradation due to channel-induced impairments caused by atmospheric effects such as rain, haze, and fog. In this work, we have investigated and compared the performance of 40 Gbps FSO links for different channel conditions ranging from clear weather to severe attenuation by incorporating spatial and wavelength diversity as performance booster techniques. The use of an erbium-doped fiber amplifier (EDFA) with FSO links has also been proposed here. Using performance metrics like bit error rate (BER) and eye patterns, it has been found that the use of EDFA not only helps in compensating for the link losses but also aids in realizing an all-optical processing based last-mile access system. The proposed FSO system will be capable of bridging the existing backbone fiber networks with end-users with minimal changes to the existing hardware regime, thereby proving to be extremely cost-effective in sharp contrast to radio-frequency generations which require major infrastructure overhaul.
Full-text available
Inter-satellite optical-wireless communication systems (IsOWC), one of the important applications of FSO/WSO technology, will be deployed in space in the near future. The IsOWC systems provide a high bandwidth, small size, light weight, low power and low cost alternative to present microwave satellite systems. In this paper, we have reported the improved investigation through implementation of a square root module using OPTISYSTEM™ simulator to establish an inter-satellite link (ISL) between two satellites estranged by a distance of 1000 Km at data rate of 2.5 Gbps which is not reported in previous investigated work.
Full-text available
Over the last two decades free-space optical communication (FSO) has become more and more interesting as an adjunct or alternative to radio frequency communication. This article gives an overview of the challenges a system designer has to consider while implementing an FSO system. Typical gains and losses along the path from the transmitter through the medium to the receiver are introduced in this article. Detailed discussions of these topics can be found in this special issue of the Radioengineering Journal.
Full-text available
Turbulence fading is one of the main impairments affecting the operation of free-space optical (FSO) communication systems. The authors study the performance of FSO communication systems, also known as wireless optical communication systems, over log-normal and gamma-gamma atmospheric turbulence-induced fading channels. These fading models describe the atmospheric turbulence because of its very good agreement with experimental measurement data. Closed-form expressions for the average (ergodic) capacity and the outage probability are derived for both statistical models. Another contribution of this work is a study of how the performance metrics are affected by the atmospheric conditions and other parameters such as the length of the link and the receiver's aperture diameter. The derived analytical expressions are verified by various numerical examples and can be used as an alternative to time-consuming Monte-Carlo simulations.
Conference Paper
Full-text available
Due to inconsistent atmospheric conditions, scattering and scintillation of free space optical (FSO) signal can occur, thus negatively influencing the received signal intensity. The channel is usually modeled as a normalized fading coefficient with additive Gaussian noise. Optimal detection of the received signal is designed based on a decision rule, e.g., Maximum Likelihood (ML), assuming the receiver knows the noise statistics and fading correlation of the channel. This paper briefly deals with analysis on bit error rate (BER) of a wireless optical signal passing through a lognormally distributed fading channel, when perfect knowledge of channel state information (CSI) at the receiver side is available. Two approaches will be presented to provide closed-form expressions for BER. One uses Gauss-Hermite quadrature approximation and the other one is based on power series. While numerical analysis shows a very small approximation error when the Gauss-Hermite approach is considered, the power series approach does not uses any approximation.
This book is intended for research scientists, engineers and students with an interest in the topic of free-space laser communications. It is intended as an all-inclusive source to serve the needs of those who require information about both basic concepts, as well as up-to-date advanced knowledge of the state-of-the-art in the technologies available today. This is the first book which provides in a comprehensive and tutorial manner, the fundamental principles and advances of free-space laser communications. Topics addressed include: atmospheric channel effects including available models, system design and performance, laser transmitter/ receiver designs for high performance photon-efficient systems, adaptive optics technology for atmospheric compensation, optical networks, coding techniques, and long wavelength free-space optical communications.
