Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Pseudechis (black snakes) is an Australasian elapid snake genus that inhabits much of mainland Australia, with two representatives confined to Papua New Guinea. The present study is the first to analyse the venom of all 9 described Pseudechis species (plus one undescribed species) to investigate the evolution of venom composition and functional activity. Proteomic results demonstrated that the typical Pseudechis venom profile is dominated by phospholipase A2 toxins. Strong cytotoxicity was the dominant function for most species. P. porphyriacus, the most basal member of the genus, also exhibited the most divergent venom composition, being the only species with appreciable amounts of procoagulant toxins. The relatively high presence of factor Xa recovered in P. porphyriacus venom may be related to a predominantly amphibian diet. Results of this study provide important insights to guide future ecological and toxinological investigations.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... We used human melanoma cells (MM96L) and human neonatal foreskin fibroblasts (NFFs), supplied by QIMR Berghofer Medical Research Institute. Cells were maintained in RPMI medium supplemented with 1% penicillin-streptomycin and foetal calf serum (FCS), as previously described [6,42,43]. Cell viability was evaluated using colourimetric MTT (Thiazolyl Blue Tetrazolium Bromide; Sigma-Aldrich, St Louis, MO, USA) assays [6,42,43]. The following venom concentrations of 1 µg/mL, 2.5 µg/mL, 5 µg/mL, 10 µg/mL, or 50 µg/mL were added to cells (n = 4) and incubated for 24 h or 48 h. ...
... Cells were maintained in RPMI medium supplemented with 1% penicillin-streptomycin and foetal calf serum (FCS), as previously described [6,42,43]. Cell viability was evaluated using colourimetric MTT (Thiazolyl Blue Tetrazolium Bromide; Sigma-Aldrich, St Louis, MO, USA) assays [6,42,43]. The following venom concentrations of 1 µg/mL, 2.5 µg/mL, 5 µg/mL, 10 µg/mL, or 50 µg/mL were added to cells (n = 4) and incubated for 24 h or 48 h. ...
Article
Full-text available
Snake venoms constitute a complex, rapidly evolving trait, whose composition varies between and within populations depending on geographical location, age and preys (diets). These factors have determined the adaptive evolution for predatory success and link venom heterogeneity with prey specificity. Moreover, understanding the evolutionary drivers of animal venoms has streamlined the biodiscovery of venom-derived compounds as drug candidates in biomedicine and biotechnology. The king cobra (Ophiophagus hannah; Cantor, 1836) is distributed in diverse habitats, forming independent populations, which confer differing scale markings, including between hatchlings and adults. Furthermore, king cobra venoms possess unique cytotoxic properties that are used as a defensive trait, but their toxins may also have utility as promising anticancer-agent candidates. However, the impact of geographical distribution and age on these potential venom applications has been typically neglected. In this study, we hypothesised that ontogenetic venom variation accompanies the morphological distinction between hatchlings and adults. We used non-transformed neonatal foreskin (NFF) fibroblasts to examine and compare the variability of venom cytotoxicity between adult captive breeding pairs from Malaysian and Chinese lineages, along with that of their progeny upon hatching. In parallel, we assessed the anticancer potential of these venoms in human-melanoma-patient-derived cells (MM96L). We found that in a geographical distribution and gender-independent manner, venoms from hatchlings were significantly less cytotoxic than those from adults (NFF; ~Log EC50: 0.5–0.6 vs. 0.2–0.35 mg/mL). This is consistent with neonates occupying a semifossorial habitat, while adults inhabit more above-ground habitats and are therefore more conspicuous to potential predators. We also observed that Malaysian venoms exhibited a slightly higher cytotoxicity than those from the Chinese cobra cohorts (NFF; Log EC50: 0.1–0.3 vs. 0.3–0.4 mg/mL), which is consistent with Malaysian king cobras being more strongly aposematically marked. These variations are therefore suggestive of differential anti-predator strategies associated with the occupation of distinct niches. However, all cobra venoms were similarly cytotoxic in both melanoma cells and fibroblasts, limiting their potential medical applications in their native forms.
... A particularly enigmatic group of Australian elapids are the black snakes of the genus Pseudechis, a group of large snakes currently consisting of nine generally accepted species [2]. Members of Pseudechis are venomous and capable of delivering bites to cause severe envenoming leading to morbidity and death [3]. The genus further contains some of Australia's most prominent snakes, including the king brown or mulga snake (Pseudechis australis) and the Collett's snake (Pseudechis colletti) [2]. ...
... Its venom contains a range of toxins, such as phospholipase A2 and factor-Xa-like toxins and causes an array of envenoming symptoms in humans and domestic animals. These include local effects (e.g., swelling), systemic effects (e.g., nausea and vomiting), coagulotoxicity (anticoagulative effects), and myotoxicity [3][4][5][6][7]. Albeit most P. porphyriacus envenomings being of moderate severity, fatalities are known and bites should be considered a medical emergency [4,8,9]. ...
Article
Full-text available
The red-bellied black snake (Pseudechis porphyriacus) is a member of the Elapidae family and is distributed on the east coast of Australia. The species is known to feed on a variety of ecto-thermic prey, including frogs and lizards. It is also known to be ophiophagous (snake-feeding), and stomach-content analyses suggest that P. porphyriacus also exhibits cannibalistic behavior, yet this extreme case of ophiophagy has rarely been documented. Here, a case of cannibalism in P. porphyri-acus, which was observed in Lamington (Queensland, Australia), has been photographically documented and is described.
... Anticancer applications Anticancer properties of animal toxins, which manipulate signalling cascades controlling cell death and tumour growth, are promising therapeutics [256,[275][276][277][278][279]. In particular, peptides from spiders and octopus and the crude venom of various snake species (cobras and vipers) have recently been reported to specifically target human melanoma, often with minimal effects on healthy fibroblast cells [278][279][280][281][282]. Other anticancer activities of animal venoms highlight their potentials by inhibiting the proliferation and invasion of cancer cells, through cell cycle arrest and/or induction of apoptosis, as well as by revealing the affected signalling pathways [256,275,283,284]. ...
... The potential immunomodulating abilities of venoms and toxins have also started to receive attention [281,287,288]. Immunosuppressive activity has been demonstrated in snake crude venoms. ...
Article
Full-text available
Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.
... While the procoagulant effects of P. porphyriacus venom are attributed to its high levels of the prothrombin activator factor Xa (Zdenek et al., 2019a), the anticoagulant actions produced by P. australis, P. butleri, P. colletti, P. guttatus, P. papuanus venoms have been identified as being caused by the phospholipase A 2 (PLA 2 ) enzymes (Lane et al., 2011), which dominate the venoms of all Pseudechis species (Goldenberg et al., 2018). PLA 2 s are a superfamily divided into 11 groups (Six and Dennis, 2000). ...
... Rigorous characterisation of relative venom potency and differential antivenom efficacy is critical for the evidence-based design of clinical management plans. In agreement with previous works (Dambisya et al., 1995;Goldenberg et al., 2018;Lane et al., 2011;Zdenek et al., 2019), we found P. porphyriacus to be the only procoagulant venom within Pseudechis, while all others produced substantial anticoagulant effects on plasma. All anticoagulant Pseudechis venoms, however, appeared to function similarly with regard to the potent inhibition of FVa, the moderate inhibition of thrombin, and the only trace levels of FXa inhibition (Fig. 1). ...
... Herein we refer to these ideas concerning the relationship between functional activities and diet as 'Jackson et al.'s hypotheses'. Current evidence to support (or oppose) these hypotheses is limited in geographic and phylogenetic scope, largely restricted to a set of studies on coagulotoxicity in clades within the single radiation of Australian elapid snakes [16,37,38]. Moreover, these studies have found variable support for Jackson et al.'s hypotheses. ...
... In the Australian tigersnake clade (Notechis + Hoplocephalus + Paroplocephalus + Tropidechis), higher coagulotoxicity was associated with feeding on prey with higher metabolic rates [37], but metabolic rate of prey was scored only on a subjective 6point scale rather than measured quantitatively, and no detectable effect of particular prey taxa was found. Although not formally tested, the pattern of coagulotoxicity in Pseudechis did not clearly match patterns of dietary variation across the genus [38], but the small sample size and low variation in coagulotoxicity in general prevented strong conclusions here. Each of these papers dealt only with a single type of functional activity (coagulotoxicity) and considered relationships with the extent of the activity in relatively small groups of closely related snakes, rather than comparing different activity types. ...
