ResearchPDF Available

Analysis and Qualitative Effects of Large Breasts on Aerodynamic Performance and Wake of a “Miss Kobayashi’s Dragon Maid” Character


Abstract and Figures

A computational fluid dynamics methodology is used to study the salient flow features around the breasts of a human figure and to describe the aerodynamic differences imparted by their geometric presence. Two models are proposed for examination: a 3-dimensional reference based on a character design with a significantly buxom figure and a modification of this design where the breast size is reduced significantly. The two models are tested at speeds ranging from 1 to 30 m⋅s^-1 using Reynolds-averaged Navier Stokes (RANS). Drag, lift, and skin friction forces, along with turbulence kinetic energy (TKE), are investigated and compared between the different models. The present results are expected to provide useful information on the validity of the statement, "Flat is Justice" in terms of an aerodynamic standpoint. In addition to this, the results can offer worthwhile data investigating the anthropometrical presence of large breasts on sport aerodynamics.
Content may be subject to copyright.
1 Copyright © 2018 N. Rabino
Analysis and Qualitative Effects of Large Breasts on Aerodynamic Performance and
Wak e of a “Miss Kobayashi’s Dragon Maid” Character
N. Rabino
Computational fluid dynamics, ANSYS, drag
coefficient, human aerodynamics, SST k-ω
model, anime, Quetzalcoatl, titties, thicc
AMS Subject Classifications:
00A72, 76-05, 76G25
A computational fluid dynamics methodology is used to study the salient flow features around
the breasts of a human figure and to describe the aerodynamic differences imparted by their
geometric presence. Two models are proposed for examination: a 3-dimensional reference based
on a character design with a significantly buxom figure and a modification of this design where
the breast size is reduced significantly. The two models are tested at speeds ranging from 1 to 30
ms^-1 using Reynolds-averaged Navier Stokes (RANS). Drag, lift, and skin friction forces,
along with turbulence kinetic energy (TKE), are investigated and compared between the differ-
ent models. The present results are expected to provide useful information on the validity of the
statement, “Flat is Justice” in terms of an aerodynamic standpoint. In addition to this, the results
can offer worthwhile data investigating the anthropometrical presence of large breasts on sport
1. Introduction
The aerodynamics of the human form has been an area of valuable
research in various aspects of sports and competition. Air resistance
(hereinafter referred to as “drag”) is a concerning factor in many time-
based trials, and enhancing potential efficiency can be done through the
elucidation of the flow around the human figure. Studies concerning the
drag of the human body using wind tunnels can be found dating back to
the 1920s [1]. A small sampling of subsequent studies exploring the
effect of drag covers areas such as running [2], cycling [3], skiing [4],
and skating [5], all of which reinforces the relevance of aerodynamic
investigation on the human shape in regards to performance.
In many of such studies, the authors seek to investigate the effect of
positioning in relation to drag [6], and some utilize numerous subjects
of differing anthropometric proportions to describe a generalized result
on such positioning [7, 8]. Hitherto, none within the author’s investiga-
tions has described the effect of specific physiological features on aero-
dynamic performance in great detail. Stemming from certain internet
communities and pertinent to the current era comes the succinct state-
ment, “Flat is Justice”, which consequentially begets interesting debate
that can reverberate and diffuse throughout media. Essentially, the
statement describes the appreciation of flat-chested women [9], which
posits a peculiar aspect that has yet to be fully explored in human aero-
dynamics; namely, the effect of breasts in regards to drag and overall
aerodynamic performance.
This work is intended to contribute to the understanding of how
large breasts can affect the dynamics of the human wake through the
use of computational fluid dynamics (CFD) simulation tools. This pre-
liminary work focuses solely on comparing the relevant effects of large
breasts of a selected human design to that of the same design but with,
euphemistically, “lesser tracts of land”. The following sections will
present an overall understanding on the human wake in relation to sim-
plified geometry along with engineering applications, introduce the
chosen human geometry and models, relevant boundary conditions, the
governing equations, and the numerical methods used to solve the equa-
tions. An in-depth review on the computational uncertainty is described,
following with extensive results and discussion, conclusions, and rec-
ommendations for future work.
1.1 Background on the Human Wake
The human body can best be described as a bluff-body in respect to
the flow around it. Literature on the behavior of the wakes behind bluff
bodies indicates that the flow will be unsteady due to the turbulent tran-
sition and separation of the boundary layer [10]. A simplification analo-
gous to the human shape can be represented by a grouping of uniform
circular cylinders [11] and therefore existing studies on this type of
geometry can provide general insight into the wake region. Sumner et
al. [12] described the wake and development of vortex structures of
cylinders with aspect ratios (i.e. height to diameter) of 3, 5, and 9, and
determined that a transition in vortex shedding occurs at /=3. An
investigation by Okamoto and Sunabashiri [13] also supports this find-
ing, adding that cylinders with an aspect ratio of 3 experience a recircu-
lation region that extends four diameters downstream. Assuming the
human form takes on a roughly large cylindrical shape near this aspect
ratio, it is to be expected that the recirculation region will behave simi-
larly and extend approximately four body widths downstream.
A readily apparent deviation in geometry compared to studies done
on singular cylinders is the presence of the gap between the legs. An
extensive and comprehensive review done by Zhou and Alam [14] on
the various arrangements of two cylinders indicate the wake structure
falls into a multitude of regimes. In a side-by-side configuration, being
similar to the two legs of a human, it is deduced that there are three
primary regimes where the wake experiences proximity interference.
When closely spaced together, the first regime shows that the cylinders
act similarly to that of a single bluff body with a width corresponding to
the two cylinders. When the gap width is larger than 20% of the diame-
ter, each cylinder has individual wakes that strongly affect one another
and is associated with the second regime. At gap widths exceeding ap-
proximately 100~120% of the diameter, each cylinder acts as an inde-
pendent body with the vortex streets being loosely influenced by one
another. Seeing that human legs are not strictly cylinders with a fixed
diameter but more akin to inverted tapered cylinders, the wakes behind
the legs will likely behave in a similar fashion observed in both the first
and second regime. With the ankles and calves being narrower and hav-
ing a larger gap between them, the second regime is applicable. A tran-
sition into the first regime can be expected associated with the bulkiness
of the thighs and reduction in gap width.
Engineering literature can also provide additional details on the
flow characteristics around the body. Many of such studies are motivat-
ed by exposure control and contaminant transport [15, 16], thermal
issues [17, 18], and comfort prediction [19], rather than overall drag
effects. Inherently, many of the tested flow characteristics are evaluated
in a quiescent environment or at air velocities that are of a lower order
compared to those found in sport-related studies. Nonetheless, these
studies provide useful insight on the natural turbulence caused by the
human form and the expected anatomical location of flow separation.
Inthavong et al. [20] utilized a high speed camera to record the wake
generation of a 1/5th scaled realistic human manikin that was accelerat-
ed to a velocity of ~1 ms-1. From their results, it was found that the
2 Copyright © 2018 N. Rabino
shoulder undergoes flow separation and produces vortices in a regular
pattern. The hands produce a well-defined yet unstable vortex sheet that
curls towards the centerline of the body. The head acts similarly to clas-
sical sphere/cylinder cases with the addition of a trailing wake forming
from behind the neck. The neck was found to remove the expected
counter free shear layer that is present in cylinder studies and thus elim-
inates the formation of an oscillating vortex sheet. In all, it can be said
that the observed human wake is a highly complex and richly diverse
system that is easily influenced by the inherent geometry used; it is
expected that from this study, an overall summary can be presented on
how and to what degree the previously described flow structures are
affected by the presence of large breasts.
2. Methodology
2.1 Design Proposal and Model Scaling
The use of realistic human models affords greater realization of the
pertinent flow characteristics as they are considerably different than
those of generalized models. Ya n et al. [21] concluded that an excessive
degree of simplification in using a manikin can affect the ability to
achieve accurate results, and thus precludes the use of a simplified
model for this study. However, the acquisition of a 3-D scanned human
model with a significant bust indubitably proved difficult. The use of a
highly unconventional approach was used to ameliorate this issue.
The animated adaptation of Miss Kobayashi’s Dragon Maid, being
a recently popular show [22] and spawning a sizable subculture on the
internet [23], proved suitable in terms of providing potential models.
The dragon characters (themselves being based off of mythically and
culturally prominent dragons) assume a human form to interact with
other humans in this well-received [24] slice-of-life urban fantasy. A
majority of the human forms of the female dragon characters possessed
significant busts. However, Quetzalcoatl (referred to canonically as
“Lucoa” and will be named as such throughout the rest of this paper)
substantiated herself as the adaptation’s gag character by her significant
size [25, 26], thus making her the perfect candidate in providing a suita-
ble model. Being clearly the largest amongst her fellow dragons as es-
tablished in Figure 1, Lucoa provides the best contrast between a large
bust and having none at all. To provide the most direct comparison in
regards to the effect of large breasts on the wake, a dramatic reduction
in bust size as reflected in Figure 1(b) was proposed for use in this
In order to obtain accurate results from the setups described later in
this paper, it is important to have the subject in question reflect real
world scales properly. Lucoas height while in human form is not given
explicitly in any related media within the scope of the author’s research.
Thus, Lucoa’s height must be estimated in relation to objects of which a
reasonable measurement can readily be found. Conveniently, there is a
scene found within Episode 6, Season 1 of the animated adaptation
wherein Lucoa steps through a doorframe. Assuming the door is of a
typical size1 used for external entrances, in addition to Lucoa being
scaled properly in the scene, we can estimate her height using a vanish-
ing point technique.
Using the door as depicted in Figure 2 to judge Lucoa’s height, it
was determined that she stands approximately 177 cm measured to the
top of her hat, with her horns boosting her overall figure to a height of
182 cm. These numbers can be considered reasonable based on canoni-
cal descriptions of Lucoa’s towering stature [27] compared to the aver-
age height of 158 cm for a Japanese woman [28].
