Content uploaded by N. Rabino
Author content
All content in this area was uploaded by N. Rabino on Jan 17, 2018
Content may be subject to copyright.
1 Copyright © 2018 N. Rabino
Analysis and Qualitative Effects of Large Breasts on Aerodynamic Performance and
Wak e of a “Miss Kobayashi’s Dragon Maid” Character
N. Rabino
ARTICLE INFO
Keywords:
Computational fluid dynamics, ANSYS, drag
coefficient, human aerodynamics, SST kω
model, anime, Quetzalcoatl, titties, thicc
AMS Subject Classifications:
00A72, 7605, 76G25
ABSTRACT
A computational fluid dynamics methodology is used to study the salient flow features around
the breasts of a human figure and to describe the aerodynamic differences imparted by their
geometric presence. Two models are proposed for examination: a 3dimensional reference based
on a character design with a significantly buxom figure and a modification of this design where
the breast size is reduced significantly. The two models are tested at speeds ranging from 1 to 30
m⋅s^1 using Reynoldsaveraged Navier Stokes (RANS). Drag, lift, and skin friction forces,
along with turbulence kinetic energy (TKE), are investigated and compared between the differ
ent models. The present results are expected to provide useful information on the validity of the
statement, “Flat is Justice” in terms of an aerodynamic standpoint. In addition to this, the results
can offer worthwhile data investigating the anthropometrical presence of large breasts on sport
aerodynamics.
1. Introduction
The aerodynamics of the human form has been an area of valuable
research in various aspects of sports and competition. Air resistance
(hereinafter referred to as “drag”) is a concerning factor in many time
based trials, and enhancing potential efficiency can be done through the
elucidation of the flow around the human figure. Studies concerning the
drag of the human body using wind tunnels can be found dating back to
the 1920s [1]. A small sampling of subsequent studies exploring the
effect of drag covers areas such as running [2], cycling [3], skiing [4],
and skating [5], all of which reinforces the relevance of aerodynamic
investigation on the human shape in regards to performance.
In many of such studies, the authors seek to investigate the effect of
positioning in relation to drag [6], and some utilize numerous subjects
of differing anthropometric proportions to describe a generalized result
on such positioning [7, 8]. Hitherto, none within the author’s investiga
tions has described the effect of specific physiological features on aero
dynamic performance in great detail. Stemming from certain internet
communities and pertinent to the current era comes the succinct state
ment, “Flat is Justice”, which consequentially begets interesting debate
that can reverberate and diffuse throughout media. Essentially, the
statement describes the appreciation of flatchested women [9], which
posits a peculiar aspect that has yet to be fully explored in human aero
dynamics; namely, the effect of breasts in regards to drag and overall
aerodynamic performance.
This work is intended to contribute to the understanding of how
large breasts can affect the dynamics of the human wake through the
use of computational fluid dynamics (CFD) simulation tools. This pre
liminary work focuses solely on comparing the relevant effects of large
breasts of a selected human design to that of the same design but with,
euphemistically, “lesser tracts of land”. The following sections will
present an overall understanding on the human wake in relation to sim
plified geometry along with engineering applications, introduce the
chosen human geometry and models, relevant boundary conditions, the
governing equations, and the numerical methods used to solve the equa
tions. An indepth review on the computational uncertainty is described,
following with extensive results and discussion, conclusions, and rec
ommendations for future work.
1.1 Background on the Human Wake
The human body can best be described as a bluffbody in respect to
the flow around it. Literature on the behavior of the wakes behind bluff
bodies indicates that the flow will be unsteady due to the turbulent tran
sition and separation of the boundary layer [10]. A simplification analo
gous to the human shape can be represented by a grouping of uniform
circular cylinders [11] and therefore existing studies on this type of
geometry can provide general insight into the wake region. Sumner et
al. [12] described the wake and development of vortex structures of
cylinders with aspect ratios (i.e. height to diameter) of 3, 5, and 9, and
determined that a transition in vortex shedding occurs at /=3. An
investigation by Okamoto and Sunabashiri [13] also supports this find
ing, adding that cylinders with an aspect ratio of 3 experience a recircu
lation region that extends four diameters downstream. Assuming the
human form takes on a roughly large cylindrical shape near this aspect
ratio, it is to be expected that the recirculation region will behave simi
larly and extend approximately four body widths downstream.
A readily apparent deviation in geometry compared to studies done
on singular cylinders is the presence of the gap between the legs. An
extensive and comprehensive review done by Zhou and Alam [14] on
the various arrangements of two cylinders indicate the wake structure
falls into a multitude of regimes. In a sidebyside configuration, being
similar to the two legs of a human, it is deduced that there are three
primary regimes where the wake experiences proximity interference.
When closely spaced together, the first regime shows that the cylinders
act similarly to that of a single bluff body with a width corresponding to
the two cylinders. When the gap width is larger than 20% of the diame
ter, each cylinder has individual wakes that strongly affect one another
and is associated with the second regime. At gap widths exceeding ap
proximately 100~120% of the diameter, each cylinder acts as an inde
pendent body with the vortex streets being loosely influenced by one
another. Seeing that human legs are not strictly cylinders with a fixed
diameter but more akin to inverted tapered cylinders, the wakes behind
the legs will likely behave in a similar fashion observed in both the first
and second regime. With the ankles and calves being narrower and hav
ing a larger gap between them, the second regime is applicable. A tran
sition into the first regime can be expected associated with the bulkiness
of the thighs and reduction in gap width.
Engineering literature can also provide additional details on the
flow characteristics around the body. Many of such studies are motivat
ed by exposure control and contaminant transport [15, 16], thermal
issues [17, 18], and comfort prediction [19], rather than overall drag
effects. Inherently, many of the tested flow characteristics are evaluated
in a quiescent environment or at air velocities that are of a lower order
compared to those found in sportrelated studies. Nonetheless, these
studies provide useful insight on the natural turbulence caused by the
human form and the expected anatomical location of flow separation.
Inthavong et al. [20] utilized a high speed camera to record the wake
generation of a 1/5th scaled realistic human manikin that was accelerat
ed to a velocity of ~1 m⋅s1. From their results, it was found that the
2 Copyright © 2018 N. Rabino
shoulder undergoes flow separation and produces vortices in a regular
pattern. The hands produce a welldefined yet unstable vortex sheet that
curls towards the centerline of the body. The head acts similarly to clas
sical sphere/cylinder cases with the addition of a trailing wake forming
from behind the neck. The neck was found to remove the expected
counter free shear layer that is present in cylinder studies and thus elim
inates the formation of an oscillating vortex sheet. In all, it can be said
that the observed human wake is a highly complex and richly diverse
system that is easily influenced by the inherent geometry used; it is
expected that from this study, an overall summary can be presented on
how and to what degree the previously described flow structures are
affected by the presence of large breasts.
2. Methodology
2.1 Design Proposal and Model Scaling
The use of realistic human models affords greater realization of the
pertinent flow characteristics as they are considerably different than
those of generalized models. Ya n et al. [21] concluded that an excessive
degree of simplification in using a manikin can affect the ability to
achieve accurate results, and thus precludes the use of a simplified
model for this study. However, the acquisition of a 3D scanned human
model with a significant bust indubitably proved difficult. The use of a
highly unconventional approach was used to ameliorate this issue.
The animated adaptation of Miss Kobayashi’s Dragon Maid, being
a recently popular show [22] and spawning a sizable subculture on the
internet [23], proved suitable in terms of providing potential models.
The dragon characters (themselves being based off of mythically and
culturally prominent dragons) assume a human form to interact with
other humans in this wellreceived [24] sliceoflife urban fantasy. A
majority of the human forms of the female dragon characters possessed
significant busts. However, Quetzalcoatl (referred to canonically as
“Lucoa” and will be named as such throughout the rest of this paper)
substantiated herself as the adaptation’s gag character by her significant
size [25, 26], thus making her the perfect candidate in providing a suita
ble model. Being clearly the largest amongst her fellow dragons as es
tablished in Figure 1, Lucoa provides the best contrast between a large
bust and having none at all. To provide the most direct comparison in
regards to the effect of large breasts on the wake, a dramatic reduction
in bust size as reflected in Figure 1(b) was proposed for use in this
study.