The increase in demand for high data transmission rates and channel capacity has led to the evolution of Free Space Optical (FSO) communication links. In this paper, performance analysis of a high-speed free space optical communication link has been observed. The performance of 10 Gbps FSO link has been evaluated on the basis of Q Factor, SNR ratio, and total power of the received signal for a link distance ranging from 800 m to 2000 m at different power levels of data transmission and different levels of atmospheric attenuation. It has been seen from the results that the value of SNR of received signal lies in the range from 45 dB to 14 dB and 48 dB to 10 dB for the transmission power of 6 dBm and attenuation of 25 dB respectively. Also, the value of the total power of received signal lies in the range of -52 dBm to -73 dBm and -30 dBm to -60 dBm for the transmission power of 6 dBm and attenuation of 25 dB respectively.
Free-space optical communication between satellites networked together can make possible high-speed communication between different places on earth. The use of optical radiation as a carrier between the satellites creates very narrow beam divergence angles. Due to the narrow-beam divergence angle and the large distance between the satellites, the pointing from one satellite to another is complicated. The complication is due to vibration of the pointing system caused by two stochastic fundamental mechanisms: (1) tracking noise created by the electro-optic tracker and (2) vibrations created by internal satellite mechanical mechanisms. We derive mathematical models of signal, noise, approximate SNR, and approximate bit error rates of optical communication satellite networks as functions of the system parameters, the number of satellites, and the vibration amplitude. The optical intersatellite network model considered includes transmitter satellite, repeater satellites, and receiver satellite all networked together. These models are the basis for pointing system design of appropriate complexity and performance to make the network as simple and inexpensive as possible. An example of practical communication between Anchorage in Alaska to Johannesburg in South Africa by a free-space optical communication network composed of nine low-earth-orbit satellites is given. From the analysis it is clear that even low vibration amplitude of the satellite pointing systems decreases dramatically the network performance. (C) 1997 Society of Photo-Optical Instrumentation Engineers.
Conference Paper
A convolutional coded on-off keying optical wireless system using intensity modulation and direct detection is studied for strong turbulence channels. We introduce a series expansion approach to derive a closed-form series expression for the pairwise error probability, and to simplify the union upper bound on the average bit-error rate.
Detailing a systems approach, Optical Wireless Communications: System and Channel Modelling with MATLAB®, is a self-contained volume that concisely and comprehensively covers the theory and technology of optical wireless communications systems (OWC) in a way that is suitable for undergraduate and graduate-level students, as well as researchers and professional engineers. Incorporating MATLAB® throughout, the authors highlight past and current research activities to illustrate optical sources, transmitters, detectors, receivers, and other devices used in optical wireless communications. They also discuss both indoor and outdoor environments, discussing how different factors—including various channel models—affect system performance and mitigation techniques. In addition, this book broadly covers crucial aspects of OWC systems: Fundamental principles of OWC Devices and systems Modulation techniques and schemes (including polarization shift keying) Channel models and system performance analysis Emerging visible light communications Terrestrial free space optics communication Use of infrared in indoor OWC One entire chapter explores the emerging field of visible light communications, and others describe techniques for using theoretical analysis and simulation to mitigate channel impact on system performance. Additional topics include wavelet denoising, artificial neural networks, and spatial diversity. Content also covers different challenges encountered in OWC, as well as outlining possible solutions and current research trends. A major attraction of the book is the presentation of MATLAB simulations and codes, which enable readers to execute extensive simulations and better understand OWC in general.
The Laser Crosslink Subsystem (LCS) is a full duplex laser communications terminal in production at McDonnell Douglas Electronics Systems Company. The LCS will provide a data crosslink for geosynchronous satellites. This paper provides an overview of the system design and major elements followed by a brief program history. One LCS is installed on each satellite. The system utilizes a solid state diode pumped Neodymium YAG laser and direct pulse detection to provide 1.28 Mbps data transmission in one direction on the link and 4 Kbps in the other. A single eight inch gimballed telescope provides both the transmit and receive antenna function. After autonomously acquiring, the 200 Hz bandwidth fine tracking system maintains pointing of the 10 microrad optical beam. The LCS began development in 1981. Since then, each of its assemblies has completed-flight qualification testing. The first integrated production unit successfully completed environmental and performance qualification testing in 1990.
