ArticlePDF Available

Abstract

Chlorella and Spirulina are the two of the most well-known microalgae genus. Both microalgae genus have a significant content of proteins, vitamins, pigments, fatty acids, sterols, among others, which make their production/application by the food industry quite interesting. Chlorella genus is a eukaryotic microorganism, whereas Spirulina genus (cyanobacteria) is a prokaryotic microorganism. The aim of this review was to provide an overview on Chlorella and Spirulina microalgae, particularly as an alternative source of functional foods, nutraceuticals, and food supplements, in which the following compound groups were addressed: (I) Long-Chain Polyunsaturated Fatty Acids; (II) Phenolic Compounds; (III) Volatile Compounds; (IV) Sterols; (V) Proteins, Amino Acids, Peptides; (VI) Vitamins; (VII) Polysaccharides; (VIII) Pigments and (IX) Food. Chlorella and Spirulina microalgae and their derivatives are concluded not to be widely commercially exploited. However, they are remarkable sources of functional foods, nutraceuticals and food supplements.
MOJ Food Processing & Technology
Chlorella and Spirulina Microalgae as Sources of
Functional Foods, Nutraceuticals, and Food Supplements;
an Overview
Submit Manuscript | http://medcraveonline.com
Abbreviations: LCPUFAs: Long-Chain Polyunsaturated
        
      
Acid; DHA: Docosahexaenoic Acid; AL: Linoleic Acid; AAL:
Alpha-Linolenic Acids; vitamin A: Beta-Carotene; vitamin K:
      
       
         
     
   
      
   

       


Introduction
Chlorella and Spirulina      
microalgae genus. Chlorella is unicellular and Spirulina is a
 
       
       
other compounds that make those microalgae very interesting

  Chlorella     chloros and
   ella      
Chlorella microalgae have been present on earth since the pre-
        
world leader in Chlorella    
name Spirulina       
shaped Arthospira  Spirulina
microalgae are commonly called blue-green algae-cyanobacteria;
Arthospira Platensis and Arthospira Maxima are cultivated
worldwide.

 Chlorella and Spirulina 
     
      

      

 Long-Chain Polyunsaturated Fatty Acids produced by
         
     

       

       

as dietary supplements. Phenolic compounds produced by
 p-coumaric acid

   
       

Chemical Engineering Department of Polytechnic School,
University of São Paulo, Brazil
*Corresponding author: 




Received:| Published:

Review Article

Abstract
Chlorella and Spirulina      


quite interesting. Chlorella genus is a eukaryotic microorganism, whereas Spirulina
          
to provide an overview on Chlorella and Spirulina    


 
 
Food. Chlorella and Spirulina microalgae and their derivatives are concluded not to be
     

Keywords: Chlorella; Spirulina
Citation:Chlorella and Spirulina

Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and
Food Supplements; an Overview 2/14
Copyright:
©2018 Andrade et al.
         
        
   

    
       
    
integrity. Phytosterol - structurally similar to cholesterol
           
  

 Chlorella sp. and Spirulina sp.
  
  
      

 Chlorella
and Spirulina
        
   

 Polysaccharides produced by microalgae are usually very
      
Spirulina platensis and Chlorella pyrenoidosa 

        


 
  

         
 Chlorella and Spirulina microalgae impact positively on

      
Chlorella
and Spirulina      

Discussion
Long-chain polyunsaturated fatty acids
 

       
        
        


   de novo    
 



       
      


     

        
        
         




       
          

 
        


        
        

       
       

        
          
     
        
       
similar molecules.

        
       
       
   
         
         
           
      

other aspects related to our mind.
            

    
            

         

    
       
       
         
Citation:Chlorella and Spirulina

Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and
Food Supplements; an Overview 3/14
Copyright:
©2018 Andrade et al.
  
  
        
           
          
in the cis      
  
         
        
         

         
    

       
         
  Chlorella homosphaera, Chlorella sp. and Chlorella
minutissima  

Chlorella
homosphaera,  Chlorella    Chlorella minutissima
  
          
      
       
         

          


Chlorella      
       
 
      Chlorella
and Spirulina
 Chlorella and Spirulina are very interesting


Phenolic Compounds
       



   


     
        

        
secondary metabolites that are not directly involved in biological

         


Figure 1:

Table 1: Chlorella and Spirulina
Microalgae
Genus Main Producers Products Production
(Ton/Year)
Chlorella
Chlorella
 

 Powders
Spirulina
 

 
 
extracts
Myanmar Spirulina Factory 
extract
Citation:Chlorella and Spirulina

Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and
Food Supplements; an Overview 4/14
Copyright:
©2018 Andrade et al.