In order to obtain accurate results from the setups described later in
this paper, it is important to have the subject in question reflect real
world scales properly. Lucoa’s height while in human form is not given
explicitly in any related media within the scope of the author’s research.
Thus, Lucoa’s height must be estimated in relation to objects of which a
reasonable measurement can readily be found. Conveniently, there is a
scene found within Episode 6, Season 1 of the animated adaptation
wherein Lucoa steps through a doorframe. Assuming the door is of a
typical size1 used for external entrances, in addition to Lucoa being
scaled properly in the scene, we can estimate her height using a vanish
ing point technique.
Using the door as depicted in Figure 2 to judge Lucoa’s height, it
was determined that she stands approximately 177 cm measured to the
top of her hat, with her horns boosting her overall figure to a height of
182 cm. These numbers can be considered reasonable based on canoni
cal descriptions of Lucoa’s towering stature [27] compared to the aver
age height of 158 cm for a Japanese woman [28].
2.2 3Dimensional Models and Geometry Analysis
Since Lucoa is a fictional character that is commonly portrayed in
a 2dimensional2 world, determining her form drag between the two
proposed designs as described in Figure 1 requires that we add another
dimension to her model. Conveniently enough, an available 3D model
of Lucoa [29] was used that would make the simulation possible. This
MikuMikuDance 3D model (henceforth referred to as the “Normal”
model) was then imported into the 3D modeling program Blender,
scaled to the determined height as described in the previous section,
then exported into an STL file. This STL file was then repaired using
the builtin repair feature present in Microsoft 3D Builder due to the
unclean geometry inherent with the model. To achieve the modified
design (henceforth referred to as the “Flat” model), the original Miku
MikuDance model was modified using the builtin tools in Blender to
dramatically reduce Lucoa’s breast size. The export and repair process
remained the same as for the original model.
As shown in Figure 3, all positions between the two models remain
the same and left unperturbed to leave the reduction in breast size as the
sole geometric difference to be investigated. Although the typical or
thostatic (standing) orientation of a human has the upper limbs in a
1 A typical metric external door’s size is 926 mm wide by 2040 mm tall.
2 Referring to the media she is portrayed in, such as printed materials and televi
sion.
(a) Original reference design.
Courtesy: Kyoto Animation.
(b) The modified design proposed
for comparison.
Figure 1. Comparison of different designs for Lucoa.
Figure 2. A perspective measurement of Lucoa in reference to a door frame
using the Vanishing Point Tool in Adobe Photoshop.
3 Copyright © 2018 N. Rabino
relaxed position [30], the arms are left posed at a 45° adduction angle
from the torso, as this is the default ‘A’ pose when importing the model.
This arm position also has an advantage in this study as it potentially
enables a more thorough analysis on the effect of breasts on the wake
region, whereas a neutral standing posture would have the arms inter
fere with the downstream effect of the breasts. The hair is left modeled
as solid to reduce simulation complexity and setup. 3 While humans
naturally lean forward against the direction of the wind to maintain
equilibrium [31], this factor is not considered in this study as this lean
ing would change the frontal area exposed to the fluid flow and thus
complicate comparisons against static reference models.
Dimensionally, the bounds of the two models are similar, with the
height and arm span being 1.82 and 1.387 meters respectively. The
Normal model has a depth of 0.525 meters whereas the Flat model is
only 0.414 meters. The frontal projected area, , of both models is
0.584 m2. The volumetric difference between the two is 9.19 L, indicat
ing that each breast on the Normal model has an enormous volume of
approximately 4.6 L. The underbust circumference of the Normal mod
el is approximately 64 cm and the bust measures 115 cm. The Flat mod
el has the same underbust measurement whereas the bust measures 68
cm. Attempting to match the dimensions and bust volume of the Normal
model to existing cup sizing scales is difficult as these measurements
are exceptionally large and exceed volumes measured in other studies
[32]. Using the JIS L 4006:1998 [33] scale and extrapolating4 cup siz
ing from the largest listed size (Icup), the Normal model can be de
scribed as being 10 cups larger; an estimated “S65”. The Flat model is a
stark contrast to this, where it matches a petite “AA65” size.
The dramatic difference in bust size between the models serves to
provide the most significant change in outcomes; it is assumed that due
to the absurd bust size, any size smaller than the Normal model would
have an outcome that would fall in a range between both models.
2.3 Evaluated Metrics and Implementation
Four metrics under investigation for this study include drag and lift
forces (including their associated coefficients), skin friction coefficient,
and finally, turbulence kinetic energy. To evaluate the drag coefficient,
CD, and drag force, FD, the following equations are used,
CD=2FD
2
(1)
FD=(−cos+sin)
(2)
3 Hair physics is beyond the scope of the author, and thus this study, due to the
inordinate amount of computing resources and time needed to setup and simulate
hair strands in a physically accurate fashion.
4 In [33], each cup size is binned with every 2.5 cm deviation from the under
bust measurement starting from 7.5 cm.
where is the fluid density, is the free stream velocity, is the
frontal projected area, and is the pressure at the surface . is the
local wall shear stress being defined as,
=0
(3)
with as the dynamic viscosity, the flow velocity along the boundary,
and being the height above the boundary. The value of CD is not con
stant and is dependent on Reynolds number, which is defined as,
Re=
(4)
where is an arbitrary characteristic length. In this study, is equal to
the height of the models.
The lift coefficient is comparable to the drag coefficient, being that
the force is evaluated in a direction that is perpendicular to the mean
flow direction, e.g. vertically upwards. Thus,
CL=2FL
2
(5)
FL=(−sin+cos)
(6)
Instead of the frontal projected area, , a reference surface area, , is
used. For consistent comparison however, and are left defined as
being equivalent, thus =. This result does not affect the calculated
forces but rather only the coefficient, and as such, the lift coefficient is
dependent on the frontal area.
The skin friction coefficient, Cf, is evaluated in a similar manner to
the drag coefficient since the force attributed to skin friction is a com
ponent of the profile drag, FD. Therefore,
Cf=2
2(7)
Analyzing the skin friction coefficient allows insight into areas where
the boundary layer thickness changes; as turbulent flow increases, the
thickness of the boundary layer increases, and consequently areas where
Cf transitions to larger values or experiences spikes are indicative of
where flow separation is prevalent [34, 35].
Turbulence kinetic energy (TKE) signifies of the loss of kinetic en
ergy from the mean flow and represents the energy present with eddies
in turbulent flow; it is a direct measure of the intensity of turbulence. In
a general form quantifying the mean of turbulence normal stresses, TKE
is defined as,
=1
2()2
+()2
+()2
(8)
The exact value of TKE is calculated based on the closure of the Reyn
oldsaveraged NavierStokes equations, which is further discussed in
Section 3.3.
The numerical simulations in this present work, along with the au
tomatic evaluation of the equations described in this section, were car
ried out using ANSYS FLUENT R17. The 3D models defined in Sec
tion 2.2 were imported into FLUENT and followed the methodology as
described in the following section.
3. Computational Fluid Dynamics (CFD) Setup
and Analysis
3.1 Boundary Conditions
The use of boundary conditions based on realworld environments
enhances the overall applicability of the results stemming from the sim
ulations. It was therefore important to determine the most appropriate
and accurate environment in which to simulate the models with. It was
(a) Reference (Normal) model.
(b) Modified (Flat) model.
Figure 3. 3D representations of Lucoa to be used in CFD simulations, detailing
(clockwise) top, side, and front views.
