Steganography, the art to hide information inside host media like pictures and movies, and steganalysis, its countermeasure attempting to detect the presence of an hidden information within an innocent-looking document, are frequently reported as promising information security techniques for telemedicine. For the past few years, in the race between image steganography and steganalysis, deep
... [Show full abstract] learning has emerged as a very promising alternative to steganalyzer approaches based on rich image models combined with ensemble classifiers. A key knowledge of image steganalyzer, which combines relevant image features and innovative classification procedures, can be deduced by a deep learning approach called convolutional neural networks (CNN). This kind of deep learning networks is so well-suited for classification tasks based on the detection of variations in 2D shapes that it is the state-of-the-art in many image recognition problems.