In spite of the tremendous technical advancement of available components, the major limitation of free-space laser communication (lasercom) performance is due to the atmosphere, because a portion of the atmospheric path always includes turbulence and multiple scattering effects. Starting from a fundamental understanding of the laser communications system under diverse weather conditions, this chapter provides a comprehensive treatment of the evaluation of parameters needed for analyzing system performance. The significance of higher-order statistics of probability density functions of irradiance fluctuations due to turbulence to performance analysis is explained. Starting from link analysis, the necessary expressions relating link margin, bit-error-rate, signal-to-noise-ratio, and probability of fade statistics are presented. Results for laboratory-simulated atmospheric turbulence and multiple scattering are presented. Example numerical results for simulations of lasercom systems operating under various atmospheric conditions are presented for various scenarios such as uplink-downlink (e.g., between ground and satellite, aircraft or UAV) and horizontal (terrestrial) link. Both turbulence and multiple scattering effects have been included in the analysis with both on-off keying and pulse-position modulation schemes. Statistical estimation and computation of communication parameters presented in this chapter will be useful in designing and optimizing lasercom systems that are reliable under all weather conditions.
This book is about spaceborne missions and instruments. In addition, surveys of airborne missions and of campaigns can be found on the accompanying CD-ROM in pdf-format. Compared with the 3rd edition the spaceborne part grew from about 300 to 1000 pages. The complete text - including the electronic-only chapters - contains more than 1900 pages. New chapters treat the history of Earth observation and university missions. The number of commercial Earth imaging missions has grown significantly. A chapter contains reference data and definitions. Extensive appendices provide a comprehensive glossary, acronyms and abbreviations and an index of sensors. An effort has been made to present the information in context, to point out relationships and interconnections. The book may serve as a reference and guide to all involved in the various national and international space programs: researchers and managers, service providers and data users, teachers and students.
Conference Paper
When designing free-space optics systems, one key issue is to assess the impact of scintillations and to find an appropriate link margin to cope with atmospheric fading. Huge effort is spent to find mathematical models to describe laser beam propagation through the atmosphere. However, these models are quite cumbersome to use for the communications engineer. On the other hand, there are empirical models that try to describe the influence of scintillations and other system parameters in a simple and easy to use manner. Nevertheless, they are empirical and not based on theory. This paper is intended to close the gap between mathematical theory and empirical models. Therefore, a simple yet accurate receiver model is introduced. Based on turbulence theory and using the recently proposed convolution method assuming independent sub-aperture intensities, probability distributions of the received power are derived. Aperture averaging as well as multiple transmitter systems can be described this way. Power penalties are found by numerically calculating the resulting bit error probabilities for varying mean values of received power. Finally a model for appropriate link margins under different atmospheric conditions, taking transmitter diversity and aperture averaging into account, is derived and compared to empirical models.
The Ground/Orbiter Lasercomm Demonstration is a demonstration of optical communications between the Japanese Engineering Test Satellite (ETS-VI) and an optical ground transmitting and receiving station at the Table Mountain Facility in Wrightwood, California. Laser transmissions to the satellite are performed for approximately 4 hours every third night when the satellite is at apogee above Table Mountain. The experiment requires the coordination of resources at the Communications Research Laboratory (CRL), JPL, the National Aeronautics and Space Development Agency (NASDA) Tsukuba tracking station, and NASA's Deep Space Network at Goldstone, California, to generate and transmit real-time commands and receive telemetry from the ETS-VI. Transmissions to the ETS-VI began in November 1995 and are scheduled to last into the middle of January 1996, when the satellite is expected to be eclipsed by the Earth's shadow for a major part of its orbit. The eclipse is expected to last for about 2 months, and during this period there will be limited electrical power available on board the satellite. NASDA plans to restrict experiments with the ETS-VI during this period, and no laser transmissions are planned. Posteclipse experiments are currently being negotiated. GOLD is a joint NASA-CRL experiment that is being conducted by JPL in coordination with CRL and NASDA.