4 Copyright © 2018 N. Rabino
found that the overall location used in the animated adaptation of Miss
Kobayashi’s Dragon Maid was based on the city of Koshigaya [36],
situated in the Saitama Prefecture of Japan. A logical time of year to
assume a person being outside without excess clothing would be some
time in the summer. Using the month of August, it was found that
weather conditions in Koshigaya and nearby surrounding regions fea
ture averages [37] of 22.6°C for temperature, 73% for relative humidity,
and 1005.9 hPa for local atmospheric pressure. Thus, the air density was
calculated to be =1.1581 kgm−3 and the dynamic viscosity to be
=1.8684710−5 kgm−1s−1.
Since the human body can vary based upon the clothing worn, sur
face roughness and the effects of fabrics are parameters that are ignored
in this study. Although multiple studies have shown fabrics have a no
ticeable effect on the overall drag of a human body [7, 38], the walls in
this computational work can be regarded as smooth. In all simulations,
the models and ground of the domain are modeled as nonmoving walls
with noslip conditions. The clothing that is part of the models is treated
in the same manner.
Tab le 1. Summary of boundary conditions in the present study.
Wind speed
ms−1
1.0, 2.5, 5.0, 7.5,
10.0, 15.0, 20.0,
25.0, 30.0
Reynolds
Number
Re
−
1.281 ⋅ 105 ~
3.384 ⋅ 10
6
Domain bounds
−
m
−1.441.44
−2.345.65
02.32
Turbulent
intensity
inlet
−
1%
outlet,backflow
−
5%
Turbulent
viscosity ratio
inlet
−
10
outlet,backflow
−
10
Outlet gauge
pressure
Pa
0
Inlet velocities range from 1 m⋅s1 to 30 m⋅s1 in the positive y
direction (since in this respect, the positive zdirection refers to the “up”
orientation; refer to Figure 4 for clarification), highlighting typical wind
speeds encountered on a daytoday basis such as walking [39] all the
way up to standing in a violent storm [40]. At the inlet, turbulence is
specified using both turbulence intensity, , and turbulent viscosity
ratio, /. Turbulence intensity is defined as the ratio of the rootmean
square of velocity fluctuations, , to the mean flow velocity, , and
the turbulent viscosity ratio being directly proportional to the turbulent
Reynolds number (2/). These values are summarized in Table
1.
The boundary condition at the outlet is treated as a pressure outlet
where a static gauge pressure is specified. In this case, turbulence is
specified similarly as the inlet but regarded in terms of “backflow”,
should the flow reverse direction at the boundary during iterative calcu
lations. The remaining borders of the “virtual wind tunnel” are modeled
as symmetric to simulate zeroshear slip walls. In FLUENT, this bound
ary condition assumes a zero flux for all quantities, which imposes a
zero normal gradient across the defined boundary and thus enforces a
parallel flow.
In FLUENT, the flow is initialized with a velocity field equal to the
specified velocity for the run, e.g., a run specified at 1.0 m⋅s1 would
have the entire field initialized with that value, and so on. Turbulence
parameters at the boundaries are also initialized based on turbulence
values as specified in Table 1. The blockage ratio was determined to be
8.7%, which would necessitate the usage of a correction factor to data;
however, a blockage ratio of up to 10% in regards to bluff bodies has
shown to provide reasonably similar outcomes compared to testing
using lower blockage ratios [41] and therefore a correction factor was
not used.
3.2 Grid Generation
The computational domain was discretized with an unstructured
grid as shown in Figure 5. To reduce numerical diffusion and to more
accurately resolve the viscous boundary layer, the surface grids on the
models and ground were extruded using prismatic elements that are
sized appropriately to the aspect ratio of their associated surface cell.
These prisms are grown to 5 layers and follows recommendations put
forth by Lanfrit [42]. Two prismatic bodies of influence (BOI) of in
creasing refinement are used to improve the resolution of the grid in
both the wake region and the surrounding area around the models to
sufficiently capture turbulence and flow separation. This is done to en
sure that computational processing is focused on more important re
gions in the flow regime while keeping the far field sufficiently coarse
enough as to not dramatically hamper computational time. The overall
grid is limited to a maximum spacing of 0.1 m and a minimum of 2 mm.
The smaller, finer BOI is sized by the bounds −0.8940.894,
−0.12.76, 01.87 and the larger, coarser BOI defined by
−0.9440.944, −14.26, 01.92, all in meters.
A conversion algorithm in FLUENT was used to convert the pre
liminary tetrahedral and prismatic grid into a polyhedral one. Polyhedra
exhibit advantages over tetrahedra, namely, they approximate gradients
better than tetrahedra due to the fact they are bounded by many neigh
bors. Additionally, polyhedra have more lax geometric criteria due to
their insensitivity to stretching, making grid pre and postprocessing
easier; this is well suited to the highly complex geometry of the models
used. It has been observed that polyhedral grids provide the same level
of accuracy as tetrahedral ones, but of significantly lower element
count, thereby hastening simulations [43]. Furthermore, polyhedral
grids have shown to improve convergence while having notably greater
accuracy under unsteady simulations [44]. This is further supported by
similar external aerodynamic studies run under FLUENT, where
speedups between 2 to 3 times towards a converged solution have been
observed [45].
3.3 Turbulence Model and Computational Approach
The flow around the models is modeled with Reynoldsaveraged
NavierStokes (RANS) equations in incompressible form. Written in
Cartesian tensor form and having flow variables of the form =+
(with and being the mean and fluctuating components respectively)
Figure 4. Boundary conditions of the computational domain, with the inlet being
represented in blue, outlet in red, walls in white, and symmetry in yellow.
Figure 5. Side view of the full grid domain along the median plane.
5 Copyright © 2018 N. Rabino
being substituted into the instantaneous continuity and momentum
equations of the exact NavierStokes equations, we obtain [46]
+
()=0
(9)
()+
()
=−
+
+
−2
3
+
−
(10)
The closure of the set of equations are done by means of Menter’s
twoequation blended kε / kω shear stress transport (SST) model [47]
which computes eddy viscosity with a linear stressstrain closure. Ment
er’s model combines and smoothly blends the individual strengths of
the kε and kω models, where the kε model sufficiently predicts turbu
lence in both the free stream and wake, and the kω model more accu
rately predicts boundary layer separation in adverse pressure gradients
near noslip surfaces.
The spatial convective terms in Equations (9) and (10) are discre
tized using a secondorder upwind scheme (except for pressure being
solved using PRESTO! — PREssure STaggering Option, which is simi
lar to staggeredgrid schemes used on structured grids [48]) with the
diffusive terms discretized using a weighted least squares cellbased
construction technique. The inadequacies of the least squares approach
are wellknown; however, it provides accuracy that is comparable to
nodal schemes [49] and due to the use of a polyhedral mesh, the least
squares approach provides an adequate balance between computational
expense and accuracy. The solver utilizes a pressurebased coupled
approach to the equations, which is found to have superior convergence
and reduced computational time than segregated algorithms [50]. The
computational fluid dynamics code used in ANSYS FLUENT has been
validated and used in many widespread applications, e.g., reverse flow
in converging channels [51], moment and lift predictions on fullscale
3D models of airplanes [45], bluffbody drag prediction [52], heat
transfer in Couette flows [53], and complete direct injection internal
combustion engine simulation [54].
Simulating the flow around a human body was found to be naturally
unsteady as shown by Edge et al. [55], and the ideal approach would be
solving the flow equations in a timedependent fashion then finding the
computed mean quantities manually. However, simulating the flows in a
timeaccurate manner and finding the computed means would be pro
hibitively timeconsuming for this study, especially since there are a
total of 18 different runs that would need to be completed. In addition to
this, obtaining timeaveraged results from transient simulations for all
of the required runs would require computational resources beyond the
capabilities of the author’s reach.5 Thus, the most realistic and only
feasible approach was to attempt a steadystate calculation, then deter
mine iterationaveraged quantities once a quasisteadystate in the flow
field was developed. This method is not without major drawbacks; no
tably, obtaining exact quantities can only be achieved by finding the
limit of an infinite sample and it is therefore expected that the comput
edmean will contain sampling errors. Moreover, this approach would
more than likely imply that small shedding features are not resolved and
thus their effects on the overall flow are ignored; this suggests that there
will be accuracy implications in terms of solutions to the problems un
der examination.
