Rewiring the microbe-electrode interfaces with biologically reduced graphene oxide for improved bioelectrocatalysis

Article (PDF Available)inBioresource Technology 256:195-200 · February 2018with 149 Reads
DOI: 10.1016/j.biortech.2018.02.001
Cite this publication
Abstract
The aim of this work was to study biologically reduced graphene oxide (RGO) for engineering the surface architecture of the bioelectrodes to improve the performance of Bioelectrochemical System (BES). Gluconobacter roseus mediates the reduction of graphene oxide (GO). The RGO modified bioelectrodes produced a current density of 1 mA/cm2 and 0.69 mA/cm2 with ethanol and glucose as substrates, respectively. The current density of RGO modified electrodes was nearly 10-times higher than the controls. This study, for the first time, reports a new strategy to improve the yield as well as efficiency of the BES by wrapping and wiring the electroactive microorganisms to the electrode surfaces using RGO. This innovative wrapping approach will decrease the loss of electrons in the microbe-electrolyte interfaces as well as increase the electron transfer rates at the microorganism-electrode interfaces.
Figures - uploaded by David Salem
Author content
All content in this area was uploaded by David Salem
Content may be subject to copyright.
No caption available
… 
A preview of the PDF is not available
  • Chapter
    Full-text available
    This chapter will introduce the basic concepts of bioelectrocatalysis and the advantages of extremophiles for bioelectrochemical systems. The chapter will discuss electrogenic activity and electron transfer characteristics of extremophiles and their applications in microbial fuel cells, microbial electrolytic cells, microbial desalination cells, and microbial electrosynthesis. The use of extremophilic bioprocesses for production of bioenergy and value-added products from lignocellulosic biomass will also be discussed.
  • Article
    In the recent years, considerable body of research has been carried out in the field of bioelectrochemical systems (BESs) for treatment of wastewater and generation of power. In these systems, different microbes are used for carrying out the transfer of electrons from medium to the anode electrode. The microbes employed are known as electrogens as they have the capacity to transfer electrons. Bacteria such as those belonging to the species such as Geobacter, Betaproteo, Deltaproteo and Desulfurnonas and of genus Shewanella are the commonly explored electrogens in BESs. In the past few years, a renewed interest in microbial fuel cell (MFC) research has developed, yet power generated from these devices has not significantly advanced. The primary reason for this non-advancement is that the research is more focused on improving power generation rather than on elementary understanding of the electron transfer processes. This review focuses on the methods used to study electron transfer processes in biofilms growing on the electrodes and presents several successful applications of MFCs. In this review, we have defined electrochemically active biofilms as biofilms that exchange electrons with conductive surfaces called electrodes.
  • Article
    Full-text available
    The present study is focused on enhancing the rheological properties of the electrolyte and eliminating sedimentation of microorganisms/flocs without affecting the electron transfer kinetics for improved bioelectricity generation. Agar derived from polysaccharide agarose (0.05-0.2%, w/v) was chosen as a rheology modifying agent. Electroanalytical investigations showed that electrolytes modified with 0.15% agar display a nine-fold increase in current density (1.2 mA/cm²) by a thermophilic strain (Geobacillus sp. 44C, 60 °C) when compared with the control. Sodium phosphate buffer (0.1 M, pH 7) electrolyte with riboflavin (0.1mM) was used as the control. Electrolytes modified with 0.15% agar significantly improved chemical oxygen demand removal rates. This developed electrolyte will aid in improving bioelectricity generation in Bioelectrochemical Systems (BES). The developed strategy avoids the use of peristaltic pumps and magnetic stirrers, thereby improving the energy efficiency of the process.