       
       Chlorella
         
        
acid and p        

   
Spirulina maxima 

p       
        

        
    
Spirulina platensis  
      
and p        

      
         
       

    
Chlorella pyrenoidosa
p

     Chlorella and
Spirulina       
Chlorella 
used by the pharmaceutical industry - gastrointestinal disorders

Spirulina microalgae have more
  p     
       
commonly used as
 Chlorella and Spirulina     
      
others interesting nutritional and health properties.
Table 2:      Chlorella and Spirulina

Phenolic Compound Chlorella (ng/g) Spirulina (ng/g)
Phloroglucinol  
p-Coumaric acid  
Ferulic acid  
Apigenin 9.9
Volatile compounds (VOCs)


 


       
        
 
     
      
     

    Chlorella vulgaris 
was   
   
      

    

        

acid.
Table 3:Chlorella vulgaris
Class Compounds Composition (%)
Hydrocarbons
 
 
dodecane 
hexadecene 
heptadecane 
heptadecene 
octadecane 
tetracosane 
heptadecene 
Figure 2:        
      
        


Citation:Chlorella and Spirulina

Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and
Food Supplements; an Overview 5/14
Copyright:
©2018 Andrade et al.
Acids
odecanoic 
tetradecanoic 
hexadecanoic 
octadecanoic 
octadec-9-enoic 
 
 
Alcohols
hexadecanol 
octadecanol 
nonadecanol 
phytol 

methyl-hexadecanoate 
methyl-octadecanoate 
methyl-octadec-9-enoate 

dienoate 
Aldehydes
hexanal 
nonadecanal 
hexadecanal 
Ketones
decanone 
hexadecanone 
 
 
U* 
       
Spirulina strains
       
        
 
         
Table 4:Spirulina platensis
Class Compounds Composition (%)
Hydrocarbons
 
tetradecane 
pentadecane 
hexadecane 
 
heptadecene 
Alcohols
 
 
 
Ketones

cyclohexanone 
 



ester

*A  
         
 Chlorella and Spirulina microalgae have shown great
        
       

like odor.
Sterols

        
          
      
        

        
 
Chlorella microalgae

Chlorella pringsheimii and Chlorella
fusca 
    Chlorella pringsheimii 
ergosternol and chondrillasterol in Chlorella fusca.
       


         




      




Chlorella vulgaris
  
      
       

Citation:Chlorella and Spirulina

Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and
Food Supplements; an Overview 6/14
Copyright:
©2018 Andrade et al.
Cholesterol and    Spirulina maxima
        
      Spirulina
platensis     

       
        
sterols. Chlorella and Spirulina microalgae are sterols producers.
     
         
          
pharmaceutical industry.
Proteins, amino Acids and peptides



Microalgae such as Chlorella sp. and Spirulina sp. contain high
        


      
       
       

Spirulina sp.     

   

    
       
       
         
     

Chlorella sp. microalgae  
     
       
      


Chlorella 
   
        
        Spirulina and
Chlorella   
         
     Spirulina and Chlorella



       
       
   
       
         


       

      Chlorella and
Spirulina 
Table 5:Chlorella and Spirulina microalgae

Microalgae Isoleucine Leucine Phenylalanine Valine
Chlorella    
Spirulina    
Another interesting approach in microalgae proteins is related


     
   
      
Chlorella vulgaris species was described as a great potential in

Chlorella vulgaris species can be used in
        
coronary diseases.
Figure 3:  
         

      
        


Figure 4: 
     

Citation:Chlorella and Spirulina

Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and
Food Supplements; an Overview 7/14
Copyright:
©2018 Andrade et al.
        
        
       
          
requirements.
Vitamins
Chlorella and Spirulina microalgae are vitamin producers that
          
vitamins that are commonly produced by microalgae are: vitamin


        
 
        

       Spirulina and
Chlorella     Chlorella 
Spirulina   
         
        


  

Table 6: Vitamin content in Chlorella and Spirulina

Vitamins Chlorella Spirulina
Vitamin A  
Vitamin C  
  
  
  
  -
  
  
  
  
 -
Chlorella 
is the most abundant vitamin produced by microalgae. Vitamin A

       
       
       
       


   Chlorella sp. has
better bioavailability than Spirulina microalgae 
   
  

Chlorella and Spirulina microalgae have an interesting

   


       
         


         
     

Polysaccharides
Polysaccharides are polymeric carbohydrate structures
         
         
microorganisms such as Chlorella and Spirulina microalgae
         

 Chlorella and Spirulina

   

   Spirulina platensis and
Chlorella pyrenoidosa    
  




Spirulina platensis
and Chlorella pyrenoidosa   
 


   
polysaccharides produced by Spirulina 
   Spirulina microalga polysaccharides were
       

Regarding Chlorella   
         Chlorella
pyrenoidosa      
        

Citation:Chlorella and Spirulina

Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and
Food Supplements; an Overview 8/14
Copyright:
©2018 Andrade et al.
Table 7:     Spirulina platensis
Chlorella pyrenoidosa
Immulina Polysaccharide
(% mole)
Immurella Polysaccharide
(% mole)
Rhamnose  Arabinose 
   
Fructose  Rhamnose 
   
   
   
   
   
  Mannose 
  Ribose 
Mannose  
Arabinose 
   
   
Arabinose   
Amino sugar   
   
   
  
 
  
Mannose 

Mannose 

Mannose 
 

 

 
Amino sugar 
     

     
since microalgae polysaccharides have antiviral activity against

Pigments, carotenoids and phycobiliproteins
      
       
      
       

    
      

        

     
       
      

       


         
        
        
       
      
     

   

Carotenoids are hydrophobic compounds which have color
 backbone structure
      

      
       
      

     
produced at industrial scale are  
  
  


       
   A max    F
maxA maxF max
A max F max

 


 
       
        
     
       
      

Citation:Chlorella and Spirulina

Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and
Food Supplements; an Overview 9/14
Copyright:
©2018 Andrade et al.
      Chlorella salina in
which       
        
 Chlorella vulgaris
was 
Spirulina sp. was described
  
  
      
        
  
pastry.