Article
Full-text available
Snake venom evolution is typically considered to be predominantly driven by diet-related selection pressures. Most evidence for this is based on lethality to prey and non-prey species and on the identification of prey specific toxins. Since the broad toxicological activities (e.g., neurotoxicity, coagulotoxicity, etc.) sit at the interface between molecular toxinology and lethality, these classes of activity may act as a key mediator in coevolutionary interactions between snakes and their prey. Indeed, some recent work has suggested that variation in these functional activities may be related to diet as well, but previous studies have been limited in geographic and/or taxonomic scope. In this paper, we take a phylogenetic comparative approach to investigate relationships between diet and toxicological activity classes on a global scale across caenophidian snakes, using the clinically oriented database at toxinology.com. We generally find little support for specific prey types selecting for particular toxicological effects except that reptile-feeders are more likely to be neurotoxic. We find some support for endothermic prey (with higher metabolic rates) influencing toxic activities, but differently from previous suggestions in the literature. More broadly, we find strong support for a general effect of increased diversity of prey on the diversity of toxicological effects of snake venom. Hence, we provide evidence that selection pressures on the toxicological activities of snake venom has largely been driven by prey diversity rather than specific types of prey. These results complement and extend previous work to suggest that specific matching of venom characteristics to prey may occur at the molecular level and translate into venom lethality, but the functional link between those two is not constrained to a particular toxicological route.
... The absence of cytotoxins from the krait venoms (including B. flaviceps) is consistent with the clinical feature of krait envenoming, where there is minimal to negligible local signs and symptoms (Mao et al., 2017;Tongpoo et al., 2018). Together, the clinical feature of minimal local effect, the utilization of lethal PLA 2 in the form of toxic complexes, and the absence of cytotoxins in the krait venom show similarity with the venom characteristics of Hydrophiinae species including the Australian elapids and sea snakes (Herrera et al., 2012;Tan et al., 2015;Tan et al., 2016c;Tan et al., 2017c;Goldenberg et al., 2018;Tan et al., 2018a;Tasoulis et al., 2020;Choksawangkarn et al., 2022). Probably, the trend of this unique venom phenotype is reflected in their recent evolution-phylogenetics has established that the kraits are closer relatives and part of the core Australasian clade, rather than part of the main Afro-Asian clade (where Asian cobras are nested) that diversified earlier (Lee et al., 2016). ...
Article
The Red-headed Krait (Bungarus flaviceps) is a medically important venomous snake species in Southeast Asia, while there is no specific antivenom available for its envenoming. This study investigated the venom composition through a decomplexation proteomic approach, and examined the immunoreactivity as well as cross-neutralization efficacy of two hetero-specific krait antivenoms, Bungarus candidus Monovalent Antivenom (BcMAV) and Bungarus fasciatus Monovalent Antivenom (BfMAV), against the venom of B. flaviceps from Peninsular Malaysia. A total of 43 non-redundant proteoforms belonging to 10 toxin families were identified in the venom proteome, which is dominated by phospholipases A2 including beta-bungarotoxin lethal subunit (56.20 % of total venom proteins), Kunitz-type serine protease inhibitors (19.40 %), metalloproteinases (12.85 %) and three-finger toxins (7.73 %). The proteome varied in quantitative aspect from the earlier reported Indonesian (Sumatran) sample, suggesting geographical venom variation. BcMAV and BfMAV were immunoreactive toward the B. flaviceps venom, with BcMAV being more efficacious in immunological binding. Both antivenoms cross-neutralized the venom lethality with varying efficacy, where BcMAV was more potent than BfMAV by ~13 times (normalized potency: 38.04 mg/g vs. 2.73 mg/g, defined as the venom amount completely neutralized by one-gram antivenom protein), supporting the potential utility of BcMAV for para-specific neutralization against B. flaviceps venom.
... We included phospholipid as a cofactor in the assay and small amounts were present in the plasma (Krawczyk et al., 1996), it is possible that these PLA 2 toxins produce their anticoagulant effect by hydrolyzing a large portion of the phospholipids which would make it next to impossible for the prothrombinase complex to assemble (Suttie and Jackson, 1977). Previous research on other Pseudechis venoms shows that this genus exhibits much greater variability in the phospholipase enzymatic activity (Goldenberg et al., 2018) than in the anticoag-ulant effect that these same venoms produced (Zdenek et al., 2020a). Much like our results these anticoagulant effects were abolished by the addition of varespladib to the assay and this effect held true for venoms with almost no phospholipase enzymatic activity. ...
Article
Snakebite is a neglected tropical disease with a massive global burden of injury and death. The best current treatments, antivenoms, are plagued by a number of logistical issues that limit supply and access in remote or poor regions. We explore the anticoagulant properties of venoms from the genus Micrurus (coral snakes), which have been largely unstudied, as well as the effectiveness of antivenom and a small-molecule phospholipase inhibitor—varespladib—at counteracting these effects. Our in vitro results suggest that these venoms likely interfere with the formation or function of the prothrombinase complex. We find that the anticoagulant potency varies widely across the genus and is especially pronounced in M. laticollaris. This variation does not appear to correspond to previously described patterns regarding the relative expression of the three-finger toxin and phospholipase A2 (PLA2) toxin families within the venoms of this genus. The coral snake antivenom Coralmyn, is largely unable to ameliorate these effects except for M. ibiboboca. Varespladib on the other hand completely abolished the anticoagulant activity of every venom. This is consistent with the growing body of results showing that varespladib may be an effective treatment for a wide range of toxicity caused by PLA2 toxins from many different snake species. Varespladib is a particularly attractive candidate to help alleviate the burden of snakebite because it is an approved drug that possesses several logistical advantages over antivenom including temperature stability and oral availability.
... Although P. porphyriacus venom research dates back to 1930 [24], the majority of the available literature is centred either on the symptoms of envenomation, treatment strategies, or both [25][26][27]. Recently, Goldenburg et al. described the proteomic variation among Pseudechis venoms, including P. porphyriacus, however, research on RBBV-derived therapeutic leads remains limited [28]. ...
Article
Full-text available
Venoms act with remarkable specificity upon a broad diversity of physiological targets. Venoms are composed of proteins, peptides, and small molecules, providing the foundation for the development of novel therapeutics. This study assessed the effect of venom from the red-bellied black snake (Pseudechis porphyriacus) on human primary leukocytes using bead-based flow cytometry, mixed lymphocyte reaction, and cell viability assays. We show that venom treatment had a significant immunosuppressive effect, inhibiting the secretion of interleukin (IL)-2 and tumor necrosis factor (TNF) from purified human T cells by 90% or greater following stimulation with mitogen (phorbol 12-myristate 13-acetate and ionomycin) or via cluster of differentiation (CD) receptors, CD3/CD28. In contrast, venom treatment did not inhibit TNF or IL-6 release from antigen-presenting cells stimulated with lipopolysaccharide. The reduced cytokine release from T cells was not associated with inhibition of T cell proliferation or reduction of cell viability, consistent with an anti-inflammatory mechanism unrelated to the cell cycle. Deconvolution of the venom using reverse-phase HPLC identified four fractions responsible for the observed immunosuppressive activity. These data suggest that compounds from P. porphyriacus venom may be potential drug leads for T cell-associated conditions such as graft versus host disease, rheumatoid arthritis, and inflammatory bowel disease.
... This explains, for example, why Black Snake Antivenom does not cross-react with P. porphyriacus venom, despite the fact that a venom from the same gen-usPseudechis australisis used in the antivenom production. This lack of cross-reactivity is due to P. australis venom lacking FXa toxins, unlike P. porphyriacus venom which contains them (Goldenberg et al., 2018). Thus, the only effective treatment for FXa-rich procoagulant snake venoms is either Tiger Snake Antivenom or Polyvalent Antivenom which contains antibodies raised against N. scutatus FXa. ...
Article
Australian elapid snakes are some of the most venomous snakes in the world and are unique among venomous snakes in having mutated forms of the blood clotting factor X in an activated form (FXa) as a key venom component. In human bite victims, an overdose of this activated clotting enzyme results in the systemic consumption of fibrinogen due to the large amounts of endogenous thrombin generated by the conversion of pro-thrombin to thrombin by venom FXa. Within Australian elapids, such procoagulant venom is currently known from the tiger snake clade (Hoplocephalus, Notechis, Paroplocephalus, and Tropidechis species), brown/taipan (Oxyuranus and Pseudonaja species) clade, and the red-bellied black snake Pseudechis porphyriacus. We used a STAR Max coagulation analyser and TEG5000 thromboelastographers to test 47 Australian elapid venoms from 19 genera against human plasma in vitro. In addition to activity being confirmed in the two clades above, FXa-driven potent procoagulant activity was found in four additional genera (Cryptophis, Demansia, Hemiaspis, and Suta). Ontogenetic changes in procoagulant function was also identified as a feature of Suta punctata venom. Phylogenetic analysis of FX sequences confirmed that snake venom FXa toxins evolved only once, that the potency of these toxins against human plasma has increased in a stepwise fashion, and that multiple convergent amplifications of procoagulant activity within Australian elapid snakes have occurred. Cofactor dependence tests revealed all procoagulant venoms in our study, except those of the tiger snake clade, to be highly calcium-dependent, whereas phospholipid dependence was less of a feature but still displayed significant variation between venoms. Antivenom testing using CSL Tiger Snake Antivenom showed broad but differential cross-reactivity against procoagulant venoms, with P. porphyriacus and S. punctata extremely well neutralised but with Cryptophis, Demansia, and Hemiaspis less well-neutralised. The relative variation was not in accordance to genetic relatedness of the species used in antivenom production (Notechis scutatus), which underscores a fundamental principle that the rapid evolution characteristic of venoms results in organismal phylogeny being a poor pre-dictor of antivenom efficacy. Our results have direct and immediate implications for the design of clinical management plans in the event of snakebite by such lesser known Australian elapid snake species that have been revealed in this study to be as potent as the better studied, and proven lethal, species.