2.2 3-Dimensional Models and Geometry Analysis
Since Lucoa is a fictional character that is commonly portrayed in
a 2-dimensional2 world, determining her form drag between the two
proposed designs as described in Figure 1 requires that we add another
dimension to her model. Conveniently enough, an available 3-D model
of Lucoa [29] was used that would make the simulation possible. This
MikuMikuDance 3-D model (henceforth referred to as the “Normal”
model) was then imported into the 3-D modeling program Blender,
scaled to the determined height as described in the previous section,
then exported into an STL file. This STL file was then repaired using
the built-in repair feature present in Microsoft 3D Builder due to the
unclean geometry inherent with the model. To achieve the modified
design (henceforth referred to as the “Flat” model), the original Miku-
MikuDance model was modified using the built-in tools in Blender to
dramatically reduce Lucoa’s breast size. The export and repair process
remained the same as for the original model.
As shown in Figure 3, all positions between the two models remain
the same and left unperturbed to leave the reduction in breast size as the
sole geometric difference to be investigated. Although the typical or-
thostatic (standing) orientation of a human has the upper limbs in a
1 A typical metric external door’s size is 926 mm wide by 2040 mm tall.
2 Referring to the media she is portrayed in, such as printed materials and televi-
(a) Original reference design.
Courtesy: Kyoto Animation.
(b) The modified design proposed
for comparison.
Figure 1. Comparison of different designs for Lucoa.
Figure 2. A perspective measurement of Lucoa in reference to a door frame
using the Vanishing Point Tool in Adobe Photoshop.
3 Copyright © 2018 N. Rabino
relaxed position [30], the arms are left posed at a 45° adduction angle
from the torso, as this is the default ‘A’ pose when importing the model.
This arm position also has an advantage in this study as it potentially
enables a more thorough analysis on the effect of breasts on the wake
region, whereas a neutral standing posture would have the arms inter-
fere with the downstream effect of the breasts. The hair is left modeled
as solid to reduce simulation complexity and setup. 3 While humans
naturally lean forward against the direction of the wind to maintain
equilibrium [31], this factor is not considered in this study as this lean-
ing would change the frontal area exposed to the fluid flow and thus
complicate comparisons against static reference models.
Dimensionally, the bounds of the two models are similar, with the
height and arm span being 1.82 and 1.387 meters respectively. The
Normal model has a depth of 0.525 meters whereas the Flat model is
only 0.414 meters. The frontal projected area, , of both models is
0.584 m2. The volumetric difference between the two is 9.19 L, indicat-
ing that each breast on the Normal model has an enormous volume of
approximately 4.6 L. The under-bust circumference of the Normal mod-
el is approximately 64 cm and the bust measures 115 cm. The Flat mod-
el has the same under-bust measurement whereas the bust measures 68
cm. Attempting to match the dimensions and bust volume of the Normal
model to existing cup sizing scales is difficult as these measurements
are exceptionally large and exceed volumes measured in other studies
[32]. Using the JIS L 4006:1998 [33] scale and extrapolating4 cup siz-
ing from the largest listed size (I-cup), the Normal model can be de-
scribed as being 10 cups larger; an estimated “S65”. The Flat model is a
stark contrast to this, where it matches a petiteAA65” size.
The dramatic difference in bust size between the models serves to
provide the most significant change in outcomes; it is assumed that due
to the absurd bust size, any size smaller than the Normal model would
have an outcome that would fall in a range between both models.
2.3 Evaluated Metrics and Implementation
Four metrics under investigation for this study include drag and lift
forces (including their associated coefficients), skin friction coefficient,
and finally, turbulence kinetic energy. To evaluate the drag coefficient,
CD, and drag force, FD, the following equations are used,
3 Hair physics is beyond the scope of the author, and thus this study, due to the
inordinate amount of computing resources and time needed to setup and simulate
hair strands in a physically accurate fashion.
4 In [33], each cup size is binned with every 2.5 cm deviation from the under-
bust measurement starting from 7.5 cm.
where is the fluid density, is the free stream velocity, is the
frontal projected area, and is the pressure at the surface . is the
local wall shear stress being defined as,
with as the dynamic viscosity, the flow velocity along the boundary,
and being the height above the boundary. The value of CD is not con-
stant and is dependent on Reynolds number, which is defined as,
where is an arbitrary characteristic length. In this study, is equal to
the height of the models.
The lift coefficient is comparable to the drag coefficient, being that
the force is evaluated in a direction that is perpendicular to the mean
flow direction, e.g. vertically upwards. Thus,
Instead of the frontal projected area, , a reference surface area, , is
used. For consistent comparison however, and are left defined as
being equivalent, thus =. This result does not affect the calculated
forces but rather only the coefficient, and as such, the lift coefficient is
dependent on the frontal area.
The skin friction coefficient, Cf, is evaluated in a similar manner to
the drag coefficient since the force attributed to skin friction is a com-
ponent of the profile drag, FD. Therefore,
Analyzing the skin friction coefficient allows insight into areas where
the boundary layer thickness changes; as turbulent flow increases, the
thickness of the boundary layer increases, and consequently areas where
Cf transitions to larger values or experiences spikes are indicative of
where flow separation is prevalent [34, 35].
Turbulence kinetic energy (TKE) signifies of the loss of kinetic en-
ergy from the mean flow and represents the energy present with eddies
in turbulent flow; it is a direct measure of the intensity of turbulence. In
a general form quantifying the mean of turbulence normal stresses, TKE
is defined as,
The exact value of TKE is calculated based on the closure of the Reyn-
olds-averaged Navier-Stokes equations, which is further discussed in
Section 3.3.
The numerical simulations in this present work, along with the au-
tomatic evaluation of the equations described in this section, were car-
ried out using ANSYS FLUENT R17. The 3-D models defined in Sec-
tion 2.2 were imported into FLUENT and followed the methodology as
described in the following section.
3. Computational Fluid Dynamics (CFD) Setup
and Analysis
3.1 Boundary Conditions
The use of boundary conditions based on real-world environments
enhances the overall applicability of the results stemming from the sim-
ulations. It was therefore important to determine the most appropriate
and accurate environment in which to simulate the models with. It was
(a) Reference (Normal) model.
(b) Modified (Flat) model.
Figure 3. 3-D representations of Lucoa to be used in CFD simulations, detailing
(clockwise) top, side, and front views.
4 Copyright © 2018 N. Rabino
found that the overall location used in the animated adaptation of Miss
Kobayashi’s Dragon Maid was based on the city of Koshigaya [36],
situated in the Saitama Prefecture of Japan. A logical time of year to
assume a person being outside without excess clothing would be some-
time in the summer. Using the month of August, it was found that
weather conditions in Koshigaya and nearby surrounding regions fea-
ture averages [37] of 22.6°C for temperature, 73% for relative humidity,
and 1005.9 hPa for local atmospheric pressure. Thus, the air density was
calculated to be =1.1581 kgm−3 and the dynamic viscosity to be
=1.8684710−5 kgm−1s−1.
Since the human body can vary based upon the clothing worn, sur-
face roughness and the effects of fabrics are parameters that are ignored
in this study. Although multiple studies have shown fabrics have a no-
ticeable effect on the overall drag of a human body [7, 38], the walls in
this computational work can be regarded as smooth. In all simulations,
the models and ground of the domain are modeled as non-moving walls
with no-slip conditions. The clothing that is part of the models is treated
in the same manner.
Tab le 1. Summary of boundary conditions in the present study.
Wind speed
1.0, 2.5, 5.0, 7.5,
10.0, 15.0, 20.0,
25.0, 30.0
1.281 105 ~
3.384 10
Domain bounds
viscosity ratio
Outlet gauge
Inlet velocities range from 1 ms-1 to 30 ms-1 in the positive y-
direction (since in this respect, the positive z-direction refers to the “up”
orientation; refer to Figure 4 for clarification), highlighting typical wind
speeds encountered on a day-to-day basis such as walking [39] all the
way up to standing in a violent storm [40]. At the inlet, turbulence is
specified using both turbulence intensity, , and turbulent viscosity
ratio, /. Turbulence intensity is defined as the ratio of the root-mean-
square of velocity fluctuations, , to the mean flow velocity, , and
the turbulent viscosity ratio being directly proportional to the turbulent
Reynolds number (2/). These values are summarized in Table
The boundary condition at the outlet is treated as a pressure outlet
where a static gauge pressure is specified. In this case, turbulence is
specified similarly as the inlet but regarded in terms of backflow”,
should the flow reverse direction at the boundary during iterative calcu-
lations. The remaining borders of the “virtual wind tunnel” are modeled
as symmetric to simulate zero-shear slip walls. In FLUENT, this bound-
ary condition assumes a zero flux for all quantities, which imposes a
zero normal gradient across the defined boundary and thus enforces a
parallel flow.
In FLUENT, the flow is initialized with a velocity field equal to the
specified velocity for the run, e.g., a run specified at 1.0 ms-1 would
have the entire field initialized with that value, and so on. Turbulence
parameters at the boundaries are also initialized based on turbulence
values as specified in Table 1. The blockage ratio was determined to be
8.7%, which would necessitate the usage of a correction factor to data;
however, a blockage ratio of up to 10% in regards to bluff bodies has
shown to provide reasonably similar outcomes compared to testing
using lower blockage ratios [41] and therefore a correction factor was
not used.
3.2 Grid Generation
The computational domain was discretized with an unstructured
grid as shown in Figure 5. To reduce numerical diffusion and to more
accurately resolve the viscous boundary layer, the surface grids on the
models and ground were extruded using prismatic elements that are
sized appropriately to the aspect ratio of their associated surface cell.
These prisms are grown to 5 layers and follows recommendations put
forth by Lanfrit [42]. Two prismatic bodies of influence (BOI) of in-
creasing refinement are used to improve the resolution of the grid in
both the wake region and the surrounding area around the models to
sufficiently capture turbulence and flow separation. This is done to en-
sure that computational processing is focused on more important re-
gions in the flow regime while keeping the far field sufficiently coarse
enough as to not dramatically hamper computational time. The overall
grid is limited to a maximum spacing of 0.1 m and a minimum of 2 mm.
The smaller, finer BOI is sized by the bounds −0.8940.894,
−0.12.76, 01.87 and the larger, coarser BOI defined by
−0.9440.944, −14.26, 01.92, all in meters.
A conversion algorithm in FLUENT was used to convert the pre-
liminary tetrahedral and prismatic grid into a polyhedral one. Polyhedra
exhibit advantages over tetrahedra, namely, they approximate gradients
better than tetrahedra due to the fact they are bounded by many neigh-
bors. Additionally, polyhedra have more lax geometric criteria due to
their insensitivity to stretching, making grid pre- and post-processing
easier; this is well suited to the highly complex geometry of the models
used. It has been observed that polyhedral grids provide the same level
of accuracy as tetrahedral ones, but of significantly lower element
count, thereby hastening simulations [43]. Furthermore, polyhedral
grids have shown to improve convergence while having notably greater
accuracy under unsteady simulations [44]. This is further supported by
similar external aerodynamic studies run under FLUENT, where
speedups between 2 to 3 times towards a converged solution have been
observed [45].
3.3 Turbulence Model and Computational Approach
The flow around the models is modeled with Reynolds-averaged
Navier-Stokes (RANS) equations in incompressible form. Written in
Cartesian tensor form and having flow variables of the form =+
(with and being the mean and fluctuating components respectively)
Figure 4. Boundary conditions of the computational domain, with the inlet being
represented in blue, outlet in red, walls in white, and symmetry in yellow.
Figure 5. Side view of the full grid domain along the median plane.
5 Copyright © 2018 N. Rabino
being substituted into the instantaneous continuity and momentum
equations of the exact Navier-Stokes equations, we obtain [46]
The closure of the set of equations are done by means of Menter’s
two-equation blended k-ε / k-ω shear stress transport (SST) model [47]
which computes eddy viscosity with a linear stress-strain closure. Ment-
er’s model combines and smoothly blends the individual strengths of
the k-ε and k-ω models, where the k-ε model sufficiently predicts turbu-
lence in both the free stream and wake, and the k-ω model more accu-
rately predicts boundary layer separation in adverse pressure gradients
near no-slip surfaces.
The spatial convective terms in Equations (9) and (10) are discre-
tized using a second-order upwind scheme (except for pressure being
solved using PRESTO! PREssure STaggering Option, which is simi-
lar to staggered-grid schemes used on structured grids [48]) with the
diffusive terms discretized using a weighted least squares cell-based
construction technique. The inadequacies of the least squares approach
are well-known; however, it provides accuracy that is comparable to
nodal schemes [49] and due to the use of a polyhedral mesh, the least
squares approach provides an adequate balance between computational
expense and accuracy. The solver utilizes a pressure-based coupled
approach to the equations, which is found to have superior convergence
and reduced computational time than segregated algorithms [50]. The
computational fluid dynamics code used in ANSYS FLUENT has been
validated and used in many widespread applications, e.g., reverse flow
in converging channels [51], moment and lift predictions on full-scale
3-D models of airplanes [45], bluff-body drag prediction [52], heat
transfer in Couette flows [53], and complete direct injection internal
combustion engine simulation [54].
Simulating the flow around a human body was found to be naturally
unsteady as shown by Edge et al. [55], and the ideal approach would be
solving the flow equations in a time-dependent fashion then finding the
computed mean quantities manually. However, simulating the flows in a
time-accurate manner and finding the computed means would be pro-
hibitively time-consuming for this study, especially since there are a
total of 18 different runs that would need to be completed. In addition to
this, obtaining time-averaged results from transient simulations for all
of the required runs would require computational resources beyond the
capabilities of the author’s reach.5 Thus, the most realistic and only
feasible approach was to attempt a steady-state calculation, then deter-
mine iteration-averaged quantities once a quasi-steady-state in the flow
field was developed. This method is not without major drawbacks; no-
tably, obtaining exact quantities can only be achieved by finding the
limit of an infinite sample and it is therefore expected that the comput-
ed-mean will contain sampling errors. Moreover, this approach would
more than likely imply that small shedding features are not resolved and
thus their effects on the overall flow are ignored; this suggests that there
will be accuracy implications in terms of solutions to the problems un-
der examination.
In order to give the simulations a semblance of a fighting chance, a
pseudo-transient time-stepping method was applied to the flow equa-
tions being solved. This implicit under-relaxation serves as a predictor-
corrector method with the objective of fast convergence and accurate
temporal integration that achieves an approximate steady state [56].
Furthermore, the use of pseudo-transient under-relaxation factors
(URFs) was found to accelerate convergence in a more robust manner
[57]and the rate of convergence has been shown to reassuringly arrive
at a solution earlier than without the use of these URFs [58]. Hence, by
taking advantage of the natural structure of the problem by evolving the
5 The astute reader should note that for all of the simulations, a laptop using
2011-era hardware (Intel i7-2820QM processor, 16 GB RAM) was used.
flow equations in time, we are able to achieve a solution that reasonably
integrates transient effects in a way that can be realized through the use
of a steady-state calculation. In FLUENT, the pseudo time step was left
to be calculated automatically following the recipe found in Section
21.6.1 of the Theory Guide [46]. This is done to hasten setup and retain
consistency across all 18 simulations.
3.4 Convergence Discussion
Initial calculations were run to preview the exact behavior of the it-
erative calculation process; indeed, as previously demonstrated by Edge
et al., the inherent unsteadiness of the flow resulted in difficulties ob-
taining reduced residuals, with the scaled continuity residuals hovering
below but near 110-2, and other residuals remaining below 110-4. A
technique stemming from experience was devised to assist in reducing
the residuals while maintaining spatial accuracy. For the first 50 itera-
tions, a blending method between first and second order spatial discreti-
zation schemes (with a bias for the first order scheme), lower URFs, and
an “aggressive” pseudo-time step, were used to rapidly approach a qua-
si-stable solution. The following 100 iterations switched the spatial
discretization scheme to a higher order method along with raised URFs
to increase accuracy. The remaining iterations were then run using a
“conservative” pseudo-time step scaled by 0.5 to further converge and
resolve flow details that are more apparent on a smaller timescale. This
technique enabled the residuals to drop by nearly an order of magnitude,
and thus it was used for all other simulations.
As discussed in Section 3.3, taking mean quantities of a finite sam-
ple will incur sampling errors of which are difficult to quantify com-
pared to a mean derived from an infinite sample. However, a potential
approach to help determine the exact nature of these errors would be
taking an integrated surface quantity, such as drag coefficient, and see-
ing how this quantity changes as the iterations progress. Such a measure
serves as an observed global variable in that the measured quantity is
dependent on how accurate the grid can resolve the flow. Figure 6
shows the iteration history of drag coefficient between the two models
taken with an inlet velocity of 10 ms-1 and run using a grid with medi-
um refinement (refer to Section 3.5 for refinement details). The figure
shows that the solution reaches quasi steady-state values after 150 itera-
tions, with an oscillatory period occurring roughly every 140~150 itera-
tions. A 100 iteration moving average calculated by FLUENT was ap-
plied to the values to assist in determining if overall convergence was
reached. Looking at the tendency of the averages, it is reasonable to
conclude that the solution is indeed quasi-stable. With the average vary-
ing very little compared to actual iteration values, and for the sake of
minimizing computational expense in this study, this observed tendency
incurs a reasonable assurance that the simulations are adequately con-
verged. Finally, the net flux imbalance was calculated to be less than
1% of the smallest flux through the domain, further supporting conver-
gence [59].
Figure 6. Plot of drag coefficient versus number of iterations on a medium mesh
with an inlet velocity of 10 ms
6 Copyright © 2018 N. Rabino
3.5 Numerical Uncertainty and Grid Selection
Moving forward, to preserve accuracy and to assure low computa-
tional costs, the effect of grid resolution is studied by comparing results
on drag coefficient using different grids of different refinement. The
importance of grid convergence and examination of discretization errors
in CFD simulations have been demonstrated across numerous organiza-
tions [60, 61] and journals [62], and the necessity of quantifying these
errors have led to well-established methods that attempt to describe
effects of resolution to that of the extrapolated solution [63]. Although it
has been repeated in this paper that quantifying exact errors is essential-
ly a fruitless adventure, the additional time spent on understanding the
potential discretization error nonetheless is useful in helping select a
grid that balances the required resolution to minimal processing power.
In this grid refinement study, each model used three different grids
that are refined methodologically by decreasing the cell spacing within
the BOIs. Between both models, the grid generation methods remained
the same and follows the procedures as described in Section 3.2. Repre-
senting fine (grid 1), medium (grid 2), and coarse (grid 3) respectively,
the Normal model utilized grids containing 2.82106, 2.32106, and
1.53106 elements. The Flat model used 2.67106, 2.16106, and
1.41106, elements. The difference in overall element counts are at-
tributed to the reduced surface area of the Flat model compared to the
Normal one. For sake of completeness and following the method as
recommended by The American Society of Mechanical Engineers [64],
the subsequent equations are presented to determine the discretization
error between the described meshes. Letting denote the representative
grid size,
= 1
=1 1/3
where  is the volume of each cell. Let 1<2<3 and let desig-
nate the refinement ratio between successive grids, such that 21 =
2/1 and 32 =3/2. Calculating the apparent order of accuracy, ,
involves solving the following expression using a fixed-point iteration
and using the first term as the initial guess:
= 1
where =sign(32/21), 32 =32, 21 =21, and repre-
senting the quantity being investigated. Finding the extrapolated, as-
ymptotic value involves calculating
21 =(21
with 
32 being similar. Then, the following error estimates can be
21 =12
21 =
21 1
21 describing the approximate relative error, 
21 describing the
extrapolated relative error, and GCI21 being the grid convergence index
32, 
32, and GCI32 are calculated similarly.
The GCI is an indicator with a 95% confidence interval of how far
the finer of the two compared grids is to the asymptotic value  and
predicts how further refinement affects the solution [65]. The evaluated
quantities are taken after 400 iterations, which in Figure 6 and discussed
previously, has shown to provide a reasonable amount of iterations to
determine a sufficiently averaged quantity. The results from the previ-
ous equations are summarized in Table 2.
Tab le 2. Grid summary and calculations of discretization error between the two
Lucoa, Normal
Lucoa, Flat
2.82106, 2.32106,
2.67106, 2.16106,
time per 100 iterations
72, 38, 19
67, 34, 17
per compute thread
1674, 985, 648
1546, 916, 542
0.025541, 0.027221,
0.026007, 0.027912,
0.9352, 0.9418, 1.0015
0.9501, 0.9581, 1.0178
1.06577, 1.15083
1.07325, 1.15384
0.00659, 0.09700
0.00798, 0.05974
0.9299, 0.9299
0.9437, 0.9437
0.70%, 6.34%
0.84%, 6.24%
0.56%, 1.27%
0.68%, 1.53%
0.70%, 1.57%
0.84%, 1.88%
All grids were noted to converge in a monotonic manner, indicating
the average flow field certainly benefits from grid refinement. As shown
by the lower values of GCI21 to that of GCI32, it would be most benefi-
cial to run all the simulations using the fine grid. On the other hand, as
accuracy increases, so do memory and compute requirements. The fin-
est grid managed to exceed the available physical memory on the ma-
chine that the simulations were run on. In addition, calculations were
found to require nearly double the amount of time to arrive at a solution
compared to the medium grid. The tradeoff between the reduction in
GCI and resource consumption was too great considering the limited
resources to begin with and the potential amount of time required for all
18 simulations. Therefore, as shown from this grid study, the medium
grid serves as the most practical balance between accuracy and resource
expenditure; for all simulations, the medium grid was selected.
4. Results and Discussion
The immediate discrepancies between Lucoa’s model and other
human models used in similar studies (other than the fact that she has an
enormous chest) are the presence of horns, a baseball cap, raised arms,
and solidly modeled hair. Each affects the wake in their respective man-
ner, with these individual effects being described in the following sub-
sections. It is important to recognize that although these differences
between Lucoa and other human models are present, they nonetheless
do not affect the direct comparison between the Normal and Flat mod-
els, which was a primary objective of this work.
The following subsection details the variances of drag and lift as air
velocity changes and compares the outcomes to previous studies on the
human form. The subsequent subsections delve into the differences in
wake structure through the analysis of streamlines, velocities, TKE, and
skin friction. While no sound comments can be made on the concise
form of instantaneous flow structures, quasi steady-state general fea-
tures present in the flow are described.
4.1 Velocity-Based Trends
The convergence method presented in Section 3.4 was used for all
velocities listed in Table 1 between the two models. The drag and lift
were calculated using the same 100 iteration moving average in
FLUENT and the values at the end of 400 iterations were used. Figures
7-9 plot the results between the two models. In all of the figures, a cubic
spline was used to interpolate the data. The figures labeled with “(a)”
correspond to drag-related values while figures labeled with “(b)” cor-
respond to lift-related values.
7 Copyright © 2018 N. Rabino
Figure 7 focuses on the coefficients, and it is readily apparent that
at all velocities, the Flat model incurs higher coefficients than the Nor-
mal model. In the region near 5 ms-1, the drag coefficients between the
two models were closest to one another. Judging from the errors de-
scribed in Section 3.5, it is safe to presume that these differences are
within the error bounds and therefore the difference between the two
models near this velocity is negligible. In 7(a), it is interesting to ob-
serve that the drag coefficients decrease following a power relation
corresponding to velocity. This relation most likely arises from the pe-
culiarity of the solidly modeled hair; downwash due to the hair diverts
air behind the torso then directs the air downwards, which causes less
air to flow directly behind the body. Presumably, this downwash closes
off the size of the primary recirculation region (PRR) behind the body.
As the air velocity increases, the effect of the downwash becomes more
prominent and therefore a general decrease in the drag coefficient is
observed. The large breasts on the Normal model may also play a role
in enhancing this downwash effect, as the air is gradually diverted
around the bust and is able to maintain momentum before being redi-
rected by the hair. The stronger resulting downward jet of air thus closes
off the recirculation region more effectively. The degree of which this
downwash affects drag is difficult to determine from this study, but it is
reasonable to deduce that due to the drag reduction of the Normal model
compared to the Flat model, the effects are markedly noticeable. The
geometrical presence of the breasts may also have an effect in reducing
drag as they smoothly redirect a portion of the air around the torso,
(a) Drag coefficient vs. air velocity.
(b) Lift coefficient vs. air velocity.
Figure 7. Plots comparing coefficient quantities between the two models.
(a) Drag force vs. air velocity.
(b) Lift force vs. air velocity.
Figure 8. Plots comparing the forces experienced on the two models at various air velocities.
(a) Relative drag difference of the Flat model to the Normal model.
(b) Relative lift difference of the Flat model to the Normal model.
Figure 9. Plots indicating the relative force differences of the Flat model compared to the Normal model.
8 Copyright © 2018 N. Rabino
whereas the Flat model simply forces majority of the air to stagnate at
the chest, which incurs higher drag.
The difference in lift is notably more dramatic than drag. In Figure
7(b), the lift coefficient for both models gradually increases from 1 to
10 ms-1 then levels off as the velocity changes. This increase can also
be contributed to the downwash from the hair, since as the velocity
increases, there is a higher flow rate and thus more fluid mass pushing
upwards against the models. The brim of the baseball cap on both mod-
els may additionally contribute to lift as it lies orthogonal to the mean
flow direction and causes a buildup in pressure in front of the face. The
Normal model provides a lower lift coefficient possibly due to the
breasts providing downforce; since the Normal model has a significant
and primarily upward sloping surface in front of the torso that the Flat
model lacks, the downward force from the air flowing atop the bust
most likely provides this reduction in lift. Granted, due to the geometry
being modeled as completely solid, this effect does not account for
breast deflection caused by these forces. Nonetheless, the presence of
Lucoa’s large breasts evidently provides a reduction in lift.
Figure 8 provides a comparison of the actual forces experienced on
the models. As seen in both 8(a) and 8(b), the forces increase following
a roughly squared relation, which is what would be expected looking at
the velocity relationship in Equations (1) and (5). As elaborated in the
previous paragraphs, the difference in drag is less dramatic than that of
lift, and this is reflected by the more difficult to discern plots in 8(a)
than in 8(b). This observation is further expanded upon in Figure 9,
which compares the relative force difference the Flat model encounters
compared to the Normal model. Looking at 9(a), the Flat model experi-
ences a nearly 4% increase in drag at 1 ms-1, however, this value de-
creases immediately and falls to below 1% at 5 ms-1. From 5 to 10
ms-1, the difference between the two widens again, levels off from 10
to 20 ms-1, then impetuously increases at 25 ms-1 and remains marked-
ly greater at the highest tested velocity of 30 ms-1. The reason as to
why the drag difference reaches its minima at 5 ms-1 cannot be directly
inferred from this work. Throughout the tested velocity range, the Flat
model incurs an average drag increase of 2%, which, in the context of
day-to-day life at low air velocities, is practically insignificant. Howev-
er, in regards to performance, the large breasts on the Normal model can
prove to be advantageous, assuming the overall position remains similar
to the erect postures of the models. The degree of which this advantage
can be quantified depends heavily on the type and duration of competi-
tion to be examined, which is not discussed further in detail. The rela-
tive lift force difference averages 24%, with the values ranging from
32% at 1 ms-1, gradually decreasing to 21% near 15 ms-1, and then
slightly increasing to 23% at the highest tested velocity. From this re-
sult, the presumed effect of Lucoa’s breasts reducing lift is more pro-
nounced at lower air velocities, while still remaining effective as the
velocity increases.
Tab le 3. Comparisons of drag coefficient with other researchers’ results.
This study
(Normal model)
0.89 ~ 1.05
(Flat model)
0.91 ~ 1.09
Approx. 1.36
Approx. 1.20
Shanebrook and
Running (cylin-
drical model)
Penwarden et al.
Brownlie et al.
0.96 ~ 0.98
Gómez et al.
Inoue et al.
Running (without
ground effects)
Table 3 summarizes the encountered drag that both models experi-
enced throughout the tested velocity range, together with other re-
searchers’ experiments. As a result, the present study reveals that Lu-
coa’s form tends to correspond favorably to experiments done with
standing models. It is seen that Lucoa’s results overlap with those of
Hill [1] and Brownlie et al. [68]. Schmitt’s [7] results were an atypical
case as the drag coefficients in that study were based on the entire sur-
face area of the body divided by the product of volume and subject
height, instead of the customary frontal projected area used elsewhere.
This resulted in coefficients ranging from 10 to 13, necessitating a re-
calculation in order to more directly compare to the other results in
Table 3. It was demonstrated through Schmitt’s results that the use of
nude subjects (akin to having smooth walls as mentioned in Section 3.1)
result in lower drag. Although the values for nude subjects were still
greater than those found in the current s t u d y, t his finding provides addi-
tional support as to why Lucoa’s overall form tends to encounter lower
coefficients in contrast to other studies. With the objective of obtaining
CD values for a wide range of people in everyday situations, work done
by Penwarden et al. [67] confirms that clothing certainly increases drag.
Furthermore, the authors in that study comment that extrapolating their
data to simulate bare-skinned models would result in values more akin
to that of Hill’s data, thereby supporting the notion that Lucoa’s results
are indeed realistic.
Comparisons to results based around running are also provided, as
this form of competition is a natural progression from simply standing.
Understandably, a runner will experience higher drag due to their ever-
changing position and the strict anti-symmetry in orientation. Shane-
brook & Jaszczak [66] investigated drag through the use of a general-
ized cylindrical human model, analogous to the assumptions described
in Section 1.1. As such, their results parallel those of other investiga-
tions done on runners and show that a cylindrical model can provide
convincing data. Davies[2] work discovered that the effects of Reyn-
olds number remained constant below velocities of approximately 18
ms-1. Conversely, this effect was not seen in this study, which most
likely harkens back to the drawback of the modeled hair. Gómez et al.
[69] developed a parametric model of drag that considered both veloci-
ty, , and acceleration, 2, based on the record-setting performance of
Usain Bolt. They revealed that 92% of energy used in running is ab-
sorbed by drag, which bolsters both the significance of the drag reduc-
tion and the implicational anthropomorphic advantage that Lucoa has.
Inoue et al. [70] examined the effects of a moving belt system to simu-
late ground effects of a runner, in addition to providing data on how leg
position (e.g., forward or behind) changes drag. From their st u d y, it was
observed that having the legs placed either forward and behind veritably
increases drag due to the posture. Consequently, it is expected that a
prospective study incorporating the effects of running based on the pre-
sent results (as described in herein and Table 3) would feature compara-
ble CD values. While the current stationary results may not be directly
applicable to the moving case, they nevertheless offer a suitable starting
point on which to base further research.
4.2 Salient Flow Analysis
Discussion pertaining to the variances in flow structures is exam-
ined under an air velocity of 10 ms-1. In addition to being previously
examined in Sections 3.4 and 3.5, this velocity is readily achievable
under human locomotion [69], making the selection straightforward.
While the results are derived from a quasi-steady-state approach, gen-
eral flow structures can be reasonably interpreted.
4.2.1 Streamlines and Flow Velocities
As reflected in Figures 10-13, the fluid dynamics of the wake are
shown with the use of streamlines colored according to velocity magni-
tude. The figures labeled as “(a)” and “(b)” correspond to the Normal
and Flat models respectively. The overall wake structures revealed in
Figure 10 fall into two distinct regions based on height, with the PRR
found above the hips and extending to the top of the head, and a second,
more complex regime behind the legs. The works described in Section
1.1 correctly predicted these structures. Specifically, the PRR for both
9 Copyright © 2018 N. Rabino
(a) Wake structures associated with the Normal model.
(b) Wake structures associated with the Flat model.
Figure 10. Streamlines emanating at =0 and spanning a line from 02.3 meters showing primary flow structures. Pressure experienced on the models is also
(a) Set of vertically aligned streamlines on the Normal model.
(b) Set of vertically aligned streamlines on the Flat model.
Figure 11 . Detailed view of flow structures around the chest of the models using the same streamlines from Figure 10.
(a) Set of horizontal streamlines on the Normal model flowing atop the bust.
(b) Set of horizontal streamlines on the Flat model at the same -location.
Figure 12. Detailed view of flow structures around the chest using streamlines emanating at =1.18 meters and spanning a line from −0.50.5 meters.
(a) Set of horizontal streamlines on the Normal model flowing beneath the bust.
(b) Set of horizontal streamlines on the Flat model at the same -location.
Figure 13. Detailed view of flow structures around the chest using streamlines emanating at =1.14 meters and spanning a line from −0.50.5 meters.
10 Copyright © 2018 N. Rabino
models was found to extend roughly 1.4 meters downstream, or approx-
imately 4 times the width of the torso, which agrees strongly with Oka-
moto’s and Sunabashiri’s findings. The type of vortex shedding in this
recirculation region cannot be determined, but it is expected to nonethe-
less be asymmetric, with the large-scale structures being advected
downstream based on the findings of Edge et al. The wake behavior
behind the legs were also discovered to obey the findings summarized
by Zhou and Alam, with the region from the ankles to the knees having
wake structures associated with each leg, and the region from the knees
to the hips behaving as a unified bluff-body. The figure also shows a
distinct vertical “jet sheet” stemming from the gap between the legs,
with an average magnitude approximately 35% greater than the free
stream velocity. A vortex pair originating from the top of the legs is also
evident. This vortex pair can be seen being caused by the downwash of
the hair; the momentum of the downward flow interacts with the air
flowing past the top of the thighs, which results in these prominent
structures. Additional momentum provided by the jet of air between the
legs further enhances the strength of these vortices. Furthermore, the
effects of the downwash are evident in the way the vortex pair assumes
a downward angle as the flow advects; this is indicative of the signifi-
cant amount of air being captured by the geometry of the hair.
From what can be drawn from comparing Figure 10(a) and 10(b),
the Flat model has a weaker, less organized vortex stemming from the
legs. This observation may further explain why the Normal model has
lower lift than the Flat model. Aider et al. [71] described the effect of
vortex pairs affecting lift and drag, and shown that inflow caused by
streamwise counter-rotating vortices result in a net downward force.
Thus, the weaker vortex pair on the Flat model contributes less towards
reducing lift than the Normal model. Following this, it is reasonable to
suggest that the behavior of the drag curve in Figure 7(a) can be at-
tributed to the formation of these vortices; the energy being redirected
into the formation of these structures diverts a portion of the mean flow
away from the PRR, leading to drag reduction as the velocity increases.
Figure 11 provides a close-up look at the same streamlines in Figure
10 around the torso of both models. As can be seen in 11(a) and correct-
ly determined in Section 4.1, the breasts provide a gradual interface for
the air to move around the torso compared to the relatively abrupt ob-
struction the Flat model imposes as reflected in 11(b). This is further
exemplified in Figure 12, which shows a set of horizontal streamlines
positioned at z=1.18m. In 12(a), the air flows smoothly atop the breasts
at a velocity approximately 40% to 60% of the free stream velocity,
whereas the Flat model in 12(b) simply forces a relatively larger portion
of the incoming air to stall at the torso. It is interesting to note that a
small recirculation region develops directly atop the breasts, which most
likely is dependent on the angle between them and the chest. From what
can be seen in 12(a), this small recirculation region prevents a small
portion of air from surmounting the shoulders and instead redirects the
air downwards and off to the sides of the torso. Figure 13 provides an
upwards facing view of the models along with horizontal streamlines
emanating from z=1.14m. In 13(a), air flowing beneath the bust gains a
velocity that is approximately 20% higher than the mean free stream
velocity before being diverted perpendicular to the body and interacting
with the incoming air stream and the rest of the torso. By the action of
the breasts, the air is diverted in such a way that it is able to maintain
momentum while it moves around the rest of the chest. This is in con-
trast to 13(b), where a portion of the air is forced to stall in front of the
chest before being redirected around the torso, much like as was seen in
other figures involving streamlines with the Flat model.
Figure 14 compares the velocity magnitude of the wake behind the
two models at five different z-locations. At these locations, data is sam-
pled along a line centered at the midline (x=0) and spans downstream
from −12 meters. The z-locations are taken at heights of z =
0.1m, z = 0.5m, z = 0.9m, z = 1.18m, and z = 1.55m, all of which corre-
spond to the feet, legs, hips, chest, and head, respectively. From this
comparison, the differences in wake velocities are slight, with the only
significant difference occurring at the height of the legs. At this height,
it can be seen that the Flat model has a wake velocity that is consistently
higher than that of the Normal model. This observation can be attributed
by the lower energy present in the vortices generated by the Flat model;
these weaker formations are affected by the mean flow to a greater de-
gree and thus the velocity magnitude in this region is higher than if the
vortices were to have greater strength, as seen with the Normal model.
4.2.2 Turbulence Kinetic Energy
Figure 15 shows a slice of the domain through the median plane of
the models, indicating the TKE present in the flow. At first glance, con-
tours for both models present the same general structures as described
earlier, such as the PRR behind the torso and the smaller structures as-
sociated with the legs. Due to the automatic scaling of the colors, the
differences present in the PRR of the Flat model compared to the Nor-
mal model are slightly exaggerated. However, the differences are still
distinguishable in that the PRR for the Flat model has a measurably
higher level of TKE than that of the Normal model. Indeed, 15(b) indi-
cates that the two apparent bands of significant TKE associated with the
PRR are generally more intense, even after factoring the differences
between the color scales. Common to both models is a region behind
the hips where the relatively highest TKE was measured. This lower
band within the PRR was found to be more compact for the Normal
model, whereas the Flat model had a marginally less intense and more
widespread band. This effect may be attributed to the way the down-
wash from the hair interacts with the PRR.
Directly below the PRR is the TKE present in the vortex pairs orig-
inating from the legs. In 15(a), the Normal model has a notably higher
level of TKE associated with these vortices, coupled with the observa-
tion that this energy is maintained as the flow advects downstream. In
contrast, 15(b) shows that the TKE in the vortices is lower and that the
energy is dissipated sooner. This remark further supports the interpreta-
tions hitherto; that the formation of stronger vortices the Normal model
generates plays a role in reducing both drag and lift by diverting energy
away from the PRR.
Smaller regions with notable TKE present between both models are
those associated directly behind the legs, at the ankles, and directly
above the brim of the baseball cap. Between the two, the TKE at the
ankles remains unperturbed by the differences in the wake structures
above it. This region is related to the individual wakes associated with
each foot, behaving much like the two cylinder arrangement as de-
scribed earlier. A downward “jet” of TKE originating from the thighs
and curling parallel to the mean flow direction at the height of the knees
shows some variability between the two models. This region is linked to
the “jet” of air that is formed between the legs interacting with the
downwash from the hair. With the Normal model in 15(a), this “jet” of
turbulence remains both vertical and closer to the legs. In 15(b), this
region takes on a slightly more horizontal transition and extends farther
into the wake. A small recirculation region, much like that associated
with the breasts on the Normal model, is found above the brim of the
baseball cap, which is due to the blunt transition the shape of the head
imposes to the incoming flow.
Figure 14. Comparison of wake velocity magnitudes at 5 z-locations centered
along x = 0 and ranging from
Lucoa positioned and to scale
with x-axis.
Feet z = 0.1m, Legs z = 0.5m, Hips z = 0.9m, Chest z = 1.18m, Head z = 1.55m.
11 Copyright © 2018 N. Rabino
Figure 16 shows the TKE around the torso of both models along the
coronal plane. As obvious as the difference between both models, the
presence of a turbulent region behind the breasts and below the axilla
comes as no surprise. It is apparent that this region is influenced by the
small recirculation region that forms above the breasts spilling air
downwards and behind the torso, which can be seen in Figure 12(a).
Furthermore, air from beneath the breasts also contributes to the size of
this region, as in Figure 13(a) it can be understood that this layer of
accelerated air provides additional shear against the flow from above
and increases the turbulence behind the breasts. Since the Flat model
lacks such features, Figure 16(b) presents an understandably unremark-
able result, with only a small sliver of turbulence along the side of the
torso. Common to both models however, is turbulence being generated
by the hair itself, stemming from the hair being left modeled as solid.
The true extent of how much turbulence is generated from the solid hair
and its effects on the PRR is unfortunately intractable from this current
study due to its highly complex geometry. Though, it is expected that
simulations dealing with physically accurate hair may undoubtedly
increase turbulence, and hence, drag, based on casual observations done
on how hairstyles can affect aerodynamic performance [72].
The same approach used to obtain information as seen in Figure 14
was used in Figure 17, with TKE being measured instead of velocity. As
indicated from this figure, it is seen that the vortices originating from
the legs indubitably diverts energy away from the PRR and supports the
findings stemming from Figure 15. This is reflected with stronger over-
all turbulence present at z-locations corresponding with the hips, chest,
and head for the Flat model, along with markedly lower TKE at the
level of the legs in contrast to the Normal model. Slight differences are
noted, with the Flat model having a higher peak TKE at the legs imme-
diately behind the body than the Normal model. Then, from 1 to 2 me-
ters downstream, the Normal model generates a greater amount of TKE.
This observation may ultimately be attributed to the difference in shape
the leg vortices assume between the two models.
4.2.3 Skin Friction Coefficient
An evaluation of the effects of the macroscopic geometry between
the two models on skin friction is shown with Figure 18. This figure
represents a scatter plot of Cf measured at every vertex on the models,
with regions of relatively high Cf labeled according to which location
on the model they are found on. Two directions are evaluated, with the
x-axis on 18(a) representing the streamwise position, and the x-axis on
18(b) representing the z-location. A silhouette of the models present in
the background of the plots are positioned and scaled to their respective
x-axis to further provide context with the labeling. Additionally, the data
was averaged and plotted along with the scatter plot to reveal discrep-
ancies that may be more difficult to discern.
Expectedly, both models feature the same general scatter plots, with
nearly negligible differences. However, common to both models and the
plots are the presence of numerous spikes associated with the hair. In-
asmuch as they are an artifact of the hair being modeled solidly, these
spikes are aptly denoted as “hair anomalisms” within the plots. As such,
(a) TKE associated with the Normal model.
(b) TKE associated with the Flat model.
Figure 15. TKE present in the flow behind the models along the median plane.
(a) TKE present behind the breasts of the Normal model.
(b) TKE present around the torso of the Flat model.
Figure 16. TKE present around the torso of both models along the coronal plane.
Figure 17. Comparison of TKE at 5 z-locations centered along x = 0 and ranging
meters. Lucoa positioned and to scale with x-axis.
Feet z = 0.1m, Legs z = 0.5m, Hips z = 0.9m, Chest z = 1.18m, Head z = 1.55m.
12 Copyright © 2018 N. Rabino
the hair is undeniably a major contributor to skin friction on the models.
This is especially apparent in 18(a), with the source of skin friction
being contributed solely by the hair from the rear of the model. Another
exemplification of the hair’s effect on Cf can be seen in 18(b), with a
grouping of peaks obtaining a value of 0.06 corresponding to the hair
tips and bangs around the face. Additional sources of significant Cf can
be easily observed in the same figure, such as the ankles, around the
thighs, the fingertips, and especially Lucoa’s horns. These dramatic
changes to skin friction indicate where on the models flow separation is
more likely to occur, which in turn, relates to where turbulence can
potentially be generated.
The breasts, compared to the relatively noisy scatter generated by
the rest of the body, provides a smooth transition in regards to skin fric-
tion over its surface. A small spike found at the downstream location of
y = -0.77m in 18(a) corresponds to the small recirculation region above
the breasts seen in Figure 15(a). In a sense, it can deduced that the
breasts act to reduce Cf, which can be seen as a small dip in the
smoothed data centered around z = 1.2m in 18(b). However, even with
such a diverse of a plot, the average Cf across the whole body can be
seen as roughly 0.01 from both figures, which indicates how little skin
friction actually affects overall drag with bluff bodies.
5. Summary and Recommendations
This paper has offered a unique compendium of data providing in-
sight into the effects of a specific physiological feature on the aerody-
namic performance of a human. As such, the results have indicated that
large breasts can be notably aerodynamic through the reduction of drag
and lift. The Flat model incurred a 4% maximum drag increase com-
pared to the Normal model, with an average of approximately 2% span-
ning velocities from 1 to 30 ms-1. The Flat model also experienced
more lift, with a maximum difference being 32% and averaging 22%.
As illustrated, the mechanism behind the drag and lift behaviors ob-
served between both models was elucidated through the analysis of
streamlines around the body and the structures associated with TKE; the
Normal model provides advantageously lower drag and lift by the gen-
eration of stronger vortices from the legs, which in turn originates from
the action of the breasts redirecting the flow around the torso. From
what has been presented in this preliminary work, it is safe to conclude
that the phrase “Flat is Justice” is deficient aerodynamically.
A major shortcoming intrinsic to this study was the decision to
leave the hair present in the models as immovable and solid. As noted
earlier, a significant portion of the air flowing around the body was
captured by the geometry of the hair, and this affected the wake struc-
tures behind the model. This effect therefore blunts the overall applica-
bility of the results found in this study to actual human models. It is
important to note, however, that large breasts do give a consistently
notable aerodynamic advantage, as reflected in the overall lower forces
experienced by the Normal model. Additionally, even though the wake
structures generated by the hair resulted in a departure from the ex-
pected drag and lift behaviors, comparisons done with other experi-
menters’ results show that the outcomes from this study were strongly
For future studies, several recommendations are provided. In the
near-term, a re-evaluation of the current work without the hindrance of
modeled hair should be done. Work done using a time-dependent com-
putational approach should also be completed to further gauge the ef-
fects and inaccuracies of using the pseudo-transient method in relation
to drag and lift. A keynote proposition would be the use of a wind tun-
nel experiment to acquire validation data. Ideally, this experiment
would use live subjects of varying breast sizes in order to provide addi-
tional data in which to compare to the data herein. Additional research
to evaluate the degree of which the information provided from this cur-
rent work applies to real world situations should also be completed.
The author would like to send a massive thanks to the user
“icemega5” found on both Twitter and for the Quetzalco-
atl model. Without their work, this study would not have been possible.
The author is grateful for his fellow colleagues for dedicating their time
in helping proofread and provide guidance on this paper. Additionally,
the author would like to make a shout out to users that frequent the
r/anime_irl and r/animemes communities for their inspirational and
fervent dissoluteness. Lastly, the author expresses gratitude towards
both Cool-Kyou Shinsha and Kyoto Animation for their work on Miss
Kobayashi’s Dragon Maid.
The author received no funding for this research. The results of the
present study do not constitute endorsement of any potential entity
whether expressed or implied. Quetzalcoatl is also not the author’s
“waifu”, although he respects her character as THE
Appendix A: Supplementary Material
Additional contour plots in higher resolution and quality from the other
velocities not examined in Section 4.2 can be found by following this
A video further visualizing the flow structures in 3-D can be seen here:
The entire CFD study (project files and generated data) can be found by
(a) Skin friction of both models sampled along the streamwise direction.
(b) Skin friction of both models sampled along the z-direction.
Figure 18. Scatter plots of skin friction comparing both models. Sources of regionally significant Cf are labeled. An additional plot denoting a smoothed average of the
scatter data is present to provide clarity in comparison. Silhouettes of the models are positioned and scaled according to their respective axis in the plots.
13 Copyright © 2018 N. Rabino
Appendix B: Additional Figures
Figure 19. Velocity contours and vectors of the Normal model along the median
Figure 20. Velocity contours and vectors of the Flat model along the median
Figure 21. Pressure coefficient of the flow regime around the Normal model
along the median plane.
Figure 22. Pressure coefficient of the flow regime around the Flat model along
the median plane.
A. V. Hill, "The air-resistance to a runner," Proceedings of the Royal Society of London
Series B Biological Sciences, vol. 102, pp. 380-385, 1927.
C. T. Davies, "Effects of wind assistance and resistance on the forward motion of a
runner," Journal of Applied Physiology, vol. 48, pp. 702-709, 1980.
J. A. Rodríguez-Marroyo, C.-E. Junea u, J. Peleteiro, A. C. Martínez and J. G. Villa,
"Refere nce va lues and impro vement of aero dynamic drag i n profes siona l cyclists,"
Journal of Sports Sciences, vol. 26, no. 3, 2008.
C. Barelle, "Sport Aerodynamics: On the Relevance of Aerodynamic Force Modelling
Versus Wind Tunnel Testing," in Wind Tunnels and Experimental Fluid Dynamics
Research, Rijeka, Croatia, InTech, pp. 349-368.
A. D'Auteuil, G. L. Larose and S. J. Zan, "Wind turbulence in speed skating:
Measurement, simulation and its effect on aerodyna mic dra g," Journal of Wind
Engineering and Industrial Aerodynamics, Vo ls . 104-106, pp. 585-593, 2012.
P. N. Doval, "Aer odyna mic Analys is and D rag Coe fficie nt Eva luatio n of Time-Tria l
Bicycle Rider s," Theses and Dissertations, 2012.
T. J . Schmitt, "Wind-Tunnel Investigation of Air Loads on Human Beings," Defense
Docume ntatio n Cent er for Scien tific a nd Technica l Info rmatio n, Alexa ndria, Virgina,
G. J. v. Ingen-Sche nau, "The inf luence of air frictio n in spe ed skating," Journal of
Biomechanics, vol. 15, no. 6, pp. 449-458, 1982.
Triple Zed, "Flat Is Justice / Delicious Flat Chest | Know Your Meme," Literally Media
Ltd., 30 August 2016. [Onli ne]. Available: http://k nowyourme mes/flat-is-
justice -delic ious-f lat-chest.
R. G. J. Flay, "Bluff Body Aerodyna mics," in Advanced Structural Wind Engineering,
Springer Japan, 2013, pp. 59-84.
L. W. Brownlie, "Aerodynamic characteristics of sports apparel," Canada, 1992.
D. Sumner, J. Heseltine and O. Dansereau, "Wake structure of a finite circular cylinder
of small aspect ratio," Exp Fluids, vol. 37, pp. 720-730, 2004.
J. Okamoto and Y. Sunabashiri, "Vortex shedding from a circular cylinder of finite
length placed on a ground plane," ASME Journal of Fluids Engineering, vo l. 114 , pp.
512-521, 1992.
Y. Zhou and M. M. Alam, "Wake of two interacting circular cylinders: A review,"
International Journal of Heat and Fluid Flow, vol. 62, pp. 510-537, 2016.
J. I. Cho i and J. R. Edwards, "La rge eddy simulation and zonal modeling of human-
induced contaminant transport," Indoor Air, vol. 18, pp. 233-249, 2008.
Y. Tao, K. Intha vong a nd J. Tu, "Co mputat ional fluid d ynamic s study o f huma n-
induced wake and particle dispersion in indoor environment," Indoor and Built
Environment, vol. 26, no. 2, pp. 185-198, 2016.
H. E. Lewis, A. R. Foster, B. J. Mullan, R. N. Cox and R. P. Clark, "Aerodynamics of
the human microenvironment," Lancet, pp. 1273-1277, 1969.
S. Murakami, J. Zeng and T. Hayashi, "CFD analysis of wind environment around a
human body," Journal of Wind Engineering and Industrial Aerodynamics, vol. 83, pp.
393-408, 1999.
C. Suárez, A. Iranzo, J. A. Salva, E. Tapia, G. Barea and J. Guerra, "Parametric
Invest igatio n Using C omputational Fluid Dynamics o f the HVAC Air Distribution in a
Railway Vehicle for Representative Weather and Operat ing Conditions," Energies, vol.
10, no. 1074, pp. 1-13, 2017.
K. Intha vong, Y. Tao, P. Peters en, K. M ohanara gam, W. Yang and J. Tu, "A smoke
visualisation technique for wake flow from a moving human manikin," Journal of
Visualization, vol. 20, no. 1, pp. 125-137, 2017.
Y. Yan, X. Li, L. Yang and J. Tu, "E valuat ion of ma nikin simpli fication met hods for
CFD simulations in occupied indoor environments," Energy and Buildings, vol. 127,
Google, "miss kobayashis dragon maid,
- Google
Trends," [Online]. Available:
%20maid,%E5%B0%8F%E6%9E%97%E3%81%95 %E3%82%93%E3%81%A1%E3
%81%AE%E3%8 3%A1%E3%82%A4%E3%83%89%E3%83%A9%E3%82%B4%E3
Samek ichi Kis eki, " Miss K obaya shi's Dragon Maid | KnowYourMe me," L itera lly
Media Ltd., 08 April 2017. [Online]. Available:
http:// know yourme mes/s ubcul tures/miss-kobayashis-dragon-maid.
"Kobayashi-san Ch i no Maid Dragon," [On line]. Available: nime/33206.
"Gag Boobs - TV Tropes," [Online]. Available:
Rando mMan, "Anime Tiddies | Know Your Meme," Literally Media Ltd., 29 April
2015. [Online]. Available: http :// dies.
"Quetzalcoatl | Kobayashi-san Chi no Maid Dragon Wiki | FANDOM powered by
Wikia," 29 July 2017. [Online]. Avai lable : http://maid-
dragon.wikia .com/ wiki/ Quetzalcoa tl.
14 Copyright © 2018 N. Rabino
"Official Statistics by Ministry of Education, Culture, Sports, Science and Technology,"
28 March 2013. [Online]. Ava ilable: other/__icsFiles/afieldfile/2014/03/28/1345
icemega 5, "
Ver . 1.00 - Bo wlRoll," Bow lRoll, 11 July 2017.
[Online]. Available: https://bowlroll. net/file/141884.
D. Tracey, "Standing, Line of Gravity at Joints, Postural Sway and Correction of
J. F. R. Mcllveen, "T he ever yday effects of wind dra g on peo ple," Weather, vol. 57, pp.
410-413, November 2002.
D. E. McGhee and J. R. Steele, "Breast volume and bra size," International Journal of
Clothing Science and Technology, vol. 23, no. 5, pp. 351-360, 2011.
Japanese Industrial Standards, Sizing systems for foundation garments, 1998.
H. Schlichting and K. Gersten, "Fundamentals of Boundary-La yer Theo ry, " in
Boundary-Layer Theory, Springer-Verlag Berlin Heidelberg, 2017, pp. 29-49.
F. Stern, "Flow Over Immersed Bodies," in Mechanics of Fluids and Transport
Processes, 2014.
W. Donko, "Crunchyroll - FEATURE: Anime vs. Real Life - "Miss Kobayashi's
Dragon Maid"," Crunchyroll, 21 January 2017. [Online]. Available: -vs-real-life-miss-
kobayashis-drago n-maid.
Japan Meteorological Agency, "
," [Online].
Available: ew/nml_sfc_ym.php?prec_ no=44&prec_ch=
%93%8C%8B%9E%93s&b lock_no=47662&block_ch=%93%8C%8B%9E&year=&m
A. D'Aute uil, G. L. Larose and S. J. Zan, "Relevance of similitude parameters for drag
reduction in sport aerodynamics," Proced ia Engineering 2, pp. 2393-2398, 2010.
K. Aspelin, "Establishing Pedestrian Walking Speeds," Portland State University,
Portland, Oregon, 2005.
Met Office, "Beaufort wind force scale," [Online]. Available:
C.-K. Choi and D.-K. Kwon, "Wind tunnel blockage effects on aerodynamic behavior
of bluff body," Wind and Structures, vo l. 1, no. 4, pp. 351-364, 1998.
M. Lanfrit, "Best practice guidelines for handling Automotive External Aerodynamics
with FLUENT," Darmstadt, Germany, 2005.
G. Balafas, "Polyhedral Mesh Generation for CFD-Analys is of Co mplex S truct ures,"
M. Spiegel, T. Redel, Y. J. Zhang, T. Struffert, J. Hornegger, R. G. Grossman, A.
Doerfler and C. Karmonik, "Tetrahedral vs. polyhedral mesh size evaluation on flow
velocity and wall shear stress for cerebral hemodynamic simulation," Computer
Methods in Biomechanics and Biomedical Engineering, pp. 1-10, 2010.
B. Sasanapuri, R. Steed and V. Veera, "ANSYS CFD Results for the AIAA 2nd High
Lift Prediction Workshop," in AIAA 2nd High Lift Prediction Workshop, San Die go,
ANSYS® FLUENT, Release 17.0, Help System, Theory Guide, ANSYS, Inc..
F. R. Menter, "Zo nal Two Equat ion k-ω Turbulence Models for Aerod ynamic Flows,"
in 24th Fluid Dynamics Conference, Orlando, Florida, 1993.
S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Washington, DC: Hemisphere,
D. J. Mavriplis, "Revisit ing the Least -squares Procedure for Gradient Reconstruction
on Unstructured Meshes," National Institute of Aerospace, Hampton, Virginia, 2003.
Z. J. Chen and A. J. Przekwas, "A coupled pressure-based computational met hod for
incomp ressible/co mpres sible flows," Journal of Computational Physics, vo l. 229, no.
24, pp. 9150-9165, 2010.
S. P. Mathiyala gan and B. H. L. Gowda, "Revers e Flow in Conve rging C hannels with
Obstruc tion at the Ent ry," in Fluid Mechanics and Fluid Power – Contemporary
Research: Proceedings of the 5th International and 41st National Conference of FMFP
2014, Kanpur, I ndia, Springe r, 2017, pp. 287-298.
R. S. Kha n and S. Umale, "CFD Aerod ynamic Ana lysis o f Ahmed Bod y," International
Journal of Engineering Trends and Technology, vol. 18, no. 7, pp. 301-308, 2014.
D. P. Tselepidakis and L. Collins, "Verification and Va lidation in CFD and Heat
Transfer: ANSYS Practice and the New ASME Standard," in ASME 2012 Verification
and Validation Symposium, 2012.
M. Kuntz, "Validation and Verification of ANSYS Internal Combustion Engine
Software," in 2012 Automotive Simulation World Congress, Detroit, 2012.
B. A. Edge, E. G. Pat erson a nd G. S. Settles , "Comp utatio nal St udy of the Wake and
Contaminant Tra nsport of a Walking Human," Journal of Fluids Engineering, vol. 127
no. 5, pp. 967-977, 2005.
T. S. Coffey, C. T. Kelley and D. E. Keyes, "Pse udo-Transient Continu ation a nd
Differential-Algebraic Equations," Center for Research in Scientific Computation,
Raleigh, NC, 2002.
M. Keating, "Accelerating CFD Solutions," ANSYS Advantage, pp. 48-49, 2011.
C. T. Kelley and D. E. Ke yes, "C onverge nce Analysis of Ps eudo-Tra nsient
Continuation," Society for Industrial and Applied Mathematics, vo l. 35, no. 2, pp. 508-
523, 1998.
ANSYS, Introduction to ANSYS FLUENT: Lecture 4 - Solver Settings, ANSYS, 2012.
U.S. Department of Defense, "Verification, Validation, and Accreditation (VV&A)
Recommended Practices Guide," Defense Modeling a nd Simulation Office, Office of
the Director of Defense Research and Engineering, Virginia, 1996.
NASA NPARC Alliance Verificat ion and Validation, "Examining Spatial (Grid)
Convergence," [Online]. Available: /tutorial/spatconv.html.
ASME, "Guide for Verification and Validation in Computational Solid Mechanics,"
American Society of Mechanical Engineers, Virginia, 2006.
P. J. Roache, "Verification and validation in computational science and engineering,"
Computing in Science Engineering, no. 1, pp. 8-9, 1998.
ASME, "Procedure for Estimation and Reporting of Uncertainty Due to Discretization
in CFD Applications," American Society of Mechanical Engineers, Virginia, 2008.
L. Kwaśniewski, "Application of grid convergence index in FE computa tion, " Bulletin
of The Polish Academy of Sciences: Technical Sciences, vol. 61, no. 1, pp. 123-128,
J. R. Shanebrook and R. D. Jaszczak, "Aerodynamic drag analysis of runners,"
Medicine and Science in Sports and Exercise, vol. 8, pp. 43-45, 1976.
A. D. Penw arde n, P. F. Grigg a nd R. R ayment, "Meas uremen ts of Wind D rag on Pe ople
Standing in a Wind Tunnel," Building and Environment, vol. 13, pp. 75-84, 1977.
L. Brownlie, I. Mekjavic, I. Gartshore, B. Mutc h and E. Ba niste r, "The in fluence of
apparel on aerodynamic drag," The Annals of Physiological Anthropology, vol. 6, no. 3
pp. 133-143, 1987.
J. J. H. Gómez, V. Marquina and R. W. Gómez, "On the performance of Usain Bolt in
the 100m sprint," European Journal of Physics, vol. 34, pp. 1227-1233, 2013.
T. Inoue, T. Okaya ma, T. Teraoka, S. Maeno and K. Hirata, "Wind-tunnel exper iment
on aerodynamic characteristics of a runner using a moving-belt system," Cogent
Engineering, 2016.
J.-L. Aider, J.-F. Beaudoin and J. E. Wesfreid, "Drag and lift reduction of a 3D bluff-
body using acti ve vortex gene rators ," Experimental Fluids, vol. 48, pp. 771-789, 2010.
"The Win Tunnel: W hen is a hairdo a hairdon't?," Specialized Bicycles, [Online].
Available: https ://yo
... Nama serupa juga digunakan pada anime PSYCHO-PASS yang menceritakan suatu sistem yang mampu memprediksi kemungkinan seseorang untuk melakukan tindak kejahatan melalui pemindaian pada aktivitas otak masyarakat (Luciagarcia dkk., 2020). Penulis bukan yang pertama membuat jurnal yang berdasarkan inovasi dari anime, melainkan sudah ada penelitian terdahulu mengenai analisis aerodinamis pada karakter anime (Rabino, 2018). Hal ini membuktikan bahwa hobi bisa menjadi pendorong yang kuat untuk menjadi suatu penelitian. ...
Full-text available
Elektroensefalografi (EEG) merupakan teknik elektrofisiologis untuk merekam aktivitas elektrik pada otak manusia dapat digunakan untuk melakukan klasifikasi apakah seseorang sedang dalam pengaruh alkohol atau tidak dengan menggunakan pendekatan model deep learning. Model yang menggunakan CNN dengan batch normalization dan dropout menunjukkan performa yang baik untuk melakukan klasifikasi data EEG karena kemampuannya untuk mengolah data sekuensial. Model CNN mampu mencapai akurasi sebesar 93,88% dengan arsitektur yang ringkas sehingga mampu melakukan inferensi yang cepat. Model ini diberi nama KougamiNet.
Full-text available
A computational fluid dynamics (CFD) analysis of air distribution in a representative railway vehicle equipped with a heating, ventilation, air conditioning (HVAC) system is presented in this paper. Air distribution in the passenger’s compartment is a very important factor to regulate temperature and air velocity in order to achieve thermal comfort. A complete CFD model, including the car’s geometry in detail, the passengers, the luminaires, and other the important features related to the HVAC system (air supply inlets, exhaust outlets, convectors, etc.) are developed to investigate eight different typical scenarios for Northern Europe climate conditions. The results, analyzed and discussed in terms of temperature and velocity fields in different sections of the tram, and also in terms of volumetric parameters representative of the whole tram volume, show an adequate behavior from the passengers’ comfort point of view, especially for summer climate conditions.
Full-text available
Wind-tunnel experiments are the most effective approaches both to elucidate the flows around runners in track-and-field athletics, and to evaluate their air resistances. In the present study, we develop a moving-belt system, and show its basic performance, such as the distributions of time-mean flow velocity and turbulent intensity above the moving-belt using a hot-wire anemometer. As a result, we have confirmed the effective improvement of the velocity distributions in terms of flow uniformity and turbulence reduction, especially near the moving-belt surface. Following, using this the developed moving-belt system, we investigate the air resistance on a runner in solo running and in duet running. For solo running, we reveal an increase in air resistance of more than 10% in comparison with the conventional result with no moving-belt system. For duet running, we reveal the optimum duet-running formation where a following runner behind a pacemaker experiences small air resistances or strong drafts.
Full-text available
The impact of human-induced wake flow and particle re-dispersion from floors in an indoor environment was investigated by performing computational fluid dynamics simulations with dynamic mesh of a moving manikin model in a confined room. The manikin motion was achieved by a dynamic layering mesh method to update new grids with each time step. Particle transport from the floors and its re-dispersion was tracked by a Lagrangian approach. A series of numerical simulations of three walking speeds were performed to compare the flow disturbance induced by the walking motion. The significant airflow patterns included: an upward-directed flow in front of the body combined with a high velocity downward-directed flow at the rear of the body; a stagnant region behind the gap between the legs and counter-rotating vortices in the wake region. The airflow momentum induced by the moving body disturbed PM2.5 particles that were initially at rest on the floor to lift and become re-suspended due to its interaction with the trailing wake. The residual flow disturbances after the manikin stopped moving continued to induce the particle to spread and deposit over time. The spatial and temporal characteristics of the particle dispersion and concentration showed that higher walking speed was conducive to reducing human's exposure to contaminants in breathing region.
While simplified computational thermal manikins (CTMs) are widely employed in CFD modes of occupied indoor spaces in order to save the computational cost, a criterion of simplification is still absent and the effects of CTM simplification are yet not clear. In this study, six CTMs including a 3D scanned CTM and five simplified CTMs generated from various simplification approaches were employed to analyse the impact of CTM simplification on the prediction of airflow field and contaminant transport. Comparison of the predicted airflow field against the published data in the literature demonstrated that CTM simplification has a strong effect on the thermal airflow field prediction in the vicinity of manikin surfaces. For densely occupied indoor spaces such as a train cabin, the error induced by CTM simplification could be enlarged and further cause significant global error to the prediction of contaminant transport. This is especially true when contaminants are released from the CTMs. This study demonstrated that the mesh decimating algorithm is promising to simply CTMs that is not only able to reduce considerable computational cost but capable of maintain an acceptable predictive error.
The aerodynamic characteristics of bluff bodies differ substantially from streamlined bodies, and an understanding of bluff body aerodynamics is essential to make progress in understanding wind engineering. Streamlined bodies like aircraft wings have a rounded nose, a thin profile, and a sharp trailing edge. Their wakes are small and for small angles of attack, the lift force developed is considerably greater than the drag force. On the other hand, bluff bodies have a large separated wake, with unsteady flow, and the drag force is comparable with the lift force. It is necessary to understand the size and nature of these forces to ensure that engineered designs are fit for purpose under wind action.
Abstract— The CFD (Computational Fluid Dynamics) analysis is used to find the parameter in the automobile industry. This analysis is used to understand the fuel consumption, stability of the vehicle and passenger comfort. The air flow over ground vehicle is analysed and coefficient of drag is calculated using CFD (Ansys Fluent). For this calculation, Ahmed body (simplified car body) as ground vehicle is considered which is commonly used as test case in industry. The Ahmed body is made up of a round front part, a movable slant plane placed in the rear of the body to study the separation phenomena at 250, 350 angles, and a rectangular box, which connects the front and rear slant plane. The most significant feature of the body is the 250, 350 angle of rear slant. Air is used as a working fluid. The inlet velocity of fluid is 40 m/s. k-ε turbulent model used as a standard model. Two separate cases have been solved for two different front radius of Ahmed body R80, R120 and ground clearance at 20mm, 40mm and results are comparing. The results are present in the form of drag coefficient value and flow field which include velocity contour and velocity vector fields. the validation is carried out by simulation around the Ahmed body with the rear slant angle of 250,350 .the actual wind tunnel experimental data are compared with the results. Keywords— Aerodynamics, Ahmed body, k-ε model, CFD, drag coefficient.
This paper presents an application of the grid convergence index (GCI) concept based on the Richardson extrapolation to a selected simple problem of a cantilever beam loaded with vertical forces at the tip end. The GCI method, popular in computational fluid dynamics, has been recently recommended for finite element (FE) applications in solid and structural mechanics. Based on the results obtained usually for three meshes, the GCI method enables one to determine, in an objective manner, the order of convergence to estimate the asymptotic solution and the bounds for discretization error. The example shows that the characteristics of the convergence depend on the selection of the quantity of interest, which can be local or a global functional such as the deflection considered here. The results differ for different FE formulations, and the difference is bigger when the nonlinearities (e.g., due to plastic response) are taken into account