   -carotene is



       

Microalgae as food
Microalgae in the human diet:      
products has been increasing due to concerns regarding health

-carotene has been related to lung cancer and cardiovascular
         
       
     Spirulina    

studies indicated that the Spirulina consumption could lead to the

      
 

Spirulina           
       
 
       


       
        
    Spirulina platensis can be used as a source
     
Spirulina platensis presented higher protein content
       
Spirulina platensis
  .      
       
        

       
Spirulina platensis



   Spirulina were studied
         
      

     Chlorella vulgaris
and Spirulina maxima was compared to standard semolina
   

  

and textural properties were observed.
Figure 5:       
      
   
   
    

Figure 6:       

Citation:Chlorella and Spirulina

Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and
Food Supplements; an Overview 10/14
Copyright:
©2018 Andrade et al.
Microalgae in animal nutrition: 

        
with Chlorella       
       
          Spirulina
Chlorella 
        
       
      

        
      

Spirulina platensis in the rabbit with high blood serum cholesterol
levels decreased the cholesterol levels and also increased high-

   Spirulina platensi     

         
Spirulina platensi
 Chlorella
and Scenedesmus      
   
    

   Chlorella and Spirulina
           
        
    Chlorella and Spirulina
        
          
         
       
        
nutraceutical terms.

  
      
alternative and also because they contain almost all nutrients that

    Chlorella    
      
  Carassius auratus gibelio
Chlorella 
 
   

Chlorella 
Chlorella 

   Chlorella vulgaris   

        
Chlorella 

        
Chlorella meal supplemented by dietary cellulase to crucian cap
Carassius auratus     
      
expression they conclude that Chlorella meal could totally replace

Spirulina         
       Spirulina-based diet
      Spirulina  Spirulina
         
      Maylandia
lombardoi 
Spirulina three times a day were higher

Conclusion

       
      
       
   

   


        
      
   Spirulina    
        



    
       
        

Acknowledgement

    

Conicts of Interest

References
1.         

2. 

3. 
     
Tetraselmis suecica  

Citation:Chlorella and Spirulina

Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and
Food Supplements; an Overview 11/14
Copyright:
©2018 Andrade et al.
4.        

Spirulina platensis by proteomic analysis.

5. 
production by Arthrospira platensis 

6.     
      

7.  

8.            
   Phaeophyta  

9.            
   Chlorella vulgaris and Spirulina maxima
     

10.          
      

11.    


12.          


13. 

14.    
   Spirulina sp. And its antioxidant
capacity. 
15. 


16.          

17.            
   Spirulina
platensis
18. 
Spirulina platensis

19.          
th
20. 
  

21.    
Anandamide and arachidonic acid use epoxyeicosatrienoic acids to

22.          
        

23.   

24.        
       

25.     
     


26.            

27.          

28.            
        


29.          
  

30. 
Chlorell

31. 

       

32.       
Spirulina platensis protean extract.  Farmaco

33. 
        

34.         
       

35.          
         Balanus
amphitrite amphitrite 
36. 
       Cystoseira
baccata        

37. 
   
         

38.          
    


Citation:Chlorella and Spirulina

Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and
Food Supplements; an Overview 12/14
Copyright:
©2018 Andrade et al.
39.           
     
 Chlorella sp. microalgae and assessment on its antioxidant

40. 
  Spirulina maxima microalgae and its protective
 in vitro      

41.          
  
      

42.    
       

43.    
    
    
     

44. 
   

45.         
        

46.           
       by

47.         
      

48.       

49.         
        

50.          
Euglena gracilis        

51.          
        

52.           
odorous and bioactive metabolites: impacts and management

53.           
  Isochrysis galbana and Diacronema vlkianum biomass
        

54.           
 

55. 
 Sargassum polycystum   Laurencia obtuse

56.         
          
Spirulina fusiformis
57.            
      
Chlorella vulgaris
58.         
Chlorella vulgaris and their phytotoxic

59. 
     

60.         
      nd  

61. 

62.          
     

63.         

64.       

65.  
   Chlamydomonas reinhardtii   

66. 
      Chlorella vulgaris on
  

67.      Spirulina maxima. Phytochemistry

68.             
     Spirulina platensis.

69.         

70.   

71.            
protein in comparison to animal and vegetable protein. Food Chem

72.          
       
st

73. 
      Chlorella
pyrenoidosa.
74.    
    
      


Citation:Chlorella and Spirulina

Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and
Food Supplements; an Overview 13/14
Copyright:
©2018 Andrade et al.
75.           
Spirulina sp. and Chlorella pyrenoidosa 

76.  