... It is imperative that both academic and industrial bio-scientists are united in the search for some novel molecular solutions to this rapidly growing worldwide problem [32]. AMPs are now well-recognized to constitute a fundamental component of innate immunity and molecular defense in many living organisms, including bacteria [33][34][35][36]. AMPs demonstrated a certain characteristic to be potent and also broad spectrum in their action which can directly kill both Gram −ve and Gram +ve bacteria, including those strains which are resistant to traditional forms of antibiotics. ...
Article
Full-text available
Amphibians are a natural source of abundant antimicrobial peptides and thus have been widely investigated for isolation of such biomolecules. Many new antimicrobial peptide families have been discovered from amphibians. In this study, a novel antimicrobial peptide named Limnonectes fujianensis Brevinvin (LFB) has been identified in the skin secretion from the Fujian large headed frog, Limnonectes fujianensis. The cDNA sequence was cloned from a skin secretion library and the predicted mature peptide was identified through MS/MS fragmentation sequencing of reverse phase HPLC fractions on the same sample. LFB was predicted to be an amphipathic, hydrophobic, alpha helical, and beta turn peptide that inserts into a lipid bilayer in order to kill the cells. In antimicrobial assays, a synthetic replicate of this novel antimicrobial peptide demonstrated significant activity against the Gram-positive bacterium Staphylococcus aureus, the Gram-negative bacterium Escherichia coli and the yeast, Candida albicans. This novel peptide was highly potent (MIC 4.88 uM) against Gram-negative bacterium, and also has the ability to inhibit the growth of human cancer cell lines with IC50 values ranging from 18.9 μM down to 2.0 μM. These findings help to enrich our understanding of Brevinin-like peptides. Moreover, the data presented here validate frog secretion as a source of potential novel antimicrobial peptides, that also exhibit anti-tumor properties, that could be useful for the treatment of cancer.
... Indeed, they have already been used many times to test hypotheses regarding animal venoms. For instance, pGLS has been used in several clades of Australian elapid snakes to investigate relationships between venom toxicity and diet [54,55], the cofactor dependence of toxic effects [54], the relationship between venom components and toxic effects [56], and the relationship between venom toxicology and antivenom efficacy [54]. As discussed in Section 1, drawing inferences about statistical relationships between traits such as coagulotoxicity and diet [54,55] is prone to being misleading when evolutionary history is ignored. ...
Article
Full-text available
The literature on chemical weaponry of organisms is vast and provides a rich understanding of the composition and mechanisms of the toxins and other components involved. However, an ecological or evolutionary perspective has often been lacking and is largely limited to (1) molecular evolutionary studies of particular toxins (lacking an ecological view); (2) comparisons across different species that ignore phylogenetic relatedness (lacking an evolutionary view); or (3) descriptive studies of venom composition and toxicology that contain post hoc and untested ecological or evolutionary interpretations (a common event but essentially uninformative speculation). Conveniently, comparative biologists have prolifically been developing and using a wide range of phylogenetic comparative methods that allow us to explicitly address many ecological and evolutionary questions relating to venoms and poisons. Nevertheless, these analytical tools and approaches are rarely used and poorly known by biological toxinologists and toxicologists. In this review I aim to (1) introduce phylogenetic comparative methods to the latter audience; (2) highlight the range of questions that can be addressed using them; and (3) encourage biological toxinologists and toxicologists to either seek out adequate training in comparative biology or seek collaboration with comparative biologists to reap the fruits of a powerful interdisciplinary approach to the field.
Article
Snakebite remains a worldwide public health burden and a severely neglected tropical disease. Recent research has begun to focus on the potential use of repurposed small-molecule enzyme-inhibitors as early treatments to neutralise the effects of snake venoms. Black snakes (Pseudechis spp.) are a widespread and dangerously venomous group found throughout Australia and New Guinea. Utilising validated coagulation assays, our study assessed the efficacy of two chemically different small molecule inhibitors, a phospholipase A2 inhibitor (varespladib) and a metalloproteinase inhibitor (prinomastat), in vitro neutralisation of the anticoagulant prothrombinase-inhibiting activity of venom from seven species within the Pseudechis genus (P. australis, P. butleri, P. coletti, P. guttatus, P. papuanus, P.rossignolii, P. sp (NT).). Varespladib was shown to be highly effective at neutralising this anticoagulant activity for all seven species, but with P. coletti notably less so than the others. In contrast, prinomastat showed strong neutralisation for five out of the seven species, but was ineffective at neutralising the activity of P. coletti or P. rossignolii venoms. This suggests that varespladib binds to a highly conserved site but that prinomastat binds to a more variable site. These results build upon recent literature indicating that metalloproteinase inhibitors have cross-neutralising potential towards snake venom phospholipase A2 toxins, but with higher degrees of variability that PLA2-specific inhibitors. An important caveat is that these are in vitro tests and while suggestive of potential clinical utility, in vivo animal testing and clinical trials are required as future work.
Article
Introduction: Venoms are integrated phenotypes used by a wide range of organisms for predatory and defensive purposes. The study of venoms is of great interest in diverse fields, such as evolutionary ecology and biotechnology. Omics technologies have contributed to understanding the evolutionary mechanisms that molded snake venoms to their present-day structural and functional variability lanscape. Areas covered: This review article reflects on two recent implementations in venomics: absolute quantification of intact proteins by elemental mass spectrometry, and top-down molecular mass spectrometry. Expert commentary: Leveraging on a new way of polyatomic interference removal, a triple quadrupole ICP-MS configuration has proven feasible for the absolute quantification of venom toxins via sulfur detection. A major advantage of this approach over quantitative molecular MS techniques is that only a generic S-standard is required to quantify all the chromatographically separated sulfur-containing fractions. Top-down venomics is in its infancy but, due to recent hardware and software developments, is gaining momentum. Proteoform-resolved venom proteomes are needed to understand the spatio-temporal variability lanscape underlying the adaptations that drive intraspecific venom evolution. Integrating top-down venomics and absolute proteoform quantification into a novel elemental and molecular mass spectrometry configuration will represent a quantitative leap in the study of individual venoms.
Article
Full-text available
While snake venoms have been the subject of intense study, comparatively little work has been done on lizard venoms. In this study, we have examined the structural and functional diversification of anguimorph lizard venoms and associated toxins, and related these results to dentition and predatory ecology. Venom composition was shown to be highly variable across the 20 species of Heloderma, Lanthanotus, and Varanus included in our study. While kallikrein enzymes were ubiquitous, they were also a particularly multifunctional toxin type, with differential activities on enzyme substrates and also ability to degrade alpha or beta chains of fibrinogen that reflects structural variability. Examination of other toxin types also revealed similar variability in their presence and activity levels. The high level of venom chemistry variation in varanid lizards compared to that of helodermatid lizards suggests that venom may be subject to different selection pressures in these two families. These results not only contribute to our understanding of venom evolution but also reveal anguimorph lizard venoms to be rich sources of novel bioactive molecules with potential as drug design and development lead compounds.
Article
Full-text available
Venoms can deleteriously affect any physiological system reachable by the bloodstream, including directly interfering with the coagulation cascade. Such coagulopathic toxins may be anticoagulants or procoagulants. Snake venoms are unique in their use of procoagulant toxins for predatory purposes. The boomslang (Dispholidus typus) and the twig snakes (Thelotornis species) are iconic African snakes belonging to the family Colubridae. Both species produce strikingly similar lethal procoagulant pathologies. Despite these similarities, antivenom is only produced for treating bites by D. typus, and the mechanisms of action of both venoms have been understudied. In this study, we investigated the venom of D. typus and T. mossambicanus utilising a range of proteomic and bioactivity approaches, including determining the procoagulant properties of both venoms in relation to the human coagulation pathways. In doing so, we developed a novel procoagulant assay, utilising a Stago STAR Max analyser, to accurately detect real time clotting in plasma at varying concentrations of venom. This approach was used to assess the clotting capabilities of the two venoms both with and without calcium and phospholipid co-factors. We found that T. mossambicanus produced a significantly stronger coagulation response compared to D. typus. Functional enzyme assays showed that T. mossambicanus also exhibited a higher metalloprotease and phospholipase activity but had a much lower serine protease activity relative to D. typus venom. The neutralising capability of the available boomslang antivenom was also investigated on both species, with it being 11.3 times more effective upon D. typus venom than T. mossambicanus. In addition to being a faster clotting venom, T. mossambicanus was revealed to be a much more complex venom composition than D. typus. This is consistent with patterns seen for other snakes with venom complexity linked to dietary complexity. Consistent with the external morphological differences in head shape between the two species, CT and MRI analyses revealed significant internal structural differences in skull architecture and venom gland anatomy. This study increases our understanding of not only the biodiscovery potential of Toxins 2017, 9, 171 2 of 20 these medically important species but also increases our knowledge of the pathological relationship between venom and the human coagulation cascade.
