ChapterPDF Available

Persistent Organic Pollutants, Mitochondrial Dysfunction, and Metabolic Syndrome

Authors:

Abstract and Figures

This chapter provides evidence that environmental chemicals may induce mitochondrial dysfunction resulting in insulin resistance (IR), type 2 diabetes mellitus (T2DM), and metabolic syndrome (MetS). The exposure levels of individual environmental chemicals to the general population are far lower than in the case of environmental disasters such as chemical plant explosion, military personnel exposures, and occupational exposures. Persistent organic pollutants (POPs) are lipophilic chemicals that accumulate in adipose tissue and are hard to eliminate from contaminated environments and human bodies. Prior to Baillie-Hamilton's report, there have been many anecdotal reports linking exposure to POPs and development of diabetes. Some POPs are known to induce adverse effects on various biological systems via binding to aryl hydrocarbon receptor (AhR), a cytosolic nuclear receptor present in most vertebrate tissues. POPs are quantified by high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/ HRMS) method.
Content may be subject to copyright.
A preview of the PDF is not available
... Mitochondrial dysfunction has been proposed to cause diabetes [8] through induction of insulin resistance in both muscle and liver via a buildup of excess lipids as well as through a decrease in insulin secretion resulting from lower beta cell ATP content [9]. In parallel with the AhRL assay, we also applied a similar cell-based assay to indirectly detect the presence in participant serum samples of mitochondrial inhibiting substances (MIS) by measuring intracellular ATP content in serumincubated cultured cells (MIS-ATP) [10]. ...
... A cogent argument has been made that when the mitochondria function poorly, lipid products accumulate in cells, leading to lipid toxicity, which produces insulin resistance in cells metabolizing glucose. Perhaps more importantly, worsened mitochondrial function in beta cells results in decreased ATP content which in turn leads to decreased insulin secretion [8,9]. ...
... Greater binding to the AhR, called at times the dioxin receptor, has been shown to be both an excellent surrogate for POP levels in sera 5,21 and a good surrogate for POP exposure. Such binding has also been associated with higher levels of insulin resistance and glycemia [5,8,30]. Yet the pathophysiologic steps through which such binding can lead to diabetes are less clear. ...
Article
Full-text available
Background Persistent organic pollutants (POPs) may cause diabetes, in part through aryl hydrocarbon receptor (AhR) binding. Ensuing mitochondrial dysfunction is postulated to mediate this effect. We aim to investigate the association of POPs with incident diabetes indirectly by bio-assaying AhR ligand bioactivity and intracellular ATP level induced by participant serum samples. Methods In incident case-cohort analyses of one ELSA-Brasil center, 1605 eligible subjects without diabetes at baseline had incident diabetes ascertained by self-report, medication use, OGTT or HbA1c at follow-up 4 years later. We assayed AhR ligand bioactivity (AhRL) and intracellular ATP content, the latter reflecting the presence of mitochondria-inhibiting substances (MIS), following incubation of recombinant mouse Hepa1c1c7 cells with participant sera for 71 incident diabetes cases and 472 randomly selected controls. Results In multiply-adjusted proportional hazards regression analyses, those with above-median AhRL and below-median MIS-ATP had 69 and 226% greater risk of developing diabetes (HR = 1.69; 95%CI 1.01–2.83 and 3.26; 1.84–5.78), respectively. A strong interaction was seen between the two exposures (HR high AhRL/low MIS-ATP vs. low AhRL/high MIS-ATP = 8.15; 2.86–23.2). Conclusion The markedly increased incidence of diabetes seen in those with both higher AhR ligand bioactivity and increased mitochondrial inhibition supports the hypothesis that widespread POPs exposure contributes to the diabetes epidemic.
... Moreover, FRs such as OPFRs and PBDEs have also been shown to induce CYP450 enzymes and NXR, which may negatively influence redox homeostasis [233,234]. Thus, FRs could directly induce mitochondrial damage by hampering the mitochondrial function, a well-known target of environmental toxicants [235][236][237], or indirectly by CYP450 xenobiotic-metabolizing enzymes that are known to affect redox homeostasis. Exposure to FRs could modulate the NRs, which are reported to directly control the CYP450 responses and transcription of various CYP isoforms [238,239]. ...
Article
Full-text available
Nonalcoholic fatty liver disease (NAFLD) is a growing concern worldwide, affecting 25% of the global population. NAFLD is a multifactorial disease with a broad spectrum of pathology includes steatosis, which gradually progresses to a more severe condition such as nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually leads to hepatic cancer. Several risk factors, including exposure to environmental toxicants, are involved in the development and progression of NAFLD. Environmental factors may promote the development and progression of NAFLD by various biological alterations, including mitochondrial dysfunction, reactive oxygen species production, nuclear receptors dysregulation, and interference in inflammatory and immune-mediated signaling. Moreover, environmental contaminants can influence immune responses by impairing the immune system’s components and, ultimately, disease susceptibility. Flame retardants (FRs) are anthropogenic chemicals or mixtures that are being used to inhibit or delay the spread of fire. FRs have been employed in several household and outdoor products; therefore, human exposure is unavoidable. In this review, we summarized the potential mechanisms of FRs-associated immune and inflammatory signaling and their possible contribution to the development and progression of NAFLD, with an emphasis on FRs-mediated interferon signaling. Knowledge gaps are identified, and emerging pharmacotherapeutic molecules targeting the immune and inflammatory signaling for NAFLD are also discussed.
