ArticlePDF Available

Preserving the natural landscape on the construction site for sustainable ecosystem

Authors:

Abstract

Development and extension of urban infrastructure increasingly frequently involves the areas with compound relief forms. From the environmental point of view it is vitally important to preserve the unique landscapes for future generations. Innovative approaches meant to stabilize and reinforce ground on the building construction sites, particularly on slopes, solve the defined engineering problem. The paper addresses a case study of geotechnical design and construction practice in the complex conditions.
doi:10.5937/jaes15-14719 Paper number: 15(2017)4, 482, 518 - 523
PRESERVING THE NATURAL LANDSCAPE
ON THE CONSTRUCTION SITE FOR SUSTAINABLE ECOSYSTEM
Nikolay Sokolov1* Sergey Ezhov1 Svetlana Ezhova2
1Chuvash State defense University named after I.N. Ulyanov
2 Volga State Technological University, Russia
Development and extension of urban infrastructure increasingly frequently involves the areas with compound relief
forms. From the environmental point of view it is vitally important to preserve the unique landscapes for future gener-
ations. Innovative approaches meant to stabilize and reinforce ground on the building construction sites, particularly
on slopes, solve the de ned engineering problem. The paper addresses a case study of geotechnical design and
construction practice in the complex conditions.
Key words: Ecology of capital construction, Conservation of landscape, Slope stability, Stabilization of geomorpho-
logical processes, Constrained environment, Drilling injection pile for electric-discharge technology
Original Scienti c Paper
* Chuvash State defense University named after I.N. Ulyanov, Moscow Avenue 15, Cheboksary, Chuvash Republic,
428003 Russia, ns_sokolov@mail.ru 518
INTRODUCTION
As a result of geomorphological processes the ground
surface developed unique landscapes. Landscape is a
genetically homogeneous territorial complex with repre-
sentative conditions [01]. In the 21st century it is import-
ant to preserve the natural landscape by adjusting the
buildings and constructions to the established landscape
scene, non-destructively towards the existing harmony
and ecology, thus, supporting the current ecosystem.
The contemporary urbanized processes increasingly fre-
quently embrace the areas, which are not quite suitable
for the capital construction. Slope development requires
a particular approach ensuring soil stability. The core
concern in such geotechnical case is the landslide con-
trol planning and implementation aimed at stabilizing the
unique natural relief.
Nizhny Novgorod is located on the adjacent banks of the
Volga River with a typical river valley relief, signi cant
elevation differences and complex hydrology. The situ-
ation on building sites is complicated by the presence
of various underground utility systems, which make the
solution of the engineering tasks of relief reinforcement
more dif cult and enhance the necessity of slope stabili-
zation and further landslide control.
Drilling injection piles (electric-discharge technolo-
gy EDT -piles) (RU 2318961 C2, RU 2318960 C2, RU
2250958 C2, RU 2250959 C2, RU 2282936 C1) and
ground anchorages (electric-discharge technology EDT
-anchorages) (RU 161650 U1, RU 2605213 C1) [02-17]
produced based on electric-discharge technology (EDT)
were used as the construction elements ensuring slope
stability when constructing a municipal building in Nizhny
Novgorod.
The technological consequence of EDT pile and EDT
anchorages installation (Figure 1) represents a number
of stages: 1. Well drilling (Stage 1); 2. Well ll-up with
ne concrete (stage 2); 3. Electrohydraulic processing
of the wellbore (stage 3); 4. De nition of absolute eleva-
tions of the possible enlargements along the well based
on elecro-hydraulic processing results (Stages 4-5);
5. Reinforcing of the well lled in with ne concrete by
eletro-hydraulic installation of reinforcement cage (Stage
6).
Particular attention should be paid to Stage 4. Electro-
hydraulic processing of the pile shaft lled with ne con-
crete is examined for the loose ground layer (Stage 3).