Chapter
Full-text available
Much of the research on venoms has understandably focused on clinical implications of human envenomation and detailed molecular studies of toxins. However, as with any biological trait, venom exists in an evolutionary context and must be considered as such if we are to gain a full understanding of the biology of animal venoms. Consequently, this chapter aims to provide an overview of the diversity of venom and venomous animals and also a set of evolutionary principles which are particularly applicable here. There has been substantial variation in the definition of “venom” and “venomous” in the literature, so this is discussed first with the aim of giving a definition which encompasses a number of important features of venoms. A survey of the functional diversity of venoms and taxonomic diversity of venomous animals is then provided as an introduction to the evolutionary drivers of venom and how it is distributed across the animal tree of life. The last three sections consider three principles that are important to venom evolution: (1) the composition of venom is variable both between and within species; (2) venom evolves in the context of antagonistic coevolutionary interactions; and (3) venom can have consequences for the ecology and evolution of animals that possess it beyond its direct functions to their behavioral ecology.
Article
Full-text available
The cytotoxicity of the venom of 25 species of Old World elapid snake was tested and compared with the morphological and behavioural adaptations of hooding and spitting. We determined that, contrary to previous assumptions, the venoms of spitting species are not consistently more cytotoxic than those of closely related non-spitting species. While this correlation between spitting and non-spitting was found among African cobras, it was not present among Asian cobras. On the other hand, a consistent positive correlation was observed between cytotoxicity and utilisation of the defensive hooding display that cobras are famous for. Hooding and spitting are widely regarded as defensive adaptations, but it has hitherto been uncertain whether cytotoxicity serves a defensive purpose or is somehow useful in prey subjugation. The results of this study suggest that cytotoxicity evolved primarily as a defensive innovation and that it has co-evolved twice alongside hooding behavior: once in the Hemachatus + Naja and again independently in the king cobras (Ophiophagus). There was a significant increase of cytotoxicity in the Asian Naja linked to the evolution of bold aposematic hood markings, reinforcing the link between hooding and the evolution of defensive cytotoxic venoms. In parallel, lineages with increased cytotoxicity but lacking bold hood patterns evolved aposematic markers in the form of high contrast body banding. The results also indicate that, secondary to the evolution of venom rich in cytotoxins, spitting has evolved three times independently: once within the African Naja, once within the Asian Naja, and once in the Hemachatus genus. The evolution of cytotoxic venom thus appears to facilitate the evolution of defensive spitting behaviour. In contrast, a secondary loss of cytotoxicity and reduction of the hood occurred in the water cobra Naja annulata, which possesses streamlined neurotoxic venom similar to that of other aquatic elapid snakes (e.g., hydrophiine sea snakes). The results of this study make an important contribution to our growing understanding of the selection pressures shaping the evolution of snake venom and its constituent toxins. The data also aid in elucidating the relationship between these selection pressures and the medical impact of human snakebite in the developing world, as cytotoxic cobras cause considerable morbidity including loss-of-function injuries that result in economic and social burdens in the tropics of Asia and sub-Saharan Africa.
Article
Full-text available
Australia is the stronghold of the front-fanged venomous snake family Elapidae. The Australasian elapid snake radiation, which includes approximately 100 terrestrial species in Australia, as well as Melanesian species and all the world's sea snakes, is less than 12 million years old. The incredible phenotypic and ecological diversity of the clade is matched by considerable diversity in venom composition. The clade's evolutionary youth and dynamic evolution should make it of particular interest to toxinologists, however, the majority of species, which are small, typically inoffensive, and seldom encountered by non-herpetologists, have been almost completely neglected by researchers. The present study investigates the venom composition of 28 species proteomically, revealing several interesting trends in venom composition, and reports, for the first time in elapid snakes, the existence of an ontogenetic shift in the venom composition and activity of brown snakes (Pseudonaja sp.). Trends in venom composition are compared to the snakes' feeding ecology and the paper concludes with an extended discussion of the selection pressures shaping the evolution of snake venom.
Article
Full-text available
The relationship between rates of diversification and of body size change (a common proxy for phenotypic evolution) was investigated across Elapidae, the largest radiation of highly venomous snakes. Time-calibrated phylogenetic trees for 175 species of elapids (more than 50% of known taxa) were constructed using seven mitochondrial and nuclear genes. Analyses using these trees revealed no evidence for a link between speciation rates and changes in body size. Two clades (Hydrophis, Micrurus) show anomalously high rates of diversification within Elapidae, yet exhibit rates of body size evolution almost identical to the general elapid 'background' rate. Although correlations between speciation rates and rates of body size change exist in certain groups (e.g. ray-finned fishes, passerine birds), the two processes appear to be uncoupled in elapid snakes. There is also no detectable shift in diversification dynamics associated with the colonization of Australasia, which is surprising given that elapids appear to be the first clade of venomous snakes to reach the continent.
Article
Full-text available
Background The highly derived morphology and astounding diversity of snakes has long inspired debate regarding the ecological and evolutionary origin of both the snake total-group (Pan-Serpentes) and crown snakes (Serpentes). Although speculation abounds on the ecology, behavior, and provenance of the earliest snakes, a rigorous, clade-wide analysis of snake origins has yet to be attempted, in part due to a dearth of adequate paleontological data on early stem snakes. Here, we present the first comprehensive analytical reconstruction of the ancestor of crown snakes and the ancestor of the snake total-group, as inferred using multiple methods of ancestral state reconstruction. We use a combined-data approach that includes new information from the fossil record on extinct crown snakes, new data on the anatomy of the stem snakes Najash rionegrina, Dinilysia patagonica, and Coniophis precedens, and a deeper understanding of the distribution of phenotypic apomorphies among the major clades of fossil and Recent snakes. Additionally, we infer time-calibrated phylogenies using both new ‘tip-dating’ and traditional node-based approaches, providing new insights on temporal patterns in the early evolutionary history of snakes. Results Comprehensive ancestral state reconstructions reveal that both the ancestor of crown snakes and the ancestor of total-group snakes were nocturnal, widely foraging, non-constricting stealth hunters. They likely consumed soft-bodied vertebrate and invertebrate prey that was subequal to head size, and occupied terrestrial settings in warm, well-watered, and well-vegetated environments. The snake total-group – approximated by the Coniophis node – is inferred to have originated on land during the middle Early Cretaceous (~128.5 Ma), with the crown-group following about 20 million years later, during the Albian stage. Our inferred divergence dates provide strong evidence for a major radiation of henophidian snake diversity in the wake of the Cretaceous-Paleogene (K-Pg) mass extinction, clarifying the pattern and timing of the extant snake radiation. Although the snake crown-group most likely arose on the supercontinent of Gondwana, our results suggest the possibility that the snake total-group originated on Laurasia. Conclusions Our study provides new insights into when, where, and how snakes originated, and presents the most complete picture of the early evolution of snakes to date. More broadly, we demonstrate the striking influence of including fossils and phenotypic data in combined analyses aimed at both phylogenetic topology inference and ancestral state reconstruction. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0358-5) contains supplementary material, which is available to authorized users.
Article
Full-text available
Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2) 'taipoxin/paradoxin' subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz and waprin peptides were recovered, including dual domain kunitz-kunitz precursors and the first kunitz-waprin hybrid precursors from elapid snakes. The novel sequences recovered in this study reveal that the huge diversity of unstudied venomous Australian snakes are of considerable interest not only for the investigation of venom and whole organism evolution but also represent an untapped bioresource in the search for novel compounds for use in drug design and development.
Article
Full-text available
Three-finger toxins (3FTx) represent one of the most abundantly secreted and potently toxic components of colubrid (Colubridae), elapid (Elapidae) and psammophid (Psammophiinae subfamily of the Lamprophidae) snake venom arsenal. Despite their conserved structural similarity, they perform a diversity of biological functions. Although they are theorised to undergo adaptive evolution, the underlying diversification mechanisms remain elusive. Here, we report the molecular evolution of different 3FTx functional forms and show that positively selected point mutations have driven the rapid evolution and diversification of 3FTx. These diversification events not only correlate with the evolution of advanced venom delivery systems (VDS) in Caenophidia, but in particular the explosive diversification of the clade subsequent to the evolution of a high pressure, hollow-fanged VDS in elapids, highlighting the significant role of these toxins in the evolution of advanced snakes. We show that Type I, II and III α-neurotoxins have evolved with extreme rapidity under the influence of positive selection. We also show that novel Oxyuranus/Pseudonaja Type II forms lacking the apotypic loop-2 stabilising cysteine doublet characteristic of Type II forms are not phylogenetically basal in relation to other Type IIs as previously thought, but are the result of secondary loss of these apotypic cysteines on at least three separate occasions. Not all 3FTxs have evolved rapidly: κ-neurotoxins, which form non-covalently associated heterodimers, have experienced a relatively weaker influence of diversifying selection; while cytotoxic 3FTx, with their functional sites, dispersed over 40% of the molecular surface, have been extremely constrained by negative selection. We show that the a previous theory of 3FTx molecular evolution (termed ASSET) is evolutionarily implausible and cannot account for the considerable variation observed in very short segments of 3FTx. Instead, we propose a theory of Rapid Accumulation of Variations in Exposed Residues (RAVER) to illustrate the significance of point mutations, guided by focal mutagenesis and positive selection in the evolution and diversification of 3FTx.