Statistical estimates of selected scintillation parameters for an infrared laser ground-to-space communication system are presented for a point-receiving aperture. The quantities estimated here are the fraction of time that the signal power is both above and below a given value, the mean number of times per second the signal power crosses a given signal level, and the mean duration of both surges and fades for a given log-irradiance variance.
The European Space Agency (ESA) has instigated an in-orbit demonstration project known as SILEX (semiconductor laser intersatellite link experiment) using a pre-operational link between the French SPOT-4 low earth orbit satellite and the ESA Advanced Relay and Technology Mission Satellite (ARTEMIS). Such an optical communication system brings some new and challenging requirements. In particular, the communication beam, which has a divergence of around 6 μrad, must achieve and maintain a very demanding pointing accuracy in the presence of both host satellite vibration and relative satellite motion. The authors provide an overview of the SILEX project and describe a novel pointing mechanism
With recent successes of laboratory, inatmosphere, and space demonstrations of free-space optical communications, there is no doubt that the technology is ready for operational deployment. While these successes have shown that there are no laws of physics against such systems, their estimated system costs are still much too high for serious considerations. Two types of development can reduce the cost dramatically. The first is via the improvement of physical-link communication efficiency by an order of magnitude using photon-counting receivers for vacuum channels, system complexity, weight, and power for space systems can be greatly reduced. The second is through the use of coherent systems in links where clear-air turbulence impairs communication efficiency, and in multiple access applications where coherent processing can reduce the level of interference, significant reduction in system costs can be realized
In free-space optical communication links, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received light signal, impairing link performance. We describe several communication techniques to mitigate turbulence-induced intensity fluctuations, i.e., signal fading. These techniques are applicable in the regime in which the receiver aperture is smaller than the correlation length of fading and the observation interval is shorter than the correlation time of fading. We assume that the receiver has no knowledge of the instantaneous fading state. When the receiver knows only the marginal statistics of the fading, a symbol-by-symbol ML detector can be used to improve detection performance. If the receiver has knowledge of the joint temporal statistics of the fading, maximum-likelihood sequence detection (MLSD) can be employed, yielding a further performance improvement, but at the cost of very high complexity. Spatial diversity reception with multiple receivers can also be used to overcome turbulence-induced fading. We describe the use of ML detection in spatial diversity reception to reduce the diversity gain penalty caused by correlation between the fading at different receivers.
Atmospheric Optics, OSA Handbook of Optics
  • D K Killinger
  • J H Churnside
  • L S Rothman
D.K. Killinger, J.H. Churnside, and L.S. Rothman, Atmospheric Optics, OSA Handbook of Optics, edited by M. Bass (1995), Chapter 44.
Performance Analysis of FSO Modulation Schemes with Diversity Reception Over Atmospheric Turbulence Channel
  • Mrs Wafaa
Wafaa MRS,"Performance Analysis of FSO Modulation Schemes with Diversity Reception Over Atmospheric Turbulence Channel" in Al-Furat Al-Awsat Technical University, Babylon, Iraq, August 16 2016.
Report: American Academy of Dermatology, Lion Laser Skin Center
  • O Bader
  • C Lui
O. Bader and C. Lui, "Laser safety and the eye: Hidden hazards and practical pearls," Tech. Report: American Academy of Dermatology, Lion Laser Skin Center, Vancouver and University of British Columbia, Vancouver, B.C., 1996.
Integrated RF-optical TT & C for a deep space mission
  • T Dreischer
  • M Tuechler
  • T Weigel
  • G Baister
  • P Regnier
  • X Sembely
  • R Panzeca
T. Dreischer, M. Tuechler, T. Weigel, G. Baister, P. Regnier, X. Sembely, and R. Panzeca, "Integrated RF-optical TT & C for a deep space mission," Acta Astronautica, vol. 65, no. 11, pp. 1772-1782., 2009
Mars polar lander/deep space 2
  • D Isbel
  • F O'donnell
  • M Hardin
  • H Lebo
  • S Wolpert
  • S Lendroth
D. Isbel, F. O'Donnell, M. Hardin, H. Lebo, S. Wolpert, and S. Lendroth, "Mars polar lander/deep space 2," NASA Tech. Report, 1999.