77.         
        
       

78.      


79.      
       

80.            

     

81.         
         
st

82.            
       
 
83.         
Chlorella vulgaris on liver toxicity in cadmium-administered
 
84.          
         
     
acids in multiple sclerosis. Med Hypotheses 
85.           


86.  
    nd  

87.         
       

88.            
         

89.          

Spirulina platensis microalga. 
90.            

Pseudomonas 
91.              

Chlorella pyrenoidosa. 
92. 
      
     Spirulina platensis
  and Chlorella pyrenoidosa. Planta Med

93.            

Spirulina platensis
94.          
   
green alga Arthrospira platensis     

95. 
 

96. 
     

97.           
Phycobiliprotein: potential microalgae derived pharmaceutical and

98.         

Chlorella salina

99.            
       

100. 
      

101. 
the microalga Chlorella vulgaris 

102.          

103.          
enriquecidos com Spirulina platensis

104. 
      Chlorella
vulgaris
105. 
úten enriquecido com a microalga Spirulina platensis

106.           
          
         

107. 
   Chlorella genus on the biochemical

108.             
          

Citation:Chlorella and Spirulina

Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and
Food Supplements; an Overview 14/14
Copyright:
©2018 Andrade et al.
109.           


110.         Spirulina platensis
    


111.           
     
            

112. 
  Spirulina platensis     

113.                
Chlorella     
Carassius auratus gibelio

114. 
 Chlorella vulgaris on blood and immunological parameters
    Salmo trutta caspius    

115.    
replacement by Chlorella meal with dietary cellulase addition on
      
      Carassius auratus.

116.    
        