Article
Full-text available
A long-standing question in evolutionary studies of snake venoms is the extent to which phylogenetic divergence and diet can account for between-species differences in venom composition. Here we apply phylogeny-based comparative methods to address this question. We use data on venom variation generated using proteomic techniques for all members of a small clade of rattlesnakes (Sistrurus sp.) and two outgroups for which phylogenetic and diet information is available. We first complete the characterization of venom variation for all members of this clade with a "venomic" analysis of pooled venoms from two members of this genus, S. milarius streckeri and S. m. milarius. These venoms exhibit the same general classes of proteins as those found in other Sistrurus species but differ in their relative abundances of specific protein families. We then test whether there is significant phylogenetic signal in the relative abundances of major venom proteins across species and if diet (measured as percent mammals and lizards among all prey consumed) covaries with venom composition after phylogenetic divergence is accounted for. We found no evidence for significant phylogenetic signal in venom variation: K values for seven snake venom proteins and two composite venom variables [PC 1 and 2]) were all nonsignificant and lower (mean = 0.11+0.06 sd) than mean K values (>0.35) previously reported for a wide range of morphological, life history, physiological and behavioral traits from other species. Finally, analyses based on Phylogenetic Generalized Least Squares (PGLS) methods reveal that variation in abundance of some venom proteins, most strongly CRISP is significantly related to snake diet. Our results demonstrate that venom variation in these snakes is evolutionarily a highly labile trait even among very closely-related taxa and that natural selection acting through diet variation may play a role in molding the relative abundance of specific venom proteins.
Article
Full-text available
Venoms have evolved on numerous occasions throughout the animal kingdom. These 'biochemical weapon systems' typically function to facilitate, or protect the producing animal from, predation. Most venomous animals remain unstudied despite venoms providing model systems for investigating predator-prey interactions, molecular evolution, functional convergence, and novel targets for pharmaceutical discovery. Through advances in 'omic' technologies, venom composition data have recently become available for several venomous lineages, revealing considerable complexity in the processes responsible for generating the genetic and functional diversity observed in many venoms. Here, we review these recent advances and highlight the ecological and evolutionary novelty of venom systems.
Article
Full-text available
The processes that drive the evolution of snake venom variability, particularly the role of diet, have been a topic of intense recent research interest. Here, we test whether extensive variation in venom composition in the medically important viper genus Echis is associated with shifts in diet. Examination of stomach and hindgut contents revealed extreme variation between the major clades of Echis in the proportion of arthropod prey consumed. The toxicity (median lethal dose, LD(50)) of representative Echis venoms to a natural scorpion prey species was found to be strongly associated with the degree of arthropod feeding. Mapping the results onto a novel Echis phylogeny generated from nuclear and mitochondrial sequence data revealed two independent instances of coevolution of venom toxicity and diet. Unlike venom LD(50), the speed with which venoms incapacitated and killed scorpions was not associated with the degree of arthropod feeding. The prey-specific venom toxicity of arthropod-feeding Echis may thus be adaptive primarily by reducing venom expenditure. Overall, our results provide strong evidence that variation in snake venom composition results from adaptive evolution driven by natural selection for different diets, and underscores the need for a multi-faceted, integrative approach to the study of the causes of venom evolution.
Article
Full-text available
Analysis of Phylogenetics and Evolution (APE) is a package written in the R language for use in molecular evolution and phylogenetics. APE provides both utility functions for reading and writing data and manipulating phylogenetic trees, as well as several advanced methods for phylogenetic and evolutionary analysis (e.g. comparative and population genetic methods). APE takes advantage of the many R functions for statistics and graphics, and also provides a flexible framework for developing and implementing further statistical methods for the analysis of evolutionary processes. Availability: The program is free and available from the official R package archive at http://cran.r-project.org/src/contrib/PACKAGES.html#ape. APE is licensed under the GNU General Public License.
Article
Differential procoagulant effects of saw-scaled viper (Serpentes: Viperidae: Echis) snake venoms on human plasma and the narrow taxonomic ranges of antivenom efficacies.Toxicology Letters http://dx.
Article
A paradigm of venom research is adaptive evolution of toxins as part of a predator-prey chemical arms race. This examined differential co-factor dependence, variations relative to dietary preference, and the impact upon relative neutralisation by antivenom of the procoagulant toxins in the venoms of a clade of Australian snakes. All genera were characterised by venoms rich in factor Xa which act upon endogenous prothrombin. Examination of toxin sequences revealed an extraordinary level of conservation, which indicates that adaptive evolution is not a feature of this toxin type. Consistent with this, the venoms did not display differences on the plasma of different taxa. Examination of the prothrombin target revealed endogenous blood proteins are under extreme negative selection pressure for diversification, this in turn puts a strong negative selection pressure upon the toxins as sequence diversification could result in a drift away from the target. Thus this study reveals that adaptive evolution is not a consistent feature in toxin evolution in cases where the target is under negative selection pressure for diversification. Consistent with this high level of toxin conservation, the antivenom showed extremely high-levels cross-reactivity. There was however a strong statistical correlation between relative degree of phospholipid-dependence and clotting time, with the least dependent venoms producing faster clotting times than the other venoms even in the presence of phospholipid. The results of this study are not only of interest to evolutionary and ecological disciplines, but also have implications for clinical toxinology.
Article
Venom is a key evolutionary trait, as evidenced by its widespread convergent evolution across the animal kingdom. In an escalating prey-predator arms race, venoms evolve rapidly to guarantee predatory or defensive success. Variation in venom composition is ubiquitous among snakes. Here, we tested variation in venom activity on substrates relevant to blood coagulation amongst Pseudonaja (brown snake) species, Australian elapids responsible for the majority of medically important human envenomations in Australia. A functional approach was employed to elucidate interspecific variation in venom activity and all nine currently recognised species of Pseudonaja. Fluorometric enzymatic activity assays were performed to test variation in whole venom procoagulant activity among species. Analyses confirmed the previously documented ontogenetic shift from non-coagulopathic venom in juveniles to coagulopathic venom as adults, except for the case of P. modesta, which retains non-coagulopathic venom as an adult. These shifts in venom activity correlate with documented ontogenetic shifts in diet among brown snakes from specialisation on reptilian prey as juveniles (and throughout the life cycle of P. modesta), to a more generalised diet in adults that includes mammals. The results of this study bring to light findings relevant to both clinical and evolutionary toxinology.
Article
Significance paragraph: The toxicological profile and proteomic composition of the venom of the Papuan black snake, Pseudechis papuanus, a large diurnal snake endemic to the southern coast of New Guinea and a handful of close offshore islands, were investigated. Intravenous injection of P. papuanus venom in mice induced intravascular hemolysis, pulmonary congestion and edema, anticoagulation, and death. These activities could be assigned to the set of PLA2 molecules, which dominate the P. papuanus venom proteome. This study also showed that Australian Seqirus black snake or polyvalent antivenoms were effective in neutralising the lethal, PLA2 and anticoagulant activities of the venom. These preclinical results support the continued recommendation of these Seqirus antivenoms in the clinical management of P. papuanus envenoming in Australia, Papua New Guinea or Indonesian Papua Province.
Article
Genetic analyses of Australasian organisms have resulted in the identification of extensive cryptic diversity across the continent. The venomous elapid snakes are among the best-studied organismal groups in this region, but many knowledge gaps persist: for instance, despite their iconic status, the species-level diversity among Australo-Papuan blacksnakes (Pseudechis) has remained poorly understood due to the existence of a group of cryptic species within the P. australis species complex, collectively termed “pygmy mulga snakes”. Using two mitochondrial and three nuclear loci we assess species boundaries within the genus using Bayesian species delimitation methods and reconstruct their phylogenetic history using multispecies coalescent approaches. Our analyses support the recognition of 10 species, including all of the currently described pygmy mulga snakes and one undescribed species from the Northern Territory of Australia. Phylogenetic relationships within the genus are broadly consistent with previous work, with the recognition of three major groups, the viviparous red-bellied black snake P. porphyriacus forming the sister species to two clades consisting of ovoviviparous species.