Article
Organophosphorus flame retardants (OPFRs), a group of new emerging endocrine disruption chemicals, have been reported to cause metabolic disturbance. Currently, mitochondrial abnormality is a new paradigm for evaluating chemical-mediated metabolic disruption. However, a comprehensive correlation between these two aspects of OPFR remains elusive. In the work reported here, 3 markers for morphological abnormality, and 7 markers of mitochondrial dysfunction were detected after treatment with two aryl-OPFRs (TCP and TPhP) and three chlorinated-OPFRs (TDCPP, TCPP, and TCEP) on hepatocyte. The two aryl-OPFRs and TDCPP can cause intracellular lipid accumulation at non-cytotoxic concentrations (<10 μM), while the other two chlorinated-OPFRs only caused lipid deposition at 10 μM. Furthermore, at the tested concentrations, all of them reduced mitochondrial (mito)-network numbers, enlarged mito-area/cells, and skewed mitoATP/glycoATP. Excluding TCEP, the other four chemicals induced mito-ROS and depleted mitochondrial membrane potential (MMP). Notably, only TCP, TPhP and TDCPP impeded mitoATP generation rate and mito-respiratory rate. Based on potency estimates, the capacity for lipid accumulation was significantly correlated with mito-network numbers (R²=0.6481, p<0.01), mitoATP/glycoATP (R²=0.5197, p<0.01), mitoROS (R²=0.7197, p<0.01), and MMP (R²=0.7715, p<0.01). Remarkably, the mito-respiratory rate (R²=0.8753, p<0.01) exhibited the highest correlation. Thus, the more potent lipid inducers TPhP, TCP and TDCPP could be identified. The results of this study demonstrate that aryl-OPFRs are more potent in metabolic disruption than other esters examined. Metabolic disruption should be examined further for chemicals that have the capacity to counteract the aforementioned functions of mitochondrial.
Article
Full-text available
The recent epidemics of metabolic diseases, obesity, type 2 diabetes(T2D), liver lipid disorders and metabolic syndrome have largely been attributed to genetic background and changes in diet, exercise and aging. However, there is now considerable evidence that other environmental factors may contribute to the rapid increase in the incidence of these metabolic diseases. This review will examine changes to the incidence of obesity, T2D and non-alcoholic fatty liver disease (NAFLD), the contribution of genetics to these disorders and describe the role of the endocrine system in these metabolic disorders. It will then specifically focus on the role of endocrine disrupting chemicals (EDCs) in the etiology of obesity, T2D and NAFLD while finally integrating the information on EDCs on multiple metabolic disorders that could lead to metabolic syndrome. We will specifically examine evidence linking EDC exposures during critical periods of development with metabolic diseases that manifest later in life and across generations.
Article
Full-text available
Background: Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods: We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings: Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4-61·9) in 1980 to 71·8 years (71·5-72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7-17·4), to 62·6 years (56·5-70·2). Total deaths increased by 4·1% (2·6-5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8-18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6-16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9-14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1-44·6), malaria (43·1%, 34·7-51·8), neonatal preterm birth complications (29·8%, 24·8-34·9), and maternal disorders (29·1%, 19·3-37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation: At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Funding: Bill & Melinda Gates Foundation.
Article
Full-text available
Background: Epidemiologic studies suggest phthalate metabolite concentrations are associated with type 2 diabetes. GDM is a strong risk factor for type 2 diabetes. Little is known about phthalates and GDM risk factors (i.e. 1st trimester body mass index (BMI), gestational weight gain (GWG), and 2nd trimester glucose levels). Methods: A total of 350 women participating in Lifecodes pregnancy cohort (Boston, MA), delivered at term and had pregnancy urinary phthalate metabolite concentrations. Nine specific gravity-adjusted urinary phthalate metabolites were evaluated. General linear regression was used to assess associations between quartiles of phthalate metabolites and continuous 1st trimester BMI and late 2nd trimester blood glucose. Linear mixed models were used for total GWG. Multivariable logistic regression was used for phthalate concentrations and categorized GWG and impaired glucose tolerance defined as glucose?140mg/dL based on a 50-gram glucose load test. Models were adjusted for potential confounders. Results: There were no associations between 1st trimester urinary phthalate metabolite concentrations and 1st trimester BMI. Mono-ethyl phthalate concentrations averaged across pregnancy were associated with a 2.17 increased odds of excessive GWG (95% CI: 0.98, 4.79). Second trimester mono-ethyl phthalate was associated with increased odds of impaired glucose tolerance (adj. OR: 7.18; 95% CI: 1.97, 26.15). A summary measure of di-2-ethylhexyl phthalate metabolite concentrations were inversely associated with impaired glucose tolerance (adj. OR: 0.25; adj. 95% CI: 0.08, 0.85). Conclusions: Higher exposure to mono-ethyl phthalate, a metabolite of the parent compound of di-ethyl phthalate, may be associated with excessive GWG and impaired glucose tolerance; higher di-2-ethylhexyl phthalate was associated with reduced odds of impaired glucose tolerance.
Article
Full-text available
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community abouthow environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, andepigeneticchanges, therebyproducingeffects inexposedindividuals as well as theirdescendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in arange that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings canbemuchbetter translated tohumanhealth. Armedwith this information, researchers, physicians, andother healthcare providers can guide regulators and policymakers as they make responsible decisions.
Article
Full-text available
Human mitochondrial DNA (mtDNA) shows extensive within-population sequence variability. Many studies suggest that mtDNA variants may be associated with ageing or diseases, although mechanistic evidence at the molecular level is lacking. Mitochondrial replacement has the potential to prevent transmission of disease-causing oocyte mtDNA. However, extension of this technology requires a comprehensive understanding of the physiological relevance of mtDNA sequence variability and its match with the nuclear-encoded mitochondrial genes. Studies in conplastic animals allow comparison of individuals with the same nuclear genome but different mtDNA variants, and have provided both supporting and refuting evidence that mtDNA variation influences organismal physiology. However, most of these studies did not confirm the conplastic status, focused on younger animals, and did not investigate the full range of physiological and phenotypic variability likely to be influenced by mitochondria. Here we systematically characterized conplastic mice throughout their lifespan using transcriptomic, proteomic, metabolomic, biochemical, physiological and phenotyping studies. We show that mtDNA haplotype profoundly influences mitochondrial proteostasis and reactive oxygen species generation, insulin signalling, obesity, and ageing parameters including telomere shortening and mitochondrial dysfunction, resulting in profound differences in health longevity between conplastic strains.
Article
Several commonly used medications impair mitochondrial function resulting in adverse effects or toxicities. Drug induced mitochondrial dysfunction may be a consequence of increased production of reactive oxygen species, altered mitochondrial permeability transition, impaired mitochondrial respiration, mitochondrial DNA damage or inhibition of beta-oxidation of fatty acids. The clinical manifestation depends on the specific drug and its effect on mitochondria. Given the ubiquitous presence of mitochondria and its central role in cellular metabolism, drug-mitochondrial interactions may manifest clinically as hepatotoxicity, enteropathy, myelosuppression, lipodystrophy syndrome or neuropsychiatric adverse effects, to name a few. The current review focuses on specific drug groups which adversely affect mitochondria, the mechanisms involved and the clinical consequences based on the data available from experimental and clinical studies. Knowledge of these adverse drug-mitochondrial interactions may help the clinicians foresee potential issues in individual patients, prevent adverse drug reactions or alter drug regimens to enhance patient safety.
Article
Mounting evidence suggests a link between metabolic syndrome (MetS) such as diabetes, obesity, non-alcoholic fatty liver disease in the progression of Alzheimer's disease (AD), Parkinson's disease (PD) and other neurodegenerative diseases (NDDs). For instance, accumulated Aβ oligomer is enhancing neuronal Ca(2+) release and neural NO where increased NO level in the brain through post translational modification is modulating the level of insulin production. It has been further confirmed that irrespective of origin; brain insulin resistance triggers a cascade of the neurodegeneration phenomenon which can be aggravated by free reactive oxygen species burden, ER stress, metabolic dysfunction, neuorinflammation, reduced cell survival and altered lipid metabolism. Moreover, several studies confirmed that MetS and diabetic sharing common mechanisms in the progression of AD and NDDs where mitochondrial dynamics playing a critical role. Any mutation in mitochondrial DNA, exposure of environmental toxin, high-calorie intake, homeostasis imbalance, glucolipotoxicity is causative factors for mitochondrial dysfunction. These cumulative pleiotropic burdens in mitochondria leads to insulin resistance, increased ROS production; enhanced stress-related enzymes that is directly linked MetS and diabetes in neurodegeneration. Since, the linkup mechanism between mitochondrial dysfunction and disease phenomenon of both MetS and NDDs is quite intriguing, therefore, it is pertinent for the researchers to identify and implement the therapeutic interventions for targeting MetS and NDDs. Herein, we elucidated the pertinent role of MetS induced mitochondrial dysfunction in neurons and their consequences in NDDs. Further, therapeutic potential of well-known biomolecules and chaperones to target altered mitochondria has been comprehensively documented.