    Maylandia lombardoi  

... Recently, microalgae have been introduced in animal feed as a feasible replacement for fish meal, a good source of polyunsaturated fatty acids [16]. Moreover, it has been reported to have a valuable role in improving immunity, growth performance, and meat quality [17,18]. ...
... One of the green microalgae, Chlorella vulgaris (CLV), has an enormous nutritional value, since it is rich in various macro-and micronutrients. It contains polysaccharides, essential amino acids, essential fatty acids, more than 20 vitamins and minerals, and pigments [16]. Previous studies have attributed CLV's antioxidant, hepatoprotective, anti-inflammatory, and growth-promoting properties to its wide range of bioactive nutrients [17,19]. ...
... Relevant studies have confirmed the protective efficacy of CLV against diazinon [19], deltamethrin [31], and sodium nitrite [32] toxicity. They attributed the ameliorative effect of CLV against hepatic toxicity of various toxicants to its antioxidant and ROS scavenging activities due to the vitamins and polyphenolic content [16]. Consistently, the observed improvements in liver function and oxidant/antioxidant state in the present investigation in birds co-administrated with AF and CLV might be due to the aforementioned reasons. ...
Article
Full-text available
Aflatoxins (AFs) are the most detrimental mycotoxin, potentially hazardous to animals and humans. AFs in food threaten the health of consumers and cause liver cancer. Therefore, a safe, efficient, and friendly approach is attributed to the control of aflatoxicosis. Therefore, this study aimed to evaluate the impacts of Chlorella vulgaris (CLV) on hepatic aflatoxicosis, aflatoxin residues, and meat quality in quails. Quails were allocated into a control group; the CLV group received CLV (1 g/kg diet); the AF group received an AF-contaminated diet (50 ppb); and the AF + CLV group received both treatments. The results revealed that AF decreased the growth performance and caused a hepatic injury, exhibited as an increase in liver enzymes and disrupted lipid metabolism. In addition, AF induced oxidative stress, exhibited by a dramatic increase in the malondialdehyde (MDA) level and decreases in glutathione (GSH) level, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Significant up-regulation in the inflammatory cytokine (TNF-α, IL-1β, and IL-6) mRNA expression was also documented. Moreover, aflatoxin residues were detected in the liver and meat with an elevation of fat% alongside a decrease in meat protein%. On the other hand, CLV supplementation ameliorated AF-induced oxidative stress and inflammatory condition in addition to improving the nutritional value of meat and significantly reducing AF residues. CLV mitigated AF-induced hepatic damage, decreased growth performance, and lowered meat quality via its antioxidant and nutritional constituents.
... Microalgae are also known as sources of long-chain polyunsaturated fatty acids (PUFA), including omega-3 and omega-6. Foods containing PUFAs are considered sustainable foods that improve human health and have protective, controlling and curative properties against various diseases, including chronic diseases (Andrade et al., 2018). Basic algae derived sterols are stigmasterol, isofucosterol, fucosterol, cholesterol and clionosterol. ...
... Chlorella and Spirulina are mostly applied in tablet, capsule, and liquid form for nutritional supplements because of their high nutritional value and ease of growth. Moreover, an edible cyanobacterium Spirulina platensis has gained worldwide attention as a food additive due to its high nutritional value as a human food (Andrade et al. 2018;Batista et al. 2017;Martelli Page 19 of 30 Zhang et al. Food Production, Processing and Nutrition (2022) 4:23 Kumar et al. 2020;Dmytryk et al. 2015;Güçlü-Üstündağ et al. 2005 Pressurized solvent extraction Hossain et al. 2011;Turner & Waldebäck 2013;Reighard & Olesik 1996;Denery et al. 2004 Page 20 of 30 Zhang et al. ...
Article
Full-text available
Seaweed has emerged as one of the most promising resources due to its remarkable adaptability, short development period, and resource sustainability. It is an effective breakthrough to alleviate future resource crises. Algal resources have reached a high stage of growth in the past years due to the increased output and demand for seaweed worldwide. Several aspects global seaweed farming production and processing over the last 20 years are reviewed, such as the latest situation and approaches of seaweed farming. Research progress and production trend of various seaweed application are discussed. Besides, the challenges faced by seaweed farming and processing are also analyzed, and the related countermeasures are proposed, which can provide advice for seaweed farming and processing. The primary products, extraction and application, or waste utilization of seaweed would bring greater benefits with the continuous development and improvement of applications in various fields. Graphical Abstract
... These items are utilized in broad spectrum from human supplements to animals feed and the natural chemicals are harvested for pharmaceuticals, pigments, and different other industry and energy applications, like biodiesel, bioethanol, biobutanol, acetone, and bio methane. The protein and carbohydrate content in various species of microalgae is very high, up to 50% of the dry weight [54]. The lipid substance in microalgae is moreover around 40% on wt. and is sensibly great which makes microalgae a potential source for bio-oil generation. ...
Chapter
Full-text available
Aquaculture suffers from bad soil conditions and leads to higher mortality, disease incidence, and decrease in yield. Soil deterioration in aquaculture ponds is mainly due to the excess feed, fecal matter of the cultured organism such as shrimp and fish, dead animals. Two major gases cause problems namely hydrogen sulphide and ammonia. Unless we understand the nitrogen cycle and sulphur cycle in the bond ecosystem, the solution is impossible. Nitrogen from amino acids, proteins, nucleic acid, and minerals from feed supplements, etc., from organic matter accumulated as mentioned from the sources above, is converted to ammonia by group of bacteria called nitrogen reducers. Sulphur from sulphur-containing amino acids, proteins, and minerals are converted to hydrogen sulphide by sulphur reducing bacteria. Nature has both oxidizing and reducing bacteria and in perfect harmony. In a man�made system one overtakes the other. In recent years, there has been growing interest in bio control of microbial pathogens in aquaculture using antagonistic micro-organisms. Remediation of these unpleasant and unwanted problems in aquaculture there is a need of probiotics in shrimp culture through feed and/or water to prevent the aquaculture ponds from undergoing eutrophication and to control the microbial diseases in shrimps and enhance their growth rate and survival in an ecofriendly ambiance without the use antibiotics thus, resulting in quality assurance, quality control and above all environmental safety.
... These items are utilized in broad spectrum from human supplements to animals feed and the natural chemicals are harvested for pharmaceuticals, pigments, and different other industry and energy applications, like biodiesel, bioethanol, biobutanol, acetone, and bio methane. The protein and carbohydrate content in various species of microalgae is very high, up to 50% of the dry weight [54]. The lipid substance in microalgae is moreover around 40% on wt. and is sensibly great which makes microalgae a potential source for bio-oil generation. ...
Book
Full-text available
Modern aquaculture, which includes the culture of fish, shellfish (crustacean and mollusks) and plants (algae), is now a major growth sector in world fisheries production. Success in aquaculture development is tied to prudent management of information which ensures availability of appropriate science and technology in forms useful to those who need it. New dimensions of both scientific and economic applications are emerging continuously, and broad-based, efficient transfer and diffusion mechanisms for this information are key requirements if expansion of this industry is to continue. Aquaculture is undertaken in almost every country in the world, and an immediate need is foreseen for a unified, comprehensive programme for gathering, processing and disseminating information internationally. This book aims at providing knowledge in aquaculture in various aspects imbibing information pertaining to technologies and research carried out in blue revolution. The book is written in such a way that it can easily be used as a reference book for gaining knowledge regarding the technological advancements and research activities in aquaculture such as algae, shrimp culture, aquaponics and probiotics to mention a few. This book will certainly provide delight to the readers and equip them with advanced knowledge in aquaculture. It also presents and discusses the most recent innovations, trends and concerns as well as practical challenges encountered, and solutions adopted in the field of aquaculture and its applications.
... These items are utilized in broad spectrum from human supplements to animals feed and the natural chemicals are harvested for pharmaceuticals, pigments, and different other industry and energy applications, like biodiesel, bioethanol, biobutanol, acetone, and bio methane. The protein and carbohydrate content in various species of microalgae is very high, up to 50% of the dry weight [54]. The lipid substance in microalgae is moreover around 40% on wt. and is sensibly great which makes microalgae a potential source for bio-oil generation. ...
Chapter
Full-text available
In the present study, the bioluminescent bacteria Photobacterium leiognathi was isolated and identified by biochemical analysis from marine squid. 30 samples were collected from marine squid where nine isolates were identified as non-luminescent, and a single luminescent bacterium was identified. The isolated bacteria Photobacterium leiognathi was subjected to genomic DNA and restriction site analysis and the results were interpreted.
Article
Full-text available
The aim of this study was to select a lactic acid bacteria (LAB) strain for bio-conversion of Spirulina, a cyanobacteria (“blue-green algae”), into an ingredient with a high concentration of gamma-aminobutyric acid (GABA) for human and animal nutrition. For this purpose, ten different LAB strains and two different fermentation conditions (SMF (submerged) and SSF (solid state fermentation)) were tested. In addition, the concentrations of fatty acids (FA) and biogenic amines (BA) in Spirulina samples were evaluated. It was established that Spirulina is a suitable substrate for fermentation, and the lowest pH value (4.10) was obtained in the 48 h SSF with Levilactobacillus brevis. The main FA in Spirulina were methyl palmitate, methyl linoleate and gamma-linolenic acid methyl ester. Fermentation conditions were a key factor toward glutamic acid concentration in Spirulina, and the highest concentration of GABA (2395.9 mg/kg) was found in 48 h SSF with Lacticaseibacillus paracasei samples. However, a significant correlation was found between BA and GABA concentrations, and the main BA in fermented Spirulina samples were putrescine and spermidine. Finally, the samples in which the highest GABA concentrations were found also displayed the highest content of BA. For this reason, not only the concentration of functional compounds in the end-product must be controlled, but also non-desirable substances, because both of these compounds are produced through similar metabolic pathways of the decarboxylation of amino acids.
Article
Full-text available
This research aimed to develop blends of corn starch and poly(butylene adipate‐co‐terephthalate) (PBAT) films by blown film extrusion with the addition of biomass of Chlorella pyrenoidosa (CP). Two ultrasound tracts disrupted CP biomass: ultrasound bath and ultrasonic probe. The influence of CP biomass and disrupted CP biomass on the physical, mechanical, barrier, structural, and thermal properties of starch/PBAT films was evaluated. The film with higher content (5.0%) of CP biomass showed better values in tensile strength (TS) (4.37 MPa) and elongation (88.43%), and lower water vapor permeability (WVP) (5.19 × 10⁻¹¹ g m⁻¹ s⁻¹ Pa⁻¹) than the film incorporated with disrupted CP biomass. The ultrasound treatment applied to the cell disruption of the microalgae did not present improvements in the properties of the films. In this context, the cell disruption of CP biomass by ultrasound for incorporation into biodegradable films was not feasible. However, it was possible to produce starch/PBAT/microalgae films with potential application as food packaging due to natural bio‐pigmentation's protection system against ultraviolet light. Practical Applications Films produced by blown extrusion from starch, PBAT, and CP microalgae biomass have the technological potential to be used as packaging for food products. Starch and PBAT blends are widely studied. The incorporation of PBAT is necessary to confer adequate mechanical properties to the extruded material. The plastic industries already use the blown extrusion method, allowing biodegradable packaging development on an industrial scale.
Article
Traditional fossil fuels used today have innumerable adverse effects on man and environment. Fuel derived microalgae is reported to be quite a healthier and eco-friendly alternative, as it contains lesser sulphur contents. This current review focuses on the application of nanoparticles in conjugation with microalgae for fuel quality production based on their effect on algal biomass and lipid profile. Processing of the microalgae leads to fuel generation of different viability and precision. Cultivation mode used, harvesting technique utilized and extraction procedure followed will determine the fuel quality and cost associated with it. Nanoparticles can complement any nutritional deficiencies pertaining to growing microalgae in wastewater or ponds. They can stimulate rapid absorption of nutrients and lipid accumulation with antibacterial properties. Aluminium nanoparticles have been reported to enhance the growth in Chlorella sp. by 19 % in a span of 4 days. Lower concentrations seem to favour the growth and biomass quality in microalgae. Iron nanoparticles incorporated in nanofibers of polymer are reported to have higher capture of gas molecules as well as an increase in biomass (794 mg/L) in Chlorella fusca. However, the limit of nanoparticles administration varies from species to species. Iron and zinc nanoparticles have been administered in maximum dosages up to 1000 mg/L till date. The current review highlights the possible application of nanomaterials on microalgal growth and their effect on lipid accumulation, which determines the quality of fuel generated by these strains.
Chapter
Microalgae are considered as a valuable source of bioactive components such as proteins, carbohydrates, vitamins, pigments, and essential fatty acids with multiple applications in the food and fuel industries. Microalgal-derived components can be used both as functional food and as nutritional additives. These microorganisms can be appraised as a sustainable resource because of their interesting characteristics such as high growth rate, ability to fix carbon dioxide, no soil requirement, ability to grow throughout the year, and biodegradability. The critical steps for the valorization of microalgal biomass include the selection of suitable strains of microalgae, cultivation, growth, harvesting, pretreatment, extraction, and purification. The factors affecting the accumulation and thus yield include temperature, pH, composition, mixing, etc. Although some microalgae species have been utilized as food sources for over a thousand years, their commercialization is still not accomplished. Integrated technologies for microalgae cultivation are currently being pursued to isolate various biologically active substances from biomass to improve the profitability of algae development. The ability to control the biosynthesis of biologically valuable compounds in environments of intensive culture growth is required to implement this form of production. More research and data are necessary, especially for new microalgal strains, increased accumulation of desired content in the cell (genetic engineering), and finally, the up-gradation of downstream processes. To make the process economically feasible, integration of the whole process and extraction without degrading other by-products is required.
Article
Full-text available
Chlorella and Spirulina are the two of the most well-known microalgae genus. Both microalgae genus have a significant content of proteins, vitamins, pigments, fatty acids, sterols, among others, which make their production/application by the food industry quite interesting. Chlorella genus is a eukaryotic microorganism, whereas Spirulina genus (cyanobacteria) is a prokaryotic microorganism. The aim of this review was to provide an overview on Chlorella and Spirulina microalgae, particularly as an alternative source of functional foods, nutraceuticals, and food supplements, in which the following compound groups were addressed: (I) Long-Chain Polyunsaturated Fatty Acids; (II) Phenolic Compounds; (III) Volatile Compounds; (IV) Sterols; (V) Proteins, Amino Acids, Peptides; (VI) Vitamins; (VII) Polysaccharides; (VIII) Pigments and (IX) Food. Chlorella and Spirulina microalgae and their derivatives are concluded not to be widely commercially exploited. However, they are remarkable sources of functional foods, nutraceuticals and food supplements.
Article
Full-text available
Chlorella sp . microalgae is a potential source of antioxidants and natural bioactive compounds used in the food and pharmaceutical industries. In this study, a subcritical water (SW) technology was applied to determine the phenolic content and antioxidant activity ofChlorella sp. This study focused on maximizing the recovery ofChlorella sp.phenolic content and antioxidant activity measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay as a function of extraction temperature (100-250 °C), time (5-20 min) and microalgae concentration (5-20 wt. %) using response surface methodology. The optimal operating conditions for the extraction process were found to be 5 min at 163 °C with 20 wt. % microalgae concentration, which resulted in products with 58.73 mg gallic acid equivalent (GAE)/g phenolic content and 68.5% inhibition of the DPPH radical. Under optimized conditions, the experimental values were in close agreement with values predicted by the model. The phenolic content was highly correlated (R² = 0.935) with the antioxidant capacity. Results indicated that extraction by SW technology was effective and thatChlorella sp. could be a useful source of natural antioxidants.
Article
Full-text available
A nearly 40-year debate on the origins of carbon supporting animal production in lotic systems has spawned numerous conceptual theories emphasizing the importance of autochthonous carbon, terrestrial carbon, or both (depending on river stage height). Testing theories has been hampered by lack of adequate analytical methods to distinguish in consumer tissue between ultimate autochthonous and allochthonous carbon. Investigators initially relied on assimilation efficiencies of gut contents and later on bulk tissue stable isotope analysis or fatty acid methods. The newest technique in amino acid, compound specific, stable isotope analysis (AA-CSIA), however, enables investigators to link consumers to food sources by tracing essential amino acids from producers to consumers. We used AA-CSIA to evaluate nutrient sources for 5 invertivorous and 6 piscivorous species in 2 hydrogeomorphically contrasting large rivers: the anastomosing Upper Mississippi River (UMR) and the mostly constricted lower Ohio River (LOR). Museum specimens we analyzed isotopically had been collected by other investigators over many decades (UMR: 1900–1969; LOR: 1931–1970). Our results demonstrate that on average algae contributed 58.5% (LOR) to 75.6% (UMR) of fish diets. The next highest estimated contributions of food sources were from C3 terrestrial plants (21.1 and 11.5% for the LOR and UMR, respectively). Moreover, results from 11 individually examined species consistently demonstrated the importance of algae for most fish species in these trophic guilds. Differences among rivers in relative food source availability resulting from contrasting hydrogeomorphic complexity may account for relative proportions of amino acids derived from algae.
Article
Full-text available
Kenyi cichlids belong to mbuna group which is specific to Lake Malawi. Gender discrimination is easy because males have yellow, females have blue colors and their spawning efficiency is good. Cichlid producers prefer kenyi cichlids in recent years due to reproduction performance and coloring of kenyi. In this study, effects of Spirulina-based diet and feeding frequency on coloration, seed production, growth and survival on kenyi cichlids (Maylandia lombardoi) were investigated for 112 days. The study was carried out in a recirculating system which has 100 L each tank and 12 fiberglass tanks with three replicates. Ten fish (3 months old, mean body weight 2.00 ± 0.05 g and mean total length 4.51 ± 0.42 cm) were randomly placed in each tank. Experimental groups were designed with commercial granule (C) and commercial granule Spirulina (S) feeds. In the present study, two feeding frequencies were applied: one feeding daily at 09:00 (namely C1, S1) and three times daily at 09:00, 12:00 and 17:00 (namely C3, S3). The growth and seed production of cichlid fed three times daily were significantly higher compared to fish fed one feeding daily, irrespective of feed source (P < 0.05). Moreover, the specific growth rate of cichlid fed Spirulina-based diet was significantly elevated compared to fish fed non-Spirulina-based diet. The Spirulina-based diets affected skin coloration giving a bluish hue and a typical chroma values for the females of kenyi cichlid. In conclusion, growth performance, seed production and skin coloration of kenyi cichlid fed Spirulina diets three times daily enhanced under the study condition.
Article
The cultivation of microalgae is of great interest due to the high yields and rapid growth rates that can be produced. The fatty acids from microalgal biomass may have therapeutic effects for humans and can be used for biodiesel production. The aim of this study was to evaluate the fatty acid profile of microalgae grown in a heterotrophic mode. Cultures that were carried out with BG11 medium supplemented with 10 g.L⁻¹ of glucose produced the highest cellular concentrations (1.62; 1.53; 1.14 g.L⁻¹) for Chlorella sp., C. homosphaera and C. minutissima, respectively, while the assays without glucose remained at a cellular concentration equal to that at the beginning of the experiments (0.15 g.L⁻¹). The microalga C. homosphaera grown in BG11 supplemented with 10 g.L⁻¹ of glucose had the highest concentration of lipids in dry biomass (22.4% w/w). The maximum concentration of total PUFA (35.25% w/w) and essential fatty acids (35.05% w/w) was found in C. homosphaera in Basal medium without glucose, which is the most suitable method for producing PUFAs and essential fatty acids.
Article
In the present study, we investigated the effect of dietary supplementation with microalgae rich in DHA (C22:6n3) on the fatty acid composition of different fat deposits and muscles in light lambs. Two dietary treatments were studied: control (CT) and microalgae (MT), containing 2% of DHA- rich microalgae. Dietary incorporation of microalgae modified fatty acid composition in all anatomical locations studied (intramuscular, subcutaneous and kidney knob and channel fat); however, intramuscular fat was the most affected deposit. Intramuscular fat of MT lambs had higher levels of DHA (3.35%) and total n3 fatty acids (5.71%), than that of CT lambs (0.25 and 1.23% respectively). Dietary supplementation with microalgae produced a greater proportion of DHA and total n3 in M. Infraspinatus (IM) (5.12 and 8.13% respectively) compared with M. Longissimus (LM) (3.35 and 5.71% respectively) and M. Psoas major (PM) (3.62 and 6.24% respectively). Dietary supplementation with microalgae enhanced the nutritional quality of lamb muscle with more favourable PUFA/SFA and n6/n3 ratios in conjunction with increased levels of DHA and total n3 fatty acids.
Article
This study aimed on modern analytical techniques for the isolation, separation and structural identification of the essential bioactive carotenoid Lutein, from green microalga, Chlorella salina. Identification was done by comparing their absorption and mass spectral data with those of reference standard values reported. The extract is separated by selective C18 columns and the data were then combined with spectroscopic information. Structural assignment of the separated compound is done by HR-MS. The results of the spectral investigation showed that the isolated pigment showed absorbance peak at 445 nm. Total luminescence spectra were recorded by measuring the emission spectra in the range 350–720 nm at an excitation wavelength of 455 nm. The excitation-emission matrices were recorded and two basic fluorescence regions have been obtained. The compound was resolved within 4.36 min by using a C18 column with a flow rate at 1 ml/min and detection at 450 nm. The compound was detected by a High Resolution Orbitrap-MS with regard to specificity and sensitivity (with limits of detection ranging from 1.0 to 3.8 pg μL−1).
Article
Purpose of review Phytosterols are plant sterols structurally similar to cholesterol that act in the intestine to lower cholesterol absorption. Because they have very low systemic absorption and are already present in healthy diets, increasing the intake of phytosterols may be a practical way to reduce coronary heart disease with minimum risk. Recent findings Phytosterols displace cholesterol from intestinal micelles, reducing the pool of absorbable cholesterol, but they are also rapidly taken up by enterocytes and increase expression of the adenosine triphosphate-binding cassette A 1 sterol transporter. Phytosterol esters dissolved in food fat reduce LDL-cholesterol by 10% at a maximum effective dose of 2 g/day. However, this work probably understates the true effectiveness of phytosterols because it does not account for those naturally present in baseline diets. Single meal studies show that phytosterols in intact foods are bioactive at doses as low as 150 mg. The potential effectiveness of phytosterols has been improved in several ways. Individuals most likely to respond have been identified as having high cholesterol absorption and low cholesterol biosynthesis. Phytosterols can be emulsified with lecithin and delivered in non-fat or low-fat foods and beverages, and the amount of fat in fat-based preparations can be reduced substantially with the retention of bioactivity. Summary Phytosterols effectively reduce LDL-cholesterol when given as supplements, and the smaller amounts in natural foods also appear to be important. Future work will focus on the better delivery of phytosterols in natural foods and supplements and on further defining the mechanisms of action.