In order to give the simulations a semblance of a fighting chance, a
pseudotransient timestepping method was applied to the flow equa
tions being solved. This implicit underrelaxation serves as a predictor
corrector method with the objective of fast convergence and accurate
temporal integration that achieves an approximate steady state [56].
Furthermore, the use of pseudotransient underrelaxation factors
(URFs) was found to accelerate convergence in a more robust manner
[57]and the rate of convergence has been shown to reassuringly arrive
at a solution earlier than without the use of these URFs [58]. Hence, by
taking advantage of the natural structure of the problem by evolving the
5 The astute reader should note that for all of the simulations, a laptop using
2011era hardware (Intel i72820QM processor, 16 GB RAM) was used.
flow equations in time, we are able to achieve a solution that reasonably
integrates transient effects in a way that can be realized through the use
of a steadystate calculation. In FLUENT, the pseudo time step was left
to be calculated automatically following the recipe found in Section
21.6.1 of the Theory Guide [46]. This is done to hasten setup and retain
consistency across all 18 simulations.
3.4 Convergence Discussion
Initial calculations were run to preview the exact behavior of the it
erative calculation process; indeed, as previously demonstrated by Edge
et al., the inherent unsteadiness of the flow resulted in difficulties ob
taining reduced residuals, with the scaled continuity residuals hovering
below but near 1⋅102, and other residuals remaining below 1⋅104. A
technique stemming from experience was devised to assist in reducing
the residuals while maintaining spatial accuracy. For the first 50 itera
tions, a blending method between first and second order spatial discreti
zation schemes (with a bias for the first order scheme), lower URFs, and
an “aggressive” pseudotime step, were used to rapidly approach a qua
sistable solution. The following 100 iterations switched the spatial
discretization scheme to a higher order method along with raised URFs
to increase accuracy. The remaining iterations were then run using a
“conservative” pseudotime step scaled by 0.5 to further converge and
resolve flow details that are more apparent on a smaller timescale. This
technique enabled the residuals to drop by nearly an order of magnitude,
and thus it was used for all other simulations.
As discussed in Section 3.3, taking mean quantities of a finite sam
ple will incur sampling errors of which are difficult to quantify com
pared to a mean derived from an infinite sample. However, a potential
approach to help determine the exact nature of these errors would be
taking an integrated surface quantity, such as drag coefficient, and see
ing how this quantity changes as the iterations progress. Such a measure
serves as an observed global variable in that the measured quantity is
dependent on how accurate the grid can resolve the flow. Figure 6
shows the iteration history of drag coefficient between the two models
taken with an inlet velocity of 10 m⋅s1 and run using a grid with medi
um refinement (refer to Section 3.5 for refinement details). The figure
shows that the solution reaches quasi steadystate values after 150 itera
tions, with an oscillatory period occurring roughly every 140~150 itera
tions. A 100 iteration moving average calculated by FLUENT was ap
plied to the values to assist in determining if overall convergence was
reached. Looking at the tendency of the averages, it is reasonable to
conclude that the solution is indeed quasistable. With the average vary
ing very little compared to actual iteration values, and for the sake of
minimizing computational expense in this study, this observed tendency
incurs a reasonable assurance that the simulations are adequately con
verged. Finally, the net flux imbalance was calculated to be less than
1% of the smallest flux through the domain, further supporting conver
gence [59].
Figure 6. Plot of drag coefficient versus number of iterations on a medium mesh
with an inlet velocity of 10 m⋅s
1
.
6 Copyright © 2018 N. Rabino
3.5 Numerical Uncertainty and Grid Selection
Moving forward, to preserve accuracy and to assure low computa
tional costs, the effect of grid resolution is studied by comparing results
on drag coefficient using different grids of different refinement. The
importance of grid convergence and examination of discretization errors
in CFD simulations have been demonstrated across numerous organiza
tions [60, 61] and journals [62], and the necessity of quantifying these
errors have led to wellestablished methods that attempt to describe
effects of resolution to that of the extrapolated solution [63]. Although it
has been repeated in this paper that quantifying exact errors is essential
ly a fruitless adventure, the additional time spent on understanding the
potential discretization error nonetheless is useful in helping select a
grid that balances the required resolution to minimal processing power.
In this grid refinement study, each model used three different grids
that are refined methodologically by decreasing the cell spacing within
the BOIs. Between both models, the grid generation methods remained
the same and follows the procedures as described in Section 3.2. Repre
senting fine (grid 1), medium (grid 2), and coarse (grid 3) respectively,
the Normal model utilized grids containing 2.82⋅106, 2.32⋅106, and
1.53⋅106 elements. The Flat model used 2.67⋅106, 2.16⋅106, and
1.41⋅106, elements. The difference in overall element counts are at
tributed to the reduced surface area of the Flat model compared to the
Normal one. For sake of completeness and following the method as
recommended by The American Society of Mechanical Engineers [64],
the subsequent equations are presented to determine the discretization
error between the described meshes. Letting denote the representative
grid size,
= 1
(
)
=1 1/3
(11)
where is the volume of each cell. Let 1<2<3 and let desig
nate the refinement ratio between successive grids, such that 21 =
2/1 and 32 =3/2. Calculating the apparent order of accuracy, ,
involves solving the following expression using a fixedpoint iteration
and using the first term as the initial guess:
= 1
ln(21)ln
32
/
21
+ln21
−
32
−
(12)
where =sign(32/21), 32 =3−2, 21 =2−1, and repre
senting the quantity being investigated. Finding the extrapolated, as
ymptotic value involves calculating
21 =(21
1−2)/(21
−1)
(13)
with
32 being similar. Then, the following error estimates can be
found:
21 =1−2
1
(14)
21 =
21 −1
21
(15)
GCI
21
=1.25
21
21
−1
(16)
with
21 describing the approximate relative error,
21 describing the
extrapolated relative error, and GCI21 being the grid convergence index
(GCI).
32,
32, and GCI32 are calculated similarly.
The GCI is an indicator with a 95% confidence interval of how far
the finer of the two compared grids is to the asymptotic value and
predicts how further refinement affects the solution [65]. The evaluated
quantities are taken after 400 iterations, which in Figure 6 and discussed
previously, has shown to provide a reasonable amount of iterations to
determine a sufficiently averaged quantity. The results from the previ
ous equations are summarized in Table 2.
Tab le 2. Grid summary and calculations of discretization error between the two
models.
= drag coefficient at
10 ms−1
Lucoa, Normal
Lucoa, Flat
1,2,3
2.82106, 2.32106,
1.53106
2.67106, 2.16106,
1.41106
Average wall clock
time per 100 iterations
(minutes)
72, 38, 19
67, 34, 17
Average memory usage
per compute thread
(MB)
1674, 985, 648
1546, 916, 542
1,2,3
0.025541, 0.027221,
0.031327
0.026007, 0.027912,
0.032206
1,2,3
0.9352, 0.9418, 1.0015
0.9501, 0.9581, 1.0178
21,32
1.06577, 1.15083
1.07325, 1.15384
21,32
0.00659, 0.09700
0.00798, 0.05974
12.8180
11.4372
21,
32
0.9299, 0.9299
0.9437, 0.9437
21,
32
0.70%, 6.34%
0.84%, 6.24%
21,
32
0.56%, 1.27%
0.68%, 1.53%
GCI21,GCI32
0.70%, 1.57%
0.84%, 1.88%
All grids were noted to converge in a monotonic manner, indicating
the average flow field certainly benefits from grid refinement. As shown
by the lower values of GCI21 to that of GCI32, it would be most benefi
cial to run all the simulations using the fine grid. On the other hand, as
accuracy increases, so do memory and compute requirements. The fin
est grid managed to exceed the available physical memory on the ma
chine that the simulations were run on. In addition, calculations were
found to require nearly double the amount of time to arrive at a solution
compared to the medium grid. The tradeoff between the reduction in
GCI and resource consumption was too great considering the limited
resources to begin with and the potential amount of time required for all
18 simulations. Therefore, as shown from this grid study, the medium
grid serves as the most practical balance between accuracy and resource
expenditure; for all simulations, the medium grid was selected.
