Article

CoSMed: A Confidentiality-Verified Social Media Platform

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

This paper describes progress with our agenda of formal verification of information flow security for realistic systems. We present CoSMed, a social media platform with verified document confidentiality. The system’s kernel is implemented and verified in the proof assistant Isabelle/HOL. For verification, we employ the framework of Bounded-Deducibility (BD) Security, previously introduced for the conference system CoCon. CoSMed is a second major case study in this framework. For CoSMed, the static topology of declassification bounds and triggers that characterized previous instances of BD Security has to give way to a dynamic integration of the triggers as part of the bounds. We also show that, from a theoretical viewpoint, the removal of triggers from the notion of BD Security does not restrict its expressiveness.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Three major verification case studies will also be briefly described while recalling their contribution to the framework's design (Section 3). These are the CoCon conference management system (Section 3.1, [23,37]), the CoSMed social media platform (Section 3.2, [7,9]), and the CoSMeDis distributed extension of CoSMed (Section 3.3, [8]). ...
Conference Paper
Full-text available
We describe Bounded-Deducibility (BD) security, an expressive framework for the specification and verification of information-flow security. The framework grew by confronting concrete challenges of specifying and verifying fine-grained confidentiality properties in some realistic web-based systems. The concepts and theorems that constitute this framework have an eventful history of such "confrontations", often involving trial and error, which are reported in previous papers. This paper is the first to focus on the framework itself rather than the case studies, gathering in one place all the abstract results about BD security.
Conference Paper
Relational properties describe multiple runs of one or more programs. They characterize many useful notions of security, program refinement, and equivalence for programs with diverse computational effects, and they have received much attention in the recent literature. Rather than developing separate tools for special classes of effects and relational properties, we advocate using a general purpose proof assistant as a unifying framework for the relational verification of effectful programs. The essence of our approach is to model effectful computations using monads and to prove relational properties on their monadic representations, making the most of existing support for reasoning about pure programs. We apply this method in F* and evaluate it by encoding a variety of relational program analyses, including information flow control, program equivalence and refinement at higher order, correctness of program optimizations and game-based cryptographic security. By relying on SMT-based automation, unary weakest preconditions, user-defined effects, and monadic reification, we show that, compared to unary properties, verifying relational properties requires little additional effort from the F* programmer.
ResearchGate has not been able to resolve any references for this publication.