ResearchPDF Available

Lie Ideals with Left Generalized Jordan Derivations in Primerings

Authors:
Global Journal of Pure and Applied Mathematics * ISSN 0973-1768 Vol.12, No.3 (2016) P.116-118
@Research India Publications * http://www.ripublication.com/gjpam.htm
116
Lie Ideals With Left Generalized
Jordan Derivations In Primerings
Dr. C. Jaya Subba Reddy
Department of Mathematics,
S.V.University,
Tirupati 517502,
Andhra Pradesh, India.
S. Vasantha Kumar
Department of Mathematics,
S.V.University,
Tirupati 517502,
Andhra Pradesh, India.
Dr.K.Madhusudhan Reddy
Department of Mathematics,
VIT University, Vellore,
TamilNadu, India.
Abstract: Let be a non-commutative prime ring with
characteristic not two, is a non central lie ideal of
such that   for all   .If  be a left generalized
Jordan derivation on , then is a left generalized
derivation on .
Keywords: Prime ring, Derivation, Left Generalized
derivation, Left generalized Jordan derivation, Lie ideal
and Commutator. INTRODUCTION
The notation of generalized derivation of prime ring
was introduced by B.Hvala in [1]. A. Classical
result of I.N.Herstein states that every Jordan
derivation of prime ring with characteristic not two is
a derivation in [2]. A brief proof of this theorem can
be found in [3]. Latter on, this result was generalized
on lie ideals of such that  for all   in
[6] and generalized derivations of prime ring in [4].
In [5] O.Golbasi proved some results in generalized
Jordan derivation on prime rings with lie ideals. For
all these concerns we proved that if  be a left
generalized Jordan derivation on , then is a left
generalized derivation on .
Preliminaries: Throughout this Paper, let be a
prime ring with its charectaristic not two. be a non-
zero Lie ideal of . An additive map   is a
derivation (resp. Jordan derivation), if 
   (resp.  
,holds for all  . An additive map
  is right generalized derivation (resp.a right
generalized Jordan derivation), if   
 (resp.    holds for all
  . Left generalized derivation (resp. a left
generalized Jordan derivation), if   
 (resp.    holds for all
  . An additive map   is right
generalized Jordan triple derivation,if 
    holds for all   .
Left generalized Jordan triple derivation 
    holds for all   .
A near ring is said to be prime if   , for
all  , implies    or   .while the
symbol   will denote the commutator  
Lemma1: For all      the following
statements hold:
       ;
    ;
     
     
Proof:        
        
         

          

,for all    (1)
On the other hand, we have
        )
=          

         .
        
  , for all    (2)
From (1) and (2), we have
        
   
     .
      .
for all   
ii) Let     .
On one hand, we have
    
    
        
        
   
Global Journal of Pure and Applied Mathematics * ISSN 0973-1768 Vol.12, No.3 (2016) P.116-118
@Research India Publications * http://www.ripublication.com/gjpam.htm
117
       
        
   , for all    (3)
On the other hand, we have
      .
        

         
  
        
  ,
for all    (4)
From (3) and (4), we have
      
      
    
    
     
Since is a 2-torsion free, we get
     for all
  
 Linearizing (ii) by replacing by   
          
        
From L.H.S.
         
       
    
       
   
        
      
, for all     (5)
From R.H.S
        
    
      
     
       
      
   
     (6)
From (5) and (6), we get
      
    
      
      
  
      
   
for all      
Remark 1:
We Introduce abbreviation
     , for all    
Observe also by lemma1, we have
      
And so that
     
  
     

     

From above we get ,
  , for all    (7)
Lemma 2: For all    then   
Proof: Replace  by  in Lemma1 ,and
using the fact that    we get
      
   
       
    
       
   
     
     
, for all    (8)
On the other hand,we get
   
     
       
    
       
    
   
      
 , for all    (9)
Comparing equations (8) and (9),we have
    
   for all   
Therefore, we get
     , for all   .
  , for all     .
Global Journal of Pure and Applied Mathematics * ISSN 0973-1768 Vol.12, No.3 (2016) P.116-118
@Research India Publications * http://www.ripublication.com/gjpam.htm
118
Theorem 1: Let be a non-commutative prime ring
with characteristic not two, is a non central lie
idealof such that  , for all  .If  be a
left generalized Jordan derivation on , then is a
left generalized derivation on .
Proof : From Lemma 1  , we have
      
   ,
for all       (10)
Replacing by  and by  in equation (10) ,
we get
   

     
    
     
     

     
    
  
   
    
    
, for all     (11)
On the other hand, we have
   

     
    
     
    
      
    
     
   
    ,
for all       (12)
Comparing equations (11) and (12) , we obtain
   
    ,
for all    
     
    , for all    
  , for all     
Using the equation (7), that is   , for all
   we get
  , for all  
Since is prime ring, we have either     or
 .
Since is non-commutative, we have     
Thus we have  , for all   .
This completes the proof.
References:
[1] B.Hvala: Generalized derivations in rings,
Comm.Algebra,26,No.4,1988,1147-1166.
[2] I.N.Herstein: Jordan Derivations of prime rings,
Proc. Amer.Math.Soc.,8,1957,1104-1110.
[3] M.Bresar, J.Vukman: Jordan Derivations on
Prime rings, Bull. Austral.Math.Soc.,37,1988,
321-322.
[4] M.Ashraf, N.Rehman: On Jordan Generalized
Derivations in Rings, Math. J.Okayama
Univ.,42, 2000,7-9.
[5] O.Golbasi, Neset Aydin: On Lie Ideals of
Prime rings with Generalized Jordan
Derivation,East Asian Math.J.21, No.1,
2005,21-26.
[6] R.Awtar: Lie ideal and Jordan Derivations of
Prime Rings,Proc.Amer.Math.Soc.,1984,9-14.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The purpose of this paper is to show that every generalized Jordan derivation of prime ring with characteristic not two is a generalized derivation on a nonzero Lie ideal U of R such that which is a generalization of the well-known result of I. N. Herstein.
Article
Herstein proved [ 1 , Theorem 3.3] that any Jordan derivation of a prime ring of characteristic not 2 is a derivation of R R . Our purpose is to extend this result on Lie ideals. We prove the following Theorem. Let R R be any prime ring such that char R ≠ 2 R \ne 2 ana let U U be a Lie ideal of R R such that u 2 ∈ U {u^2} \in U for all u ∈ U u \in U . If ,’, is an additive mapping of R R into itself satisfying ( u 2 ) ′ = u ′ u + u u ′ ({u^2})’ = u’u + uu’ for all u ∈ U u \in U , then ( u υ ) ′ = u ′ υ + u υ ′ (u\upsilon )’ = u’\upsilon + u\upsilon ’ for all u , υ ∈ U u,\upsilon \in U .
Article
The purpose of this paper is to present a brief proof of the well known result of Herstein which states that any Jordan derivation on a prime ring with characteristic not two is a derivation.