4. Results and Discussion
The immediate discrepancies between Lucoa’s model and other
human models used in similar studies (other than the fact that she has an
enormous chest) are the presence of horns, a baseball cap, raised arms,
and solidly modeled hair. Each affects the wake in their respective man
ner, with these individual effects being described in the following sub
sections. It is important to recognize that although these differences
between Lucoa and other human models are present, they nonetheless
do not affect the direct comparison between the Normal and Flat mod
els, which was a primary objective of this work.
The following subsection details the variances of drag and lift as air
velocity changes and compares the outcomes to previous studies on the
human form. The subsequent subsections delve into the differences in
wake structure through the analysis of streamlines, velocities, TKE, and
skin friction. While no sound comments can be made on the concise
form of instantaneous flow structures, quasi steadystate general fea
tures present in the flow are described.
4.1 VelocityBased Trends
The convergence method presented in Section 3.4 was used for all
velocities listed in Table 1 between the two models. The drag and lift
were calculated using the same 100 iteration moving average in
FLUENT and the values at the end of 400 iterations were used. Figures
79 plot the results between the two models. In all of the figures, a cubic
spline was used to interpolate the data. The figures labeled with “(a)”
correspond to dragrelated values while figures labeled with “(b)” cor
respond to liftrelated values.
7 Copyright © 2018 N. Rabino
Figure 7 focuses on the coefficients, and it is readily apparent that
at all velocities, the Flat model incurs higher coefficients than the Nor
mal model. In the region near 5 m⋅s1, the drag coefficients between the
two models were closest to one another. Judging from the errors de
scribed in Section 3.5, it is safe to presume that these differences are
within the error bounds and therefore the difference between the two
models near this velocity is negligible. In 7(a), it is interesting to ob
serve that the drag coefficients decrease following a power relation
corresponding to velocity. This relation most likely arises from the pe
culiarity of the solidly modeled hair; downwash due to the hair diverts
air behind the torso then directs the air downwards, which causes less
air to flow directly behind the body. Presumably, this downwash closes
off the size of the primary recirculation region (PRR) behind the body.
As the air velocity increases, the effect of the downwash becomes more
prominent and therefore a general decrease in the drag coefficient is
observed. The large breasts on the Normal model may also play a role
in enhancing this downwash effect, as the air is gradually diverted
around the bust and is able to maintain momentum before being redi
rected by the hair. The stronger resulting downward jet of air thus closes
off the recirculation region more effectively. The degree of which this
downwash affects drag is difficult to determine from this study, but it is
reasonable to deduce that due to the drag reduction of the Normal model
compared to the Flat model, the effects are markedly noticeable. The
geometrical presence of the breasts may also have an effect in reducing
drag as they smoothly redirect a portion of the air around the torso,
(a) Drag coefficient vs. air velocity.
(b) Lift coefficient vs. air velocity.
Figure 7. Plots comparing coefficient quantities between the two models.
(a) Drag force vs. air velocity.
(b) Lift force vs. air velocity.
Figure 8. Plots comparing the forces experienced on the two models at various air velocities.
(a) Relative drag difference of the Flat model to the Normal model.
(b) Relative lift difference of the Flat model to the Normal model.
Figure 9. Plots indicating the relative force differences of the Flat model compared to the Normal model.
8 Copyright © 2018 N. Rabino
whereas the Flat model simply forces majority of the air to stagnate at
the chest, which incurs higher drag.
The difference in lift is notably more dramatic than drag. In Figure
7(b), the lift coefficient for both models gradually increases from 1 to
10 m⋅s1 then levels off as the velocity changes. This increase can also
be contributed to the downwash from the hair, since as the velocity
increases, there is a higher flow rate and thus more fluid mass pushing
upwards against the models. The brim of the baseball cap on both mod
els may additionally contribute to lift as it lies orthogonal to the mean
flow direction and causes a buildup in pressure in front of the face. The
Normal model provides a lower lift coefficient possibly due to the
breasts providing downforce; since the Normal model has a significant
and primarily upward sloping surface in front of the torso that the Flat
model lacks, the downward force from the air flowing atop the bust
most likely provides this reduction in lift. Granted, due to the geometry
being modeled as completely solid, this effect does not account for
breast deflection caused by these forces. Nonetheless, the presence of
Lucoa’s large breasts evidently provides a reduction in lift.
Figure 8 provides a comparison of the actual forces experienced on
the models. As seen in both 8(a) and 8(b), the forces increase following
a roughly squared relation, which is what would be expected looking at
the velocity relationship in Equations (1) and (5). As elaborated in the
previous paragraphs, the difference in drag is less dramatic than that of
lift, and this is reflected by the more difficult to discern plots in 8(a)
than in 8(b). This observation is further expanded upon in Figure 9,
which compares the relative force difference the Flat model encounters
compared to the Normal model. Looking at 9(a), the Flat model experi
ences a nearly 4% increase in drag at 1 m⋅s1, however, this value de
creases immediately and falls to below 1% at 5 m⋅s1. From 5 to 10
m⋅s1, the difference between the two widens again, levels off from 10
to 20 m⋅s1, then impetuously increases at 25 m⋅s1 and remains marked
ly greater at the highest tested velocity of 30 m⋅s1. The reason as to
why the drag difference reaches its minima at 5 m⋅s1 cannot be directly
inferred from this work. Throughout the tested velocity range, the Flat
model incurs an average drag increase of 2%, which, in the context of
daytoday life at low air velocities, is practically insignificant. Howev
er, in regards to performance, the large breasts on the Normal model can
prove to be advantageous, assuming the overall position remains similar
to the erect postures of the models. The degree of which this advantage
can be quantified depends heavily on the type and duration of competi
tion to be examined, which is not discussed further in detail. The rela
tive lift force difference averages 24%, with the values ranging from
32% at 1 m⋅s1, gradually decreasing to 21% near 15 m⋅s1, and then
slightly increasing to 23% at the highest tested velocity. From this re
sult, the presumed effect of Lucoa’s breasts reducing lift is more pro
nounced at lower air velocities, while still remaining effective as the
velocity increases.
Tab le 3. Comparisons of drag coefficient with other researchers’ results.
Researchers
Year
Reference
Posture
CD
This study


Standing
(Normal model)
0.89 ~ 1.05
Standing
(Flat model)
0.91 ~ 1.09
Hill
1927
[1]
Standing
0.98
Schmitt
1954
[7]
Standing
(clothed)
Approx. 1.36
Standing
(nude)
Approx. 1.20
Shanebrook and
Jaszczak
1976
[66]
Running (cylin
drical model)
1.2
Penwarden et al.
1977
[67]
Standing
(clothed)
1.18
Davies
1980
[2]
Running
0.87
Brownlie et al.
1987
[68]
Standing
0.96 ~ 0.98
Gómez et al.
2013
[69]
Running
1.20
Inoue et al.