Absolute elevations of loose ground are entered into a
site diary. It is worthwhile keeping in mind that a loose
ground layer (particularly for EDT technology) is charac-
terised by increased values of ne concrete subsidence
observed visually or using geodetic instruments. As a
rule the enlargements are established on the elevations
with the increased values of concrete subsidence. Elec-
tro-hydraulic processing on these elevations is carried
out until the zero values of subsidence are obtained
(Stage 5). The enlargement sizes (the volume measured
in cubic meters and the radius, measured in metres) can
be de ned using formula 4 [02]. The nal stage (Stage 6)
involves reinforcing of the well of eletro-hydraulic instal-
lation with a reinforcement cage.
As a result of the patented innovative electric discharge
processing there are additional roughness and exten-
sions formed on the sidewall of a pile and the anchorage.
Due to the enlargements (Figure 1) the carrying capacity
of a pile increases signi cantly due to the increase of
the contact surface between a pile and the ground. As a
result the anchorage provides a better and more reliable
support than an ordinary pile of the same length.
In terms of its geomorphology the construction site
is located on the high right bank of the Volga River
(Figure 2). The surface of the construction site is uneven.
The surface continuous gradient is to the North. The ele-
vations of the surface vary from 140 to 148 m. The slope
height on the site is 79-80 m. Accessibility to the shafts
are hindered.
Journal of Applied Engineering Science 15(2017)4
Figure 1: Technological structure system of EDT-piles
Stages 1 and 2 – design of piles and its lling with a concrete mix, Stages 3,4,5 – electric-discharge processing
of a wellbore wall and the bottom, Stage 6 – subsidence of the reinforcement cage
Designating symbols: 1 – ight auger, 2 – auger valve, 3 – electric emitter, 4 – spatial reinforced cage,
5 – enlargements (bearings)
Figure 2: Site plan of the construction project
Nikolay Sokolov - Preserving the natural landscape on the construction site for sustainable ecosystem
, 482 519
Journal of Applied Engineering Science 15(2017)4,
There are underground utility systems going across the
site (storm water sewage and drainage system).
The geological structure of the site to a depth of 20-60 m.
(Figure 3) is represented by Middle Quaternary diluvial
and soli ual formations – loess soils sediments of the
Middle Permian - clays with interbedded marls and al-
euritic, pulverescent and ne polymictic sands. The sed-
iments are topped off with contemporary formations- ll
up ground, represented by ne quartz sand, loam with
crushed bricks, stones and construction waste amount-
ing to 10-30%. In the pile wells No 6 and No 7 the ll-up
ground is represented by break stone and slack with in-
clusion of organic substances.
The hydrological conditions to a depth of 60 m (elevation
mark 88.0 m) are characterized by the presence of a wa-
482
520
Nikolay Sokolov - Preserving the natural landscape on the construction site for sustainable ecosystem
Engineering and geological section
along the line I-I
Engineering and geological section
along the line II-II
ter bearing formation dating back to Permian deposits. In
the course of borehole surveying (June 2012), the water
bearing formation was broached by the bore pile No 3 at
a depth of 29.0. marked 101.6 m. The established lev-
el was xed at a depth of 28 m. marked 102.6 m. The
horizon is with weak ow, the velocity value is 1.0 m.
Water bearing materials are represented with polymict
sands as well as fractured marl and clay. Aquicude rep-
resent compact varieties and Middle Permian deposits.
The horizon is recharged with atmospheric precipitations
at places where the formations are coming out to the
surface.
Table 1 provides performance standard and estimated
ground characteristics of engineering and geological el-
ements (for α = 0.95).