Article
Five species of large venomous snakes of the genus Pseudechis are oviparous, whereas one (Pseudechis porphyriacus) is viviparous. Data were gathered on body sizes, food habits, activity patterns and reproductive biology of all the Pseudechis species, based on dissection of 996 museum specimens and maintenance of animals in captivity. These data revealed that oviparous and viviparous congeners do not differ in most of the factors predicted to favor the evolution of viviparity, or to evolve in response to viviparity. Specifically, all of the Pseudechis species are similar in average adult body size (100-130 cm), sexual size dimorphism (adult males approx. 15% longer than females), seasonal timing of reproduction (ovulation in spring, at least in the temperate zone), fecundity (averages of 8-12 offspring), and sizes of eggs and offspring (hatchlings of 200-300 mm snout-vent length [SVL] except in P. colletti, 280-370 mm SVL). Interspecific differences were evident in activity patterns (diurnal to nocturnal) and food habits (catholic, eating mainly reptiles, frogs and mammals), but geographic variation in these characteristics in wide-ranging species suggests that such differences reflect phenotypic plasticity rather than fixed interspecific differences. The only unique characteristic of the viviparous species is its occupancy of cold climates, and possibly its restriction to riparian habitats. These data strongly falsify several hypotheses on morphological and ecological consequences of the evolution of viviparity. Hypotheses on selective forces for the origin of viviparity are much more difficult to test. Of the many alternative hypotheses on this question, the "cold climate" hypothesis is the only one which successfully predicts ecological correlates of reproductive mode in Pseudechis.
Article
Unlabelled: Venoms of the viperid sister genera Eristicophis and Pseudocerastes are poorly studied despite their anecdotal reputation for producing severe or even lethal envenomations. This is due in part to the remote and politically unstable regions that they occupy. All species contained are sit and wait ambush feeders. Thus, this study examined their venoms through proteomics techniques in order to establish if this feeding ecology, and putatively low levels of gene flow, have resulted in significant variations in venom profile. The techniques indeed revealed extreme venom variation. This has immediate implications as only one antivenom is made (using the venom of Pseudocerastes persicus) yet the proteomic variation suggests that it would be of only limited use for the other species, even the sister species Pseudocerastes fieldi. The high degree of variation however also points toward these species being rich resources for novel compounds which may have use as lead molecules in drug design and development. Biological significance: These results show extreme venom variation between these closely related snakes. These results have direct implications for the treatment of the envenomed patient.
Article
1. Here, I present a new, multifunctional phylogenetics package, phytools, for the R statistical computing environment. 2. The focus of the package is on methods for phylogenetic comparative biology; however, it also includes tools for tree inference, phylogeny input/output, plotting, manipulation and several other tasks. 3. I describe and tabulate the major methods implemented in phytools, and in addition provide some demonstration of its use in the form of two illustrative examples. 4. Finally, I conclude by briefly describing an active web-log that I use to document present and future developments for phytools. I also note other web resources for phylogenetics in the R computational environment.
Article
McArdle disease is caused by a deficiency of myophosphorylase and currently a satisfactory treatment is not available. The injection of notexin into, or the layering of notexin onto, the muscles of affected sheep resulted in necrosis followed by regeneration of muscle fibres with the expression of both non-muscle isoforms of phosphorylase within the fibres and a reduction of the amount of glycogen in the muscle with an increase in the strength of contraction and a decrease in fatiguability in the muscle fibres. The sustained re-expression of both the brain and liver isoforms of phosphorylase within the muscle fibres provides further emphasis that strategies to enhance the re-expression of these isoforms should be investigated as a possible treatment for McArdle disease.
Article
Animal venoms are complex chemical mixtures that typically contain hundreds of proteins and non-proteinaceous compounds, resulting in a potent weapon for prey immobilization and predator deterrence. However, because venoms are protein-rich, they come with a high metabolic price tag. The metabolic cost of venom is sufficiently high to result in secondary loss of venom whenever its use becomes non-essential to survival of the animal. The high metabolic cost of venom leads to the prediction that venomous animals may have evolved strategies for minimizing venom expenditure. Indeed, various behaviors have been identified that appear consistent with frugality of venom use. This has led to formulation of the "venom optimization hypothesis" (Wigger et al. (2002) Toxicon 40, 749-752), also known as "venom metering", which postulates that venom is metabolically expensive and therefore used frugally through behavioral control. Here, we review the available data concerning economy of venom use by animals with either ancient or more recently evolved venom systems. We conclude that the convergent nature of the evidence in multiple taxa strongly suggests the existence of evolutionary pressures favoring frugal use of venom. However, there remains an unresolved dichotomy between this economy of venom use and the lavish biochemical complexity of venom, which includes a high degree of functional redundancy. We discuss the evidence for biochemical optimization of venom as a means of resolving this conundrum.
Article
A neutral phospholipase A2 (PLA2) was separated from Pseudechis papuanus venom by a two-stage FPLC procedure of cation exchange and phenyl-Superose chromatography. It had a molecular mass of 15 kDa and a lower LD50 value than a co-separated haemorrhagic fraction, indicating a higher lethal potency. In vitro tests confirmed the powerful inhibition of platelet aggregation by the PLA2 and strong anticoagulant activity initially observed with whole venom. Ultrastructural studies showed that platelets lost their discoid shape and developed membranous projections with a general decrease in electron-density of the cytosol and disruption of the microfilaments following incubation with the enzyme. Amino acid sequence analysis of the N-terminus and some internal peptides demonstrated a high degree of homology with PLA2s from other Pseudechis venoms. Our results indicate that this fraction is the main agent responsible for the haemostatic disorders in envenomed patients.
Article
The reciprocal evolutionary relationships of butterflies and their food plants have been examined on the basis of an extensive survey of patterns of plant utilization and information on factors affecting food plant choice. The evolution of secondary plant substances and the stepwise evolutionary responses to these by phytophagous organisms have clearly been the dominant factors in the evolution of butterflies and other phytophagous groups. Furthermore, these secondary plant substances have probably been critical in the evolution of angiosperm subgroups and perhaps of the angiosperms themselves. The examination of broad patterns of coevolution permits several levels of predictions and shows promise as a route to the understanding of community evolution. Little information useful for the reconstruction of phylogenies is supplied. It is apparent that reciprocal selective responses have been greatly underrated as a factor in the origination of organic diversity. The paramount importance of plant-herbivore interactions in generating terrestrial diversity is suggested. For instance, viewed in this framework the rich diversity of tropical communities may be traced in large part to the hospitality of warm climates toward poikilothermal phytophagous insects.
Article
All groups for which data exist go extinct at a rate that is constant for a given group. When this is recast in ecological form (the effective environment of any homogeneous, group of organisms deteriorates at a stochasti- cally constant rate), no definite exceptions exist although a few are possible. Extinction rates are similar within some very broad categories and vary regularly with size of area inhabited. A new unit of rates for discrete phenomena, the macarthur, is introduced. Laws are appropriate in evolutionary biology. Truth needs more than correct predictions. The Law of Extinction is evidence for ecological significance and comparability of taxa. A ncn- Markovian hypothesis to explain the law invokes mutually incompatible optima within an adaptive zone. A self-perpetuating fluctuation results which can be stated in terms of an unstudied aspect of zero-sum game theory. The hypothesis can be derived from a view that momentary fitness is the amount of control of resources, which remain constant in total amount. The hypothesis implies that long-term fitness has only two components and that events of mutualism are rare. The hypothesis largely explains the observed pattern of molecular evolution.
Article
The coagulant effects of Australasian black snakes (Pseudechis spp.) are poorly understood and differ to the procoagulant venoms of most dangerous snakes in Australia. This study aimed to investigate in vitro coagulant effects of Pseudechis venoms and the efficacy of commercial black snake antivenom (BlSAV), tiger snake antivenom (TSAV) and specific rabbit anti-snake IgG to neutralise these effects. Using a turbidimetric assay, all six Pseudechis venoms had anticoagulant activity, as well as phospholipase A(2) (PLA(2)) activity. Inhibition of PLA(2) activity removed anticoagulant effects of the venoms. Pseudechis porphyriacus was unique and had procoagulant activity independent of PLA2 activity. Both BlSAV and TSAV completely inhibited the coagulant and PLA2 activity of all Pseudechis venoms. PLA2 activity was also inhibited completely by p-Bromophenacyl bromide (pBPB) and partially by specific anti-N. scutatus IgG antibodies. Anti-N. scutatus IgG also completely inhibited anticoagulant activity of Pseudechis venom. All Pseudechis venoms showed immunological cross reactivity with specific anti-snake IgG antibodies to P. porphyriacus, Pseudechis australis and Notechis scutatus. Pseudechis venoms have in vitro anticoagulant activity that appears to be attributable to PLA(2) activity. Both antivenoms inhibited anticoagulant and PLA(2) activity at concentrations below those occurring in patients treated with one vial of antivenom. There was cross-neutralisation of Pseudechis venoms and N. scutatus antibodies that might be attributable to immunological similarities between the venoms.
Article
Animal taxa show remarkable variability in species richness across phylogenetic groups. Most explanations for this disparity postulate that taxa with more species have phenotypes or ecologies that cause higher diversification rates (i.e., higher speciation rates or lower extinction rates). Here we show that clade longevity, and not diversification rate, has primarily shaped patterns of species richness across major animal clades: more diverse taxa are older and thus have had more time to accumulate species. Diversification rates calculated from 163 species-level molecular phylogenies were highly consistent within and among three major animal phyla (Arthropoda, Chordata, Mollusca) and did not correlate with species richness. Clades with higher estimated diversification rates were younger, but species numbers increased with increasing clade age. A fossil-based data set also revealed a strong, positive relationship between total extant species richness and crown group age across the orders of insects and vertebrates. These findings do not negate the importance of ecology or phenotype in influencing diversification rates, but they do show that clade longevity is the dominant signal in major animal biodiversity patterns. Thus, some key innovations may have acted through fostering clade longevity and not by heightening diversification rate.
Article
The venom composition of Pseudechis australis, a widely distributed in Australia reptile, was analyzed by 2-DE and mass spectrometric analysis. In total, 102 protein spots were identified as venom toxins. The gel is dominated by horizontal trains of spots with identical or very similar molecular masses but differing in the pI values. This suggests possible post-translational modifications of toxins, changing their electrostatic charge. The results demonstrate a highly specialized biosynthesis of toxins destroying the hemostasis (P-III metalloproteases, SVMPs), antimicrobial proteins (L-amino acid oxidases, LAAOs, and transferrin-like proteins, TFLPs), and myotoxins (phospholipase A(2)s, PLA(2)s). The three transferrin isoforms of the Australian P. australis (Elapidae snake) venom are highly homologous to the body transferrin of the African Lamprophis fuliginosus (Colubridae), an indication for the recruitment of body transferrin. The venomic composition suggests an adaptation for a defense against microbial pathogens from the prey. Transferrins have not previously been reported as components of elapid or other snake venoms. Ecto-5'-nucleotidases (5'-NTDs), nerve growth factors (VNGFs), and a serine proteinase inhibitor (SPI) were also identified. The venom composition and enzymatic activities explain the clinical manifestation of the king brown snakebite. The results can be used for medical, scientific, and biotechnological purposes.
Article
The relationship between microstructural features and macroscopic mechanical properties of engineered tissues was investigated in pure and mixed composite scaffolds consisting of collagen Type I and fibrin proteins containing embedded smooth muscle cells. In order to vary the matrix microstructure, fibrin polymerization in mixed constructs was initiated using either the blood-derived enzyme thrombin or the snake venom-derived enzyme ancrod, each at low and high concentrations. Microstructural features of the matrix were quantified by analysis of high resolution scanning electron micrographs. Mechanical properties of the scaffolds were assessed by uniaxial tensile testing as well as creep testing. Viscoelastic parameters were determined by fitting creep data to Burger's four-parameter model. Oscillatory dynamic mechanical testing was used to determine the storage modulus, loss modulus, and phase shift of each matrix type. Mixed composite scaffolds exhibited improved tensile stiffness and strength, relative to pure collagen matrices, as well as decreased deformation and slower relaxation in creep tests. Storage and loss moduli were increased in mixed composites compared with pure collagen, while phase shift was reduced. A correlation analysis showed that the number of fiber bundles per unit volume was positively correlated with matrix modulus, strength, and dynamic moduli, though this parameter was negatively correlated with phase shift. Fiber diameter also was negatively correlated with scaffold strength. This study demonstrates how microstructural features can be related to the mechanical function of protein matrices and provides insight into structure-function relationships in such materials. This information can be used to identify and promote desirable microstructural features when designing biomaterials and engineered tissues.
Article
An adaptation in one lineage (e.g. predators) may change the selection pressure on another lineage (e.g. prey), giving rise to a counter-adaptation. If this occurs reciprocally, an unstable runaway escalation or 'arms race' may result. We discuss various factors which might give one side an advantage in an arms race. For example, a lineage under strong selection may out-evolve a weakly selected one (' the life-dinner principle'). We then classify arms races in two independent ways. They may be symmetric or asymmetric, and they may be interspecific or intraspecific. Our example of an asymmetric interspecific arms race is that between brood parasites and their hosts. The arms race concept may help to reduce the mystery of why cuckoo hosts are so good at detecting cuckoo eggs, but so bad at detecting cuckoo nestlings. The evolutionary contest between queen and worker ants over relative parental investment is a good example of an intraspecific asymmetric arms race. Such cases raise special problems because the participants share the same gene pool. Interspecific symmetric arms races are unlikely to be important, because competitors tend to diverge rather than escalate competitive adaptations. Intraspecific symmetric arms races, exemplified by adaptations for male-male competition, may underlie Cope's Rule and even the extinction of lineages. Finally we consider ways in which arms races can end. One lineage may drive the other to extinction; one may reach an optimum, thereby preventing the other from doing so; a particularly interesting possibility, exemplified by flower-bee coevolution, is that both sides may reach a mutual local optimum; lastly, arms races may have no stable and but may cycle continuously. We do not wish necessarily to suggest that all, or even most, evolutionary change results from arms races, but we do suggest that the arms race concept may help to resolve three long-standing questions in evolutionary theory.
Article
Four homologous single chain phospholipases A2 (Pa-1G, Pa-5, Pa-12C and Pa-15) were tested for neuromuscular effects on chick biventer cervicis and mouse hemidiaphragm nerve-muscle preparations. The four isozymes blocked directly elicited (mouse hemidiaphragm) and indirectly elicited (mouse and chick nerve-muscle preparations) twitch responses in concentrations of 1-30 micrograms/ml. The order of potency seen in both types of preparations was Pa-1G = Pa-5 greater than Pa-12C much greater than Pa-15. All four isozymes caused slow-onset, sustained contractures and reduction of muscle membrane potentials. In the chick preparation, responses to acetylcholine, carbachol and KCl were reduced by exposure to the toxins. It is concluded that the toxins act primarily postsynaptically to depress muscle contractility, perhaps by directly damaging muscle fibres. The order of potency agrees with their phospholipase A2 activity. Pa-1G is unusual because it is an acidic molecule, most toxic phospholipases being basic.
Article
Venoms from 30 different snake species were tested in a disc diffusion assay for antibacterial effects against gram-positive and gram-negative bacteria. A number of venoms gave a zone of inhibition against both groups of bacteria, including Aeromonas hydrophila, an important pathogen of reptiles and amphibians. Two antibacterial components from the venom of an Australian elapid, Pseudechis australis (Australian king brown or mulga snake) were purified to homogeneity. The proteins, designated LAO1 and LAO2, had potent antibacterial properties associated with L-amino acid oxidase activity. Both had native and subunit mol. wts of 142,000 and 56,000, respectively. Antibacterial activity correlated with enzymatic activity and was eliminated with catalase. LAO1 and LAO2 had 244 and 113 units of L-amino acid oxidase activity/mg protein, respectively. Compared to tetracycline, a drug of choice for Aeromonas infections in humans, reptiles and amphibians, the in vitro antibacterial effects of LAO1 and LAO2 were respectively 70 and 17.5 times more effective (on a molar basis).
Article
Tryptophan residues 31 and 69 (Trp-31 and Trp-69) in phospholipase A2 (Pa-11) from the venom of an Australian elapid snake, Pseudechis australis, were modified with N-bromosuccinimide (NBS) or with 2-nitrophenylsulphenylchloride (NPSC1). NBS oxidized only Trp-31, whereas NPSC1 reacted with both Trp-31 and Trp-69. Treatment of the enzyme with NBS at various pH values resulted in losses of enzymic and lethal activities. No protective effect on the oxidation with NBS was observed by the addition of calcium ion (20 mM) or lecithin (4 mM). The observations suggest that Trp-31 is exposed to the surface of the molecule, composes a part of the lipid-water interface recognition site around the active site and is essential for enzymic activity. Calcium ion addition to the solution caused a change in ultraviolet spectrum of the native enzyme Pa-11. The difference spectrum indicates that a charge effect caused a typical tryptophan blue shift in the Ca(2+)-enzyme complex. Pa-11 oxidized with NBS showed a smaller ultraviolet absorption difference on the addition of Ca2+ ion. The results show that the hypochromic effect induced upon the binding of Ca2+ is due to perturbation of the specific tryptophan residue (Trp-31) which is involved in the active site. Dissociation constant, Kd, of the Ca(2+)-enzyme complex was calculated to be 3.4 x 10(-4) M at pH 8.0.
Article
A weak toxin was isolated from the venom of the Australian red-bellied black snake, Pseudechis porphyriacus, by ion-exchange chromatography on Bio-Rex 70, followed by gel filtration on Sephadex G-50. The toxin, pseudexin, accounts for 25% of the venom and has an ld50 (i.p.) of 480 μg/kg mouse. It is a polypeptide of 143 amino acid residues and has a formula weight of 16,659. Pseudexin has phospholipase A (phosphatidate acyl-hydrolase, EC 3.1.1.4) activity. Modification of the toxin with p-bromophenacyl bromide resulted in a 99·9% loss of phospholipase activity and a reduction of its toxicity. The toxin, like other phospholipases, caused indirect hemolysis of washed erythrocytes. In addition, pseudexin directly hemolysed erythrocytes under conditions in which phospholipases are normally non-hemolytic.
Article
Previous studies have shown that homologous phospholipases A2 (PLA2) (Pa-3, Pa-9C, Pa-10F and Pa-11) from the venom of the Australian king brown snake, Pseudechis australis, significantly reduce the resting membrane potentials and quantal contents of endplate potentials recorded from endplate regions of mouse triangularis sterni nerve-muscle preparations. It is not clear whether PLA2 activity is essential for their neuromuscular activities. Therefore, pharmacological studies were carried out to determine whether neuromuscular activity of the toxins changed after treatment with the phospholipase A2 inhibitors 7,7-dimethyl-eicosadienoic acid (DEDA) and manoalide. After incubation of the toxins with manoalide (120 nM), or DEDA (50 microM), no PLA2 activity against 1-stearoyl 2-[3H]arachidonoylglycerophosphocholine was detected. After incubation with manoalide and/or DEDA, the toxins did not depolarize muscle fibre membranes up to 60 min after administration. However, manoalide and DEDA had different influences on the inhibitory effect of these toxic enzymes on acetylcholine release from nerve terminals. Manoalide abolished the inhibitory effect of the toxins on evoked release of acetylcholine. In contrast, DEDA was not able to prevent the reduction of quantal content of endplate potentials induced by the toxins. This study provides evidence that the depolarizing action and the inhibitory effect on release of acetylcholine exerted by these toxic PLA2 from king brown snake are independent phenomena. The evidence for this conclusion was that inhibition of enzymatic activity with an arachidonic acid analogue (DEDA) abolished the depolarizing effect of the toxins but not the effects on the quantal release of acetylcholine from mouse motor nerve terminals. The data suggest that the depolarizing effect of these toxins is probably due to the enzymatic activity. Since manoalide interacts with lysine residues of PLA2 polypeptides, and, as shown here, manoalide prevented inhibition of neurotransmitter release, lysine residues may play an important role in the inhibitory activity of these toxins.
Article
The presynaptically active, toxic phospholipases known as notexin and taipoxin are principal components of the venom of the Australian tiger snake and the Australian taipan respectively. The inoculation of the toxins into one hind limb of rats caused, within 1 h, the depletion of transmitter from the motor nerve terminals of the soleus muscle. This was followed by the degeneration of the motor nerve terminals and of the axonal cytoskeleton. By 24 h 70% of muscle fibers were completely denervated. Regeneration and functional reinnervation were almost fully restored by 5 days, but collateral innervation was common in the regenerated muscles, and this abnormality persisted for at least 9 months. The data provide an explanation for both the severity of neuromuscular paralysis that can accompany envenoming bites by tiger snakes and taipans and the difficulty experienced by physicians in managing the envenomed subjects.
Article
As most coral reef organisms with a pelagic larval phase are presumed to be readily dispersed between distant populations, sea-surface current patterns should be crucial for predicting ecological and genetic connections among threatened reef populations. Here we investigate this idea by examining variations in the genetic structuring of populations of the mantis shrimp Haptosquilla pulchella taken from 11 reef systems in Indonesia, in which a series of 36 protected areas are presumed to be connected by strong ocean currents. Our results reveal instead that there is a strong regional genetic differentiation that mirrors the separation of ocean basins during the Pleistocene low-sea-level stands, indicating that ecological connections are rare across distances as short as 300-400 km and that biogeographic history also influences contemporary connectivity between reef ecosystems.
Article
The isolated neurotoxins taipoxin and notexin from the venoms of the Elapidae, Oxyuranus scutellatus and Notechis scutatus scutatus respectively cause a neuromuscular block when administered to the mouse in vivo or to the phrenic nerve-hemidiaphragm preparation in vitro. The block is preceded by a latency period during which the toxins bind irreversibly to the nerve. The period is shortened by nerve activity. The frequency of the miniature end-plate potentials is gradually reduced, almost to zero, and their amplitude distribution is altered; small and very large miniature endplate potentials appearing. Ultrastructurally the endplates are altered in the presynaptic portion but not in the postsynaptic part. In an early stage of poisoning the axolemma has an increased number of omega-shaped indentations similar in size to synaptic vesicles. At a later stage, when the animals die of respiratory paralysis, the axolemmal indentations are more numerous and the synaptic vesicles greatly reduced in number, the remaining vesicles having a variable and frequently larger than normal size. When impulse activity in the phrenic nerve is stopped by cutting the nerve before the administration of toxin there is no reduction in the number of synaptic vesicles, only the appearance of an increased number of axolemmal indentations. It is suggested that taipoxin and notexin irreversibly interfere with the formation of synaptic vesicles by arresting vesicle membrane recycling at the level of the axolemma. When the pre-existing store of vesicles is depleted, by nerve activity, a neuromuscular block results.
Article
The evolution of the venomous function of snakes and the diversification of the toxins has been of tremendous research interest and considerable debate. It has become recently evident that the evolution of the toxins in the advanced snakes (Colubroidea) predated the evolution of the advanced, front-fanged delivery mechanisms. Historically, the venoms of snakes lacking front-fanged venom-delivery systems (conventionally grouped into the paraphyletic family Colubridae) have been largely neglected. In this study we used liquid chromatography with mass spectrometry (LC/MS) to analyze a large number of venoms from a wide array of species representing the major advanced snake clades Atractaspididae, Colubrinae, Elapidae, Homalopsinae, Natricinae, Psammophiinae, Pseudoxyrhophiinae, Xenodontinae, and Viperidae. We also present the first sequences of toxins from Azemiops feae as well as additional toxin sequences from the Colubrinae. The large body of data on molecular masses and retention times thus assembled demonstrates a hitherto unsuspected diversity of toxins in all lineages, having implications ranging from clinical management of envenomings to venom evolution to the use of isolated toxins as leads for drug design and development. Although definitive assignment of a toxin to a protein family can only be done through demonstrated structural studies such as N-terminal sequencing, the molecular mass data complemented by LC retention information, presented here, do permit formulation of reasonable hypotheses concerning snake venom evolution and potential clinical effects to a degree not possible till now, and some hypotheses of this kind are proposed here. The data will also be useful in biodiscovery.
Article
We analyze the phylogeny of three genera of Australasian elapid snakes (Acanthophis-death adders; Oxyuranus-taipans; Pseudechis-blacksnakes), using parsimony, maximum likelihood, and Bayesian analysis of sequences of the mitochondrial cytochrome b and ND4 genes. In Acanthophis and Pseudechis, we find evidence of multiple trans-Torresian sister-group relationships. Analyses of the timing of cladogenic events suggest crossings of the Torres Strait on several occasions between the late Miocene and the Pleistocene. These results support a hypothesis of repeated land connections between Australia and New Guinea in the late Cenozoic. Additionally, our results reveal undocumented genetic diversity in Acanthophis and Pseudechis, supporting the existence of more species than previously believed, and provide a phylogenetic framework for a reinterpretation of the systematics of these genera. In contrast, our Oxyuranus scutellatus samples from Queensland and two localities in New Guinea share a single haplotype, suggesting very recent (late Pleistocene) genetic exchange between New Guinean and Australian populations.
Article
1. Pseudechis species (black snakes) are among the most widespread venomous snakes in Australia. Despite this, very little is known about the potency of their venoms or the efficacy of the antivenoms used to treat systemic envenomation by these snakes. The present study investigated the in vitro neurotoxicity of venoms from seven Australasian Pseudechis species and determined the efficacy of black and tiger snake antivenoms against this activity. 2. All venoms (10 µg/mL) significantly inhibited indirect twitches of the chick biventer cervicis nerve–muscle preparation and responses to exogenous acetylcholine (ACh; 1 mmol/L), but not to KCl (40 mmol/L), indicating activity at post-synaptic nicotinic receptors on the skeletal muscle. 3. Prior administration of either black or tiger snake antivenom (5 U/mL) prevented the inhibitory effects of all Pseudechis venoms. 4. Black snake antivenom (5 U/mL) added at t90 (i.e. the time-point at which the original twitch height was reduced by 90%) significantly reversed the effects of P. butleri (28 ± 5%), P. guttatus (25 ± 8%) and P. porphyriacus (28 ± 10%) venoms. Tiger snake antivenom (5 U/mL) added at the t90 time-point significantly reversed the neurotoxic effects of P. guttatus (51 ± 4%), P. papuanus (47 ± 5%) and P. porphyriacus (20 ± 7%) venoms. 5. We show, for the first time, the presence of neurotoxins in the venom of these related snake species and that this activity is differentially affected by either black snake or tiger snake antivenoms.