2016
[70]
Running (without
ground effects)
1.17
Table 3 summarizes the encountered drag that both models experi
enced throughout the tested velocity range, together with other re
searchers’ experiments. As a result, the present study reveals that Lu
coa’s form tends to correspond favorably to experiments done with
standing models. It is seen that Lucoa’s results overlap with those of
Hill [1] and Brownlie et al. [68]. Schmitt’s [7] results were an atypical
case as the drag coefficients in that study were based on the entire sur
face area of the body divided by the product of volume and subject
height, instead of the customary frontal projected area used elsewhere.
This resulted in coefficients ranging from 10 to 13, necessitating a re
calculation in order to more directly compare to the other results in
Table 3. It was demonstrated through Schmitt’s results that the use of
nude subjects (akin to having smooth walls as mentioned in Section 3.1)
result in lower drag. Although the values for nude subjects were still
greater than those found in the current s t u d y, t his finding provides addi
tional support as to why Lucoa’s overall form tends to encounter lower
coefficients in contrast to other studies. With the objective of obtaining
CD values for a wide range of people in everyday situations, work done
by Penwarden et al. [67] confirms that clothing certainly increases drag.
Furthermore, the authors in that study comment that extrapolating their
data to simulate bareskinned models would result in values more akin
to that of Hill’s data, thereby supporting the notion that Lucoa’s results
are indeed realistic.
Comparisons to results based around running are also provided, as
this form of competition is a natural progression from simply standing.
Understandably, a runner will experience higher drag due to their ever
changing position and the strict antisymmetry in orientation. Shane
brook & Jaszczak [66] investigated drag through the use of a general
ized cylindrical human model, analogous to the assumptions described
in Section 1.1. As such, their results parallel those of other investiga
tions done on runners and show that a cylindrical model can provide
convincing data. Davies’ [2] work discovered that the effects of Reyn
olds number remained constant below velocities of approximately 18
m⋅s1. Conversely, this effect was not seen in this study, which most
likely harkens back to the drawback of the modeled hair. Gómez et al.
[69] developed a parametric model of drag that considered both veloci
ty, , and acceleration, 2, based on the recordsetting performance of
Usain Bolt. They revealed that 92% of energy used in running is ab
sorbed by drag, which bolsters both the significance of the drag reduc
tion and the implicational anthropomorphic advantage that Lucoa has.
Inoue et al. [70] examined the effects of a moving belt system to simu
late ground effects of a runner, in addition to providing data on how leg
position (e.g., forward or behind) changes drag. From their st u d y, it was
observed that having the legs placed either forward and behind veritably
increases drag due to the posture. Consequently, it is expected that a
prospective study incorporating the effects of running based on the pre
sent results (as described in herein and Table 3) would feature compara
ble CD values. While the current stationary results may not be directly
applicable to the moving case, they nevertheless offer a suitable starting
point on which to base further research.
4.2 Salient Flow Analysis
Discussion pertaining to the variances in flow structures is exam
ined under an air velocity of 10 m⋅s1. In addition to being previously
examined in Sections 3.4 and 3.5, this velocity is readily achievable
under human locomotion [69], making the selection straightforward.
While the results are derived from a quasisteadystate approach, gen
eral flow structures can be reasonably interpreted.
4.2.1 Streamlines and Flow Velocities
As reflected in Figures 1013, the fluid dynamics of the wake are
shown with the use of streamlines colored according to velocity magni
tude. The figures labeled as “(a)” and “(b)” correspond to the Normal
and Flat models respectively. The overall wake structures revealed in
Figure 10 fall into two distinct regions based on height, with the PRR
found above the hips and extending to the top of the head, and a second,
more complex regime behind the legs. The works described in Section
1.1 correctly predicted these structures. Specifically, the PRR for both
9 Copyright © 2018 N. Rabino
(a) Wake structures associated with the Normal model.
(b) Wake structures associated with the Flat model.
Figure 10. Streamlines emanating at =0 and spanning a line from 02.3 meters showing primary flow structures. Pressure experienced on the models is also
shown.
(a) Set of vertically aligned streamlines on the Normal model.
(b) Set of vertically aligned streamlines on the Flat model.
Figure 11 . Detailed view of flow structures around the chest of the models using the same streamlines from Figure 10.
(a) Set of horizontal streamlines on the Normal model flowing atop the bust.
(b) Set of horizontal streamlines on the Flat model at the same location.
Figure 12. Detailed view of flow structures around the chest using streamlines emanating at =1.18 meters and spanning a line from −0.50.5 meters.
(a) Set of horizontal streamlines on the Normal model flowing beneath the bust.
(b) Set of horizontal streamlines on the Flat model at the same location.
Figure 13. Detailed view of flow structures around the chest using streamlines emanating at =1.14 meters and spanning a line from −0.50.5 meters.
10 Copyright © 2018 N. Rabino
models was found to extend roughly 1.4 meters downstream, or approx
imately 4 times the width of the torso, which agrees strongly with Oka
moto’s and Sunabashiri’s findings. The type of vortex shedding in this
recirculation region cannot be determined, but it is expected to nonethe
less be asymmetric, with the largescale structures being advected
downstream based on the findings of Edge et al. The wake behavior
behind the legs were also discovered to obey the findings summarized
by Zhou and Alam, with the region from the ankles to the knees having
wake structures associated with each leg, and the region from the knees
to the hips behaving as a unified bluffbody. The figure also shows a
distinct vertical “jet sheet” stemming from the gap between the legs,
with an average magnitude approximately 35% greater than the free
stream velocity. A vortex pair originating from the top of the legs is also
evident. This vortex pair can be seen being caused by the downwash of
the hair; the momentum of the downward flow interacts with the air
flowing past the top of the thighs, which results in these prominent
structures. Additional momentum provided by the jet of air between the
legs further enhances the strength of these vortices. Furthermore, the
effects of the downwash are evident in the way the vortex pair assumes
a downward angle as the flow advects; this is indicative of the signifi
cant amount of air being captured by the geometry of the hair.
From what can be drawn from comparing Figure 10(a) and 10(b),
the Flat model has a weaker, less organized vortex stemming from the
legs. This observation may further explain why the Normal model has
lower lift than the Flat model. Aider et al. [71] described the effect of
vortex pairs affecting lift and drag, and shown that inflow caused by
streamwise counterrotating vortices result in a net downward force.
Thus, the weaker vortex pair on the Flat model contributes less towards
reducing lift than the Normal model. Following this, it is reasonable to
suggest that the behavior of the drag curve in Figure 7(a) can be at
tributed to the formation of these vortices; the energy being redirected
into the formation of these structures diverts a portion of the mean flow
away from the PRR, leading to drag reduction as the velocity increases.
Figure 11 provides a closeup look at the same streamlines in Figure
10 around the torso of both models. As can be seen in 11(a) and correct
ly determined in Section 4.1, the breasts provide a gradual interface for
the air to move around the torso compared to the relatively abrupt ob
struction the Flat model imposes as reflected in 11(b). This is further
exemplified in Figure 12, which shows a set of horizontal streamlines
positioned at z=1.18m. In 12(a), the air flows smoothly atop the breasts
at a velocity approximately 40% to 60% of the free stream velocity,
whereas the Flat model in 12(b) simply forces a relatively larger portion
of the incoming air to stall at the torso. It is interesting to note that a
small recirculation region develops directly atop the breasts, which most
likely is dependent on the angle between them and the chest. From what
can be seen in 12(a), this small recirculation region prevents a small
portion of air from surmounting the shoulders and instead redirects the
air downwards and off to the sides of the torso. Figure 13 provides an
upwards facing view of the models along with horizontal streamlines
emanating from z=1.14m. In 13(a), air flowing beneath the bust gains a
velocity that is approximately 20% higher than the mean free stream
velocity before being diverted perpendicular to the body and interacting
with the incoming air stream and the rest of the torso. By the action of
the breasts, the air is diverted in such a way that it is able to maintain
momentum while it moves around the rest of the chest. This is in con
trast to 13(b), where a portion of the air is forced to stall in front of the
chest before being redirected around the torso, much like as was seen in
other figures involving streamlines with the Flat model.