Figure 3: Engineering and geological sections
(1- loam solid; 2- solid clay; 3- marl; 4- pulverescent sand; 5- back ll soil)
No
EGE
Name of an engineering and geological
element (EGE)
Estimated characteristics,
α=0.85
Estimated characteristics,
α=0.95
ρII,g/cm3сII, kPa φII,degree ρI, g/cm3сI, kPa φI,degree
1Loess loam, loam solid, semi-solid,
low-plastic, subsiding 2.02 25/21 15/14 2.01 13/11 14/13
2Solid clay with marl and
aleurite interlayers 1.94 99 25 1.93 95 24
3Loamy marl with clay and
aleurite interlayers 1.91 51 15 1.89 27 7
4Fine, pulverescent, polymict,
slightly wet sand 1.85 1.4 30 1.81 0.18 24
5Back ll soil: breakstone,
slack of carbonaceous rock Not de ned by tables СП 22.13330.2011
Table 1
Journal of Applied Engineering Science 15(2017)4
Nikolay Sokolov - Preserving the natural landscape on the construction site for sustainable ecosystem
, 482 521
The analysis of slope stability taken together with a piling
wall of drilling injection EDT-piles and EDT anchorages
was carried out using GeoWall and GeoStab software.
Based on the research results of the soil force (Figure 4),
a piling wall was designed (Figure 5) of drilling injection
EDT-piles Ø 400 mm spaced at intervals of 700 mm and
two layers of ground anchorage.
Construction of the anchored piling wall presumes the
following operating procedure:
1. Fencing of excavation made from drilling injection
piles spaced at intervals of 700 mm (Figure 6);
2. Ground digging for the rst layer of EDT ground an-
chorages;
3. Installation of the EDT ground anchorages of the rst
layer;
4. Upon the completion of the routine break necessary
for solidifying of ne concrete at the anchorage root
there is a post-tensioning of EDT anchorages along
the preliminarily mounted anchorage belt;
5. Ground digging for the second layer of EDT ground
anchorages;
6. Installation of the EDT ground anchorages of the
second layer;
7. Upon the completion of the routine break necessary
for solidifying of ne concrete at the anchorage root
there is a post-tensioning of EDT anchorages along
the preliminarily mounted anchorage belt;
8. Ground digging up to the low foundation plate.
CONCLUSION
Accurate estimation of geological and hydrologic condi-
tions on a construction site and the engineering analysis
based on the GeoWall and GeoStab software in terms
of designation of ground anchoring construction and a
pile wall, which enabled to provide stability of the slope
ground against landslide which is proved by the two
years of exploitation of the constructed building, Thus,
the use of the patented method of EDT pile and EDT
anchorage installation enabled to build a capital con-
striction in complex conditions with minimum damage to
the natural environment preserving its uniqueness. The
intervention on the construction stage didn’t disturb the
ecology and preserved the geomorphological process-
es, which in its turn exerted a minimum impact on the
change of ecosystem on the construction site on a high
and beautiful bank of the Volga River.
Figure 4: Displacement and bending moment diagrams
(1- loam solid; 2- solid clay; 3- marl; 4- bending moment diagram; 5- displacement diagram)
Journal of Applied Engineering Science 15(2017)4, 482
522
Nikolay Sokolov - Preserving the natural landscape on the construction site for sustainable ecosystem
Diagram layout of the ground anchorages –EDT of the 1st layer
a)
b)
Diagram layout of the ground anchorages –EDT of the 2nd layer
Figure 5: The scheme of the piling wall with ground anchorages
Figure 6: Section of the piling wall
(1- loam; 2- solid clay; 3- clay; 4- ground anchorages for electric discharge technology; 5- drilling injection piles
for electric discharge technology; 6- foundation slab; 7- oor slabs; 8- beam; 9- ground surface; 10- railing;
11 –truck mounted crane at the stage of pile drilling)
Journal of Applied Engineering Science 15(2017)4, 482 523
Nikolay Sokolov - Preserving the natural landscape on the construction site for sustainable ecosystem
REFERENCES
1. Annenskaya GN, Zhuchkova VK, Konovalenko VG
and etc. (1962) Morphological structure of the geo-
graphical landscape. Moscow: Lomonosow Moscow
State University, pp. 56
2. Sokolov N.S., Ryabinov V.М. On the analysis meth-
od of the carrying capacity of the drilling injection
piles. // “OFiMG”. –2015. –No 1. PP.10-13.
3. Sokolov N.S. Determining the carrying capacity of
the drilling injection piles– RIT with the developed
bearings // Proceedings of the 2 All-Russian (1st In-
ternational) conference “New in Architecture, Design
Construction and Renovation NADCR-2012” -2012.
Cheboksary: Chuvash State University Publishing
House. PP.289-292.
4. Sokolov N.S., Ushkov S.M., Viktorova S.S. Expe-
rience of piled raft footing application when con-
structing residential buildings // Proceedings of the
2 All-Russian (1st International) conference “New in
Architecture, Design Construction and Renovation
NADCR-2012”-2012. Cheboksary: Chuvash State
University Publishing House. PP. 293-298.
5. Sokolov N.S. Analysis method for the carrying ca-
pacity of drilling injection piles RIT with due con-
sideration to “bearings” // Proceedings of the 2
All-Russian (1st International) conference “New in
Architecture, Design Construction and Renovation
NADCR-2014) -2014. Cheboksary: Chuvash State
University Publishing House. PP. 407-411.
6. Sokolov N.S., Sokolov S.N., Sokolov А.N. Case
study of restauration of the wrecking historical and
cultural landmark of the Federal importance in Che-
boksary // Proceedings of the 2 All-Russian (1st In-
ternational) conference “New in Architecture, Design
Construction and Renovation NADCR-2014). -2014.
Cheboksary: Chuvash State University Publishing
House. PP. 328 – 335.
7. Sokolov N.S., Viktorova S.S., Fedorova Т.G. Drilling
piles with the increased carrying capacity // Proceed-
ings of the 2 All-Russian (1st International) confer-
ence “New in Architecture, Design Construction
and Renovation NADCR-2014) -2014. Cheboksary:
Chuvash State University Publishing House. PP.
411-415.
8. Sokolov N.S., Petrov M.V., Ivanov V.A. The prob-
lem of drilling injection piles produced using elec-
tric discharge technology // Proceedings of the 2
All-Russian (1st International) conference “New in
Architecture, Design Construction and Renovation
NADCR-2014) -2014. Cheboksary: Chuvash State
University Publishing House. PP. 415–420.
9. Sokolov N.S., Sokolov S.N., Sokolov А.N. Case
study of restoration of the wrecking Vvedensky Ca-
thedral in Cheboksary // Geotechnics. No 1. -2016.
PP.60-65.
10. Sokolov N.S., Ryabinov V.M. On the ef ciency of
installing drilling injection piles with multiple enlarge-
ments using electric discharge technology // Geo-
technics. -2016. No 2. PP.28-34.
11. Sokolov N.S., Ryabinov V.M. The main features and
analysis of drilling injection piles with multiple en-
largements // Geotechnics. No 3. -2016. PP.60-66.
12. Sokolov N.S., Ryabinov V.M. Technology of install-
ment of drilling injection piles with the increased
carrying capacity // Residential construction. No 9.
-2016. PP.11-14.
13. Sokolov N.S. Methods of increasing the carrying ca-
pacity of reinforcement drilling injection piles // Pro-
ceedings of the 3rd All-Russian (9th International)
conference “New in Architecture, Design Construc-
tion and Renovation NADCR-2016) -2016. Chebok-
sary: Chuvash State University Publishing House.
PP. 304-316.
14. Sokolov N.S. Technological approaches of instal-
ment of drilling injection piles with multiple enlarge-
ments // Residential construction. No 10. -2016. PP
54 - 59.
15. Sokolov N.S., Sokolov S. N., Sokolov A. N. On the
erroneous method of instalment of drilling injection
piles using electric discharge technology// Residen-
tial construction. No 11. -2016. PP.20-29.
16. Sokolov N.S., Sokolov S. N., Sokolov A. N. Experi-
ence of using drilling injection piles EDT when mit-
igating emergency situations in a public building //
Residential construction. No 12. -2016. PP.1-6.
17. Sokolov N.S., Nikoforova N.S., Sokolov S. N.,
Sokolov A. N. Use of drilling piles -ERT when
mitigating pre-emergency situations when building
foundations // Geotechnics. -2016. No5. PP.54-60.
Paper submitted: 03.08.2017.
Paper accepted: 02.11.2017.
This is an open access article distributed under the
CC BY-NC-ND 4.0 terms and conditions.
... Reconstruction of facilities always faces technical and technological problems [1][2][3][4][5][6][7] associated with the choice of a technically expedient and economically effective method of strengthening building structures. This is of particular relevance for the purpose of strengthening the foundations [8][9][10][11][12][13][14][15][16][17][18]. ...
... The article under consideration discusses the case of strengthening the foundation base of a three-storey public building under reconstruction. As a rule, the initial documents for the development of project documentation are [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18]. a) Conclusion on the results of the engineering and technical inspection of the building b) Technical report on the results of engineering and geological surveys for the preparation of project documentation. ...
... Рассматриваемый объект уже во время его возведения (построено 5 этажей) начал деформироваться со скоростью до 2,0 мм за неделю. Нами было предложено усиление по технологии предложенной в [10,11,12,13,14] являющаяся синтезом 3-х геотехнических технологий: 1.Get-технология -устройство грунтоцементных свай согласно «СП 291.1325800.2017 Конструкции грунтоцементные армированные. ...
... Электрогидравличекий эффект возникающий при обработке мелкозернистого бетона способствует внедрению его в грунтоцементный массив. Тем самым происходит более полное сцепление этих двух конструктивных элементов [4][5][6][7][8][9][10][11][12][13][14]. ...
Article
В статье рассмотрен случай из геотехнической практики усиления перегруженного основания железобетонной фундаментной плиты 25 этажного жилого дома на стадии строительства. В качестве заглубленных конструкций использованы комбинированные грунтовые сваи, состоящие из грунтобетонных свай Get (1 типа) армированные вдоль продольной оси буроинъекционными сваями, изготовленными по электроразрядной технологии (сваи ЭРТ). Такой способ устройства комбинированной заглубленной железобетонной конструкции обусловлен необходимостью увеличения несущей способности Get сваи по грунту в два раза и более.
... Construction of buried objects in particularly cramped conditions on unstable slopes from geotechnical engineers [1][2][3][4][5][6][7] of a specific approach, who must show ingenuity and ingenuity in the use of modern geotechnical technologies that ensure the safe operation of existing buildings [8][9][10] both during construction and during the operation of newly erected buildings and structures [11][12][13][14][15]. The initial data for the development of the project for the installation of retaining structures were: a. ...
Article
The construction of buildings and structures in cramped conditions requires a special approach from hydraulic engineers and builders, requiring the preservation of the surrounding development in a working condition. This circumstance requires a geotechnical forecast of deformations of objects falling into the zone of geotechnical influence of the construction of a building under construction at the design stage and then the organization and implementation of geotechnical monitoring of deformations as a result of construction and installation work. It should be noted that the objects of the surrounding development can be in different categories of technical condition. According this circumstance the permissible deformations may be different. In any geotechnical case, there is an urgent need to install excavation fences that perform a dual task: both ensuring the stability of the soil walls, and reducing the impact of the new construction object on existing buildings. The determination of the bearing capacity of the enclosing structures of the excavation, especially the retaining soil anchors themselves, is of great importance in modern geotechnical construction. The engineering method used in this article to determine the bearing capacity of drilling-injection anchors with sufficient accuracy for technical calculations showed the convergence of calculated and real values based on the results of static tests.
Article
Электроразрядная технология (ЭРТ) имеет широкие возможности в геотехническом строительстве. Она обладает рядом технологических преимуществ. Буроинъекционные сваи ЭРТ имеют повышенные значения несущей способности, как по грунту, так и по материалу благодаря максимальному включению окружающего сваю грунта в совместную работу. В отличие от других типов свай поперечное сечение сваи ЭРТ имеет дополнительно зоны цементации и уплотнения. Благодаря этим зонам удельная несущая способность по грунту данных свай превосходит в два и более раз несущую способность других типов свай. Это свойство особенно актуально при реконструкции объектов в случае надстройки этажей. При использовании свай ЭРТ количество надстраиваемых этажей превосходит несколько раз по сравнению с другими типами буроинъекционных свай с теми же параметрами (диаметр, глубина). В рассматриваемой работе приведен пример использования буроинъекционных свай ЭРТ при надстройке четырех дополнительных этажей двухэтажного общественного здания. Статья является обзорной.
Article
В современном геотехническом строительстве имеется в наличии ряд технологий по устройству буровых свай. Известно, что несущая способность по грунту Fd любой сваи является основным показателем для целей восприятий повышенных нагрузок от надфундаментных конструкций. Для достижений повышенных значений Fd для большинства технологий устройства заглубленных конструкций основным направлением является или увеличение диаметра сваи или ее длины. При таком походе буровые сваи при повышенных нагрузках на них будут громоздкими. Вторым подходом увеличения Fd является прогрессивная технология устройства буровых свай с помощью промежуточных уширений. Для этих свай основным для увеличения несущей способности буровых свай является не увеличение их диаметра, а количество уширений вдоль их длины. В настоящей статье рассматривается третий подход устройства буровых свай повышенной несущей способности, основанной на совместной работе грунтоцементной сваи, сваи SFA (НПШ) и окружающего массива грунта.
Article
В практике геотехнического строительства внедряется технология буроинъекционных свай, выполненных по электроразрядной технологии. Существующая методика с использованием формул СНиП не позволяет в полной мере оценить напряженнодеформированное состояние в активной зоне при последовательном включении в работу уширений с ростом нагрузки на фундамент. В статье приведены результаты расчетов напряженно-деформированного состояния основания буроинъекционной сваи ЭРТ, выполненной с многоместными уширениями по стволу. Расчеты выполнены в пространственной постановке с учетом стадийности приложения нагрузки и образования уплотненной зоны вокруг буроинъекционной сваи. Особое внимание уделялось различию напряженно-деформированному состояния основания, сложенного связным и несвязным грунтом. Последовательно проведена оценка факторов, влияющих несущую способность и осадку буроинъекционной сваи. В качестве исследуемых факторов рассматриваются количество и шаг уширений, длина буроинъекционной сваи, прочностные и деформационные характеристики окружающего грунта.
Article
Обеспечение надѐжности и долговечности оснований насыпей городских магистральных дорог является важной геотехнической задачей. Для обеспечения бесперебойного движения городского транспорта актуальны вопросы увеличения их несущей способности и устойчивости. Современная отрасль имеет различные технологии и материалы, которые могут решить эту геотехническую задачу. Для этого можно применить способы армирования грунтовой насыпи, усиления основания свайным полем железобетонными сваями, щебеночными сваями или комбинированные методы.
Article
Разрядно-импульсная геотехническая технология (технология ЭРТ) устройства буроинъекционных свай является новым направлением в освоении подземного пространства. Благодаря ее специфике она является оригинальной и универсальной. В отличие от других технологий она позволяет изготовить буроинъекционные сваи и анкера ЭРТ в стесненных и наиболее стесненных условиях повышенной несущей способности. Технология, в которой одним из циклов устройства свай является использование генератора импульсных токов (ГИТ), способствует повышению качества изготовления свай и грунтовых анкеров ЭРТ, проявляющееся в соблюдении сплошности тела конструкции и свободному погружению в нее пространственных армокаркасов. Благодаря формированию высокоэнергетических импульсов и созданию условий, при которых образуется и развивается ударная волна в виде электрогидравлического эффекта в среде мелкозернистого бетона на грунт стенок буровой скважины качество изготовления конструкций ЭРТ возрастает. Использование технологии ЭРТ при новом строительстве в стесненных условиях даже в случаях максимального приближения к ранее построенным объектам позволяет заглублять новые фундаменты гораздо ниже их абсолютных отметок существующих.
Article
Наряду с другими передовыми геотехническими технологиями освоения подземного пространства разрядно-импульсная технология является одним из основополагающих в области устройства буроинъекционных свай (технология ЭРТ) – микросвай, а также строительного преобразования свойств грунтов оснований, имеющих слабые показатели их физико-механических характеристик. В то же время, имея существенные отличия перед другими способами освоения подземной части зданий и сооружений геотехническая технология ЭРТ имеет ряд преимуществ, таких как, 1) повышенная удельная несущая способность по грунту, 2) технологичность устройства буроинъекционных свай в любых инженерно-геологических условиях, 3) возможность производства геотехнических работ в стесненных условиях. Она, являясь базовой структурой для разработки новых технологий, имеет большой научный потенциал исследований для целей внедрения ее в современное подземное строительство.
Morphological structure of the geographical landscape
  • Gn Annenskaya
  • Vk Zhuchkova
  • Vg Konovalenko
Annenskaya GN, Zhuchkova VK, Konovalenko VG and etc. (1962) Morphological structure of the geographical landscape. Moscow: Lomonosow Moscow State University, pp. 56
On the analysis method of the carrying capacity of the drilling injection piles
  • N S Sokolov
  • V М Ryabinov
Sokolov N.S., Ryabinov V.М. On the analysis method of the carrying capacity of the drilling injection piles. // "OFiMG".-2015.-No 1. PP.10-13.
Determining the carrying capacity of the drilling injection piles-RIT with the developed bearings
  • N S Sokolov
Sokolov N.S. Determining the carrying capacity of the drilling injection piles-RIT with the developed bearings // Proceedings of the 2 All-Russian (1st International) conference "New in Architecture, Design Construction and Renovation NADCR-2012"-2012. Cheboksary: Chuvash State University Publishing House. PP.289-292.
Experience of piled raft footing application when constructing residential buildings
  • N S Sokolov
  • S M Ushkov
  • S S Viktorova
Sokolov N.S., Ushkov S.M., Viktorova S.S. Experience of piled raft footing application when constructing residential buildings // Proceedings of the 2 All-Russian (1st International) conference "New in Architecture, Design Construction and Renovation NADCR-2012"-2012. Cheboksary: Chuvash State University Publishing House. PP. 293-298.
Analysis method for the carrying capacity of drilling injection piles RIT with due consideration to
  • N S Sokolov
Sokolov N.S. Analysis method for the carrying capacity of drilling injection piles RIT with due consideration to "bearings" // Proceedings of the 2
New in Architecture, Design Construction and Renovation NADCR-2014)-2014. Cheboksary: Chuvash State University Publishing House
  • All-Russian
All-Russian (1st International) conference "New in Architecture, Design Construction and Renovation NADCR-2014)-2014. Cheboksary: Chuvash State University Publishing House. PP. 415-420.
Case study of restauration of the wrecking historical and cultural landmark of the Federal importance in Cheboksary
  • N S Sokolov
  • S N Sokolov
  • А N Sokolov
Sokolov N.S., Sokolov S.N., Sokolov А.N. Case study of restauration of the wrecking historical and cultural landmark of the Federal importance in Cheboksary // Proceedings of the 2 All-Russian (1st International) conference "New in Architecture, Design Construction and Renovation NADCR-2014).-2014. Cheboksary: Chuvash State University Publishing House. PP. 328-335.
Drilling piles with the increased carrying capacityNew in Architecture, Design Construction and Renovation NADCR-2014)-2014
  • N S Sokolov
  • S S Viktorova
  • Т G Fedorova
Sokolov N.S., Viktorova S.S., Fedorova Т.G. Drilling piles with the increased carrying capacity // Proceedings of the 2 All-Russian (1st International) conference "New in Architecture, Design Construction and Renovation NADCR-2014)-2014. Cheboksary: Chuvash State University Publishing House. PP. 411-415.
The problem of drilling injection piles produced using electric discharge technology
  • N S Sokolov
  • M V Petrov
  • V A Ivanov
Sokolov N.S., Petrov M.V., Ivanov V.A. The problem of drilling injection piles produced using electric discharge technology // Proceedings of the 2