Figure 14 compares the velocity magnitude of the wake behind the
two models at five different zlocations. At these locations, data is sam
pled along a line centered at the midline (x=0) and spans downstream
from −12 meters. The zlocations are taken at heights of z =
0.1m, z = 0.5m, z = 0.9m, z = 1.18m, and z = 1.55m, all of which corre
spond to the feet, legs, hips, chest, and head, respectively. From this
comparison, the differences in wake velocities are slight, with the only
significant difference occurring at the height of the legs. At this height,
it can be seen that the Flat model has a wake velocity that is consistently
higher than that of the Normal model. This observation can be attributed
by the lower energy present in the vortices generated by the Flat model;
these weaker formations are affected by the mean flow to a greater de
gree and thus the velocity magnitude in this region is higher than if the
vortices were to have greater strength, as seen with the Normal model.
4.2.2 Turbulence Kinetic Energy
Figure 15 shows a slice of the domain through the median plane of
the models, indicating the TKE present in the flow. At first glance, con
tours for both models present the same general structures as described
earlier, such as the PRR behind the torso and the smaller structures as
sociated with the legs. Due to the automatic scaling of the colors, the
differences present in the PRR of the Flat model compared to the Nor
mal model are slightly exaggerated. However, the differences are still
distinguishable in that the PRR for the Flat model has a measurably
higher level of TKE than that of the Normal model. Indeed, 15(b) indi
cates that the two apparent bands of significant TKE associated with the
PRR are generally more intense, even after factoring the differences
between the color scales. Common to both models is a region behind
the hips where the relatively highest TKE was measured. This lower
band within the PRR was found to be more compact for the Normal
model, whereas the Flat model had a marginally less intense and more
widespread band. This effect may be attributed to the way the down
wash from the hair interacts with the PRR.
Directly below the PRR is the TKE present in the vortex pairs orig
inating from the legs. In 15(a), the Normal model has a notably higher
level of TKE associated with these vortices, coupled with the observa
tion that this energy is maintained as the flow advects downstream. In
contrast, 15(b) shows that the TKE in the vortices is lower and that the
energy is dissipated sooner. This remark further supports the interpreta
tions hitherto; that the formation of stronger vortices the Normal model
generates plays a role in reducing both drag and lift by diverting energy
away from the PRR.
Smaller regions with notable TKE present between both models are
those associated directly behind the legs, at the ankles, and directly
above the brim of the baseball cap. Between the two, the TKE at the
ankles remains unperturbed by the differences in the wake structures
above it. This region is related to the individual wakes associated with
each foot, behaving much like the two cylinder arrangement as de
scribed earlier. A downward “jet” of TKE originating from the thighs
and curling parallel to the mean flow direction at the height of the knees
shows some variability between the two models. This region is linked to
the “jet” of air that is formed between the legs interacting with the
downwash from the hair. With the Normal model in 15(a), this “jet” of
turbulence remains both vertical and closer to the legs. In 15(b), this
region takes on a slightly more horizontal transition and extends farther
into the wake. A small recirculation region, much like that associated
with the breasts on the Normal model, is found above the brim of the
baseball cap, which is due to the blunt transition the shape of the head
imposes to the incoming flow.
Figure 14. Comparison of wake velocity magnitudes at 5 zlocations centered
along x = 0 and ranging from
−12
meters.
Lucoa positioned and to scale
with xaxis.
Feet z = 0.1m, Legs z = 0.5m, Hips z = 0.9m, Chest z = 1.18m, Head z = 1.55m.
11 Copyright © 2018 N. Rabino
Figure 16 shows the TKE around the torso of both models along the
coronal plane. As obvious as the difference between both models, the
presence of a turbulent region behind the breasts and below the axilla
comes as no surprise. It is apparent that this region is influenced by the
small recirculation region that forms above the breasts spilling air
downwards and behind the torso, which can be seen in Figure 12(a).
Furthermore, air from beneath the breasts also contributes to the size of
this region, as in Figure 13(a) it can be understood that this layer of
accelerated air provides additional shear against the flow from above
and increases the turbulence behind the breasts. Since the Flat model
lacks such features, Figure 16(b) presents an understandably unremark
able result, with only a small sliver of turbulence along the side of the
torso. Common to both models however, is turbulence being generated
by the hair itself, stemming from the hair being left modeled as solid.
The true extent of how much turbulence is generated from the solid hair
and its effects on the PRR is unfortunately intractable from this current
study due to its highly complex geometry. Though, it is expected that
simulations dealing with physically accurate hair may undoubtedly
increase turbulence, and hence, drag, based on casual observations done
on how hairstyles can affect aerodynamic performance [72].
The same approach used to obtain information as seen in Figure 14
was used in Figure 17, with TKE being measured instead of velocity. As
indicated from this figure, it is seen that the vortices originating from
the legs indubitably diverts energy away from the PRR and supports the
findings stemming from Figure 15. This is reflected with stronger over
all turbulence present at zlocations corresponding with the hips, chest,
and head for the Flat model, along with markedly lower TKE at the
level of the legs in contrast to the Normal model. Slight differences are
noted, with the Flat model having a higher peak TKE at the legs imme
diately behind the body than the Normal model. Then, from 1 to 2 me
ters downstream, the Normal model generates a greater amount of TKE.
This observation may ultimately be attributed to the difference in shape
the leg vortices assume between the two models.
4.2.3 Skin Friction Coefficient
An evaluation of the effects of the macroscopic geometry between
the two models on skin friction is shown with Figure 18. This figure
represents a scatter plot of Cf measured at every vertex on the models,
with regions of relatively high Cf labeled according to which location
on the model they are found on. Two directions are evaluated, with the
xaxis on 18(a) representing the streamwise position, and the xaxis on
18(b) representing the zlocation. A silhouette of the models present in
the background of the plots are positioned and scaled to their respective
xaxis to further provide context with the labeling. Additionally, the data
was averaged and plotted along with the scatter plot to reveal discrep
ancies that may be more difficult to discern.
Expectedly, both models feature the same general scatter plots, with
nearly negligible differences. However, common to both models and the
plots are the presence of numerous spikes associated with the hair. In
asmuch as they are an artifact of the hair being modeled solidly, these
spikes are aptly denoted as “hair anomalisms” within the plots. As such,
(a) TKE associated with the Normal model.
(b) TKE associated with the Flat model.
Figure 15. TKE present in the flow behind the models along the median plane.
(a) TKE present behind the breasts of the Normal model.
(b) TKE present around the torso of the Flat model.
Figure 16. TKE present around the torso of both models along the coronal plane.
Figure 17. Comparison of TKE at 5 zlocations centered along x = 0 and ranging
from
−12
meters. Lucoa positioned and to scale with xaxis.
Feet z = 0.1m, Legs z = 0.5m, Hips z = 0.9m, Chest z = 1.18m, Head z = 1.55m.
12 Copyright © 2018 N. Rabino
the hair is undeniably a major contributor to skin friction on the models.
This is especially apparent in 18(a), with the source of skin friction
being contributed solely by the hair from the rear of the model. Another
exemplification of the hair’s effect on Cf can be seen in 18(b), with a
grouping of peaks obtaining a value of 0.06 corresponding to the hair
tips and bangs around the face. Additional sources of significant Cf can
be easily observed in the same figure, such as the ankles, around the
thighs, the fingertips, and especially Lucoa’s horns. These dramatic
changes to skin friction indicate where on the models flow separation is
more likely to occur, which in turn, relates to where turbulence can
potentially be generated.
The breasts, compared to the relatively noisy scatter generated by
the rest of the body, provides a smooth transition in regards to skin fric
tion over its surface. A small spike found at the downstream location of
y = 0.77m in 18(a) corresponds to the small recirculation region above
the breasts seen in Figure 15(a). In a sense, it can deduced that the
breasts act to reduce Cf, which can be seen as a small dip in the
smoothed data centered around z = 1.2m in 18(b). However, even with
such a diverse of a plot, the average Cf across the whole body can be
seen as roughly 0.01 from both figures, which indicates how little skin
friction actually affects overall drag with bluff bodies.
5. Summary and Recommendations
This paper has offered a unique compendium of data providing in
sight into the effects of a specific physiological feature on the aerody
namic performance of a human. As such, the results have indicated that
large breasts can be notably aerodynamic through the reduction of drag
and lift. The Flat model incurred a 4% maximum drag increase com
pared to the Normal model, with an average of approximately 2% span
ning velocities from 1 to 30 m⋅s1. The Flat model also experienced
more lift, with a maximum difference being 32% and averaging 22%.
As illustrated, the mechanism behind the drag and lift behaviors ob
served between both models was elucidated through the analysis of
streamlines around the body and the structures associated with TKE; the
Normal model provides advantageously lower drag and lift by the gen
eration of stronger vortices from the legs, which in turn originates from
the action of the breasts redirecting the flow around the torso. From
what has been presented in this preliminary work, it is safe to conclude
that the phrase “Flat is Justice” is deficient aerodynamically.
A major shortcoming intrinsic to this study was the decision to
leave the hair present in the models as immovable and solid. As noted
earlier, a significant portion of the air flowing around the body was
captured by the geometry of the hair, and this affected the wake struc
tures behind the model. This effect therefore blunts the overall applica
bility of the results found in this study to actual human models. It is
important to note, however, that large breasts do give a consistently
notable aerodynamic advantage, as reflected in the overall lower forces
experienced by the Normal model. Additionally, even though the wake
structures generated by the hair resulted in a departure from the ex
pected drag and lift behaviors, comparisons done with other experi
menters’ results show that the outcomes from this study were strongly
promising.
For future studies, several recommendations are provided. In the
nearterm, a reevaluation of the current work without the hindrance of
modeled hair should be done. Work done using a timedependent com
putational approach should also be completed to further gauge the ef
fects and inaccuracies of using the pseudotransient method in relation
to drag and lift. A keynote proposition would be the use of a wind tun
nel experiment to acquire validation data. Ideally, this experiment
would use live subjects of varying breast sizes in order to provide addi
tional data in which to compare to the data herein. Additional research
to evaluate the degree of which the information provided from this cur
rent work applies to real world situations should also be completed.
Acknowledgments
The author would like to send a massive thanks to the user
“icemega5” found on both Twitter and BowlRoll.net for the Quetzalco
atl model. Without their work, this study would not have been possible.
The author is grateful for his fellow colleagues for dedicating their time
in helping proofread and provide guidance on this paper. Additionally,
the author would like to make a shout out to users that frequent the
r/anime_irl and r/animemes communities for their inspirational and
fervent dissoluteness. Lastly, the author expresses gratitude towards
both CoolKyou Shinsha and Kyoto Animation for their work on Miss
Kobayashi’s Dragon Maid.
The author received no funding for this research. The results of the
present study do not constitute endorsement of any potential entity
whether expressed or implied. Quetzalcoatl is also not the author’s
“waifu”, although he respects her character as THE
GODDESS OF THICC.
Appendix A: Supplementary Material
Additional contour plots in higher resolution and quality from the other
velocities not examined in Section 4.2 can be found by following this
link: https://imgur.com/a/bz31B.
A video further visualizing the flow structures in 3D can be seen here:
https://youtu.be/1414xHh6tw0.
The entire CFD study (project files and generated data) can be found by
following:
https://mega.nz/#!lz5hzA5Q!JpG_t0IbflLuI24sC1pkV
C7nKW1OxqZSMzBeHlMt_A.
(a) Skin friction of both models sampled along the streamwise direction.
(b) Skin friction of both models sampled along the zdirection.
Figure 18. Scatter plots of skin friction comparing both models. Sources of regionally significant Cf are labeled. An additional plot denoting a smoothed average of the
scatter data is present to provide clarity in comparison. Silhouettes of the models are positioned and scaled according to their respective axis in the plots.
13 Copyright © 2018 N. Rabino
Appendix B: Additional Figures
Figure 19. Velocity contours and vectors of the Normal model along the median
plane.
Figure 20. Velocity contours and vectors of the Flat model along the median
plane.
Figure 21. Pressure coefficient of the flow regime around the Normal model
along the median plane.
Figure 22. Pressure coefficient of the flow regime around the Flat model along
the median plane.
References
[1]
A. V. Hill, "The airresistance to a runner," Proceedings of the Royal Society of London
Series B Biological Sciences, vol. 102, pp. 380385, 1927.
[2]
C. T. Davies, "Effects of wind assistance and resistance on the forward motion of a
runner," Journal of Applied Physiology, vol. 48, pp. 702709, 1980.
[3]
J. A. RodríguezMarroyo, C.E. Junea u, J. Peleteiro, A. C. Martínez and J. G. Villa,
"Refere nce va lues and impro vement of aero dynamic drag i n profes siona l cyclists,"
Journal of Sports Sciences, vol. 26, no. 3, 2008.
[4]
C. Barelle, "Sport Aerodynamics: On the Relevance of Aerodynamic Force Modelling
Versus Wind Tunnel Testing," in Wind Tunnels and Experimental Fluid Dynamics
Research, Rijeka, Croatia, InTech, pp. 349368.
[5]
A. D'Auteuil, G. L. Larose and S. J. Zan, "Wind turbulence in speed skating:
Measurement, simulation and its effect on aerodyna mic dra g," Journal of Wind
Engineering and Industrial Aerodynamics, Vo ls . 104106, pp. 585593, 2012.
[6]
P. N. Doval, "Aer odyna mic Analys is and D rag Coe fficie nt Eva luatio n of TimeTria l
Bicycle Rider s," Theses and Dissertations, 2012.
[7]
T. J . Schmitt, "WindTunnel Investigation of Air Loads on Human Beings," Defense
Docume ntatio n Cent er for Scien tific a nd Technica l Info rmatio n, Alexa ndria, Virgina,
1952.
[8]
G. J. v. IngenSche nau, "The inf luence of air frictio n in spe ed skating," Journal of
Biomechanics, vol. 15, no. 6, pp. 449458, 1982.
[9]
Triple Zed, "Flat Is Justice / Delicious Flat Chest  Know Your Meme," Literally Media
Ltd., 30 August 2016. [Onli ne]. Available: http://k nowyourme me.com/me mes/flatis
justice delic iousf latchest.
[10]
R. G. J. Flay, "Bluff Body Aerodyna mics," in Advanced Structural Wind Engineering,
Springer Japan, 2013, pp. 5984.
[11]
L. W. Brownlie, "Aerodynamic characteristics of sports apparel," Canada, 1992.
[12]
D. Sumner, J. Heseltine and O. Dansereau, "Wake structure of a finite circular cylinder
of small aspect ratio," Exp Fluids, vol. 37, pp. 720730, 2004.
[13]
J. Okamoto and Y. Sunabashiri, "Vortex shedding from a circular cylinder of finite
length placed on a ground plane," ASME Journal of Fluids Engineering, vo l. 114 , pp.
512521, 1992.
[14]
Y. Zhou and M. M. Alam, "Wake of two interacting circular cylinders: A review,"
International Journal of Heat and Fluid Flow, vol. 62, pp. 510537, 2016.
[15]
J. I. Cho i and J. R. Edwards, "La rge eddy simulation and zonal modeling of human
induced contaminant transport," Indoor Air, vol. 18, pp. 233249, 2008.
[16]
Y. Tao, K. Intha vong a nd J. Tu, "Co mputat ional fluid d ynamic s study o f huma n
induced wake and particle dispersion in indoor environment," Indoor and Built
Environment, vol. 26, no. 2, pp. 185198, 2016.
[17]
H. E. Lewis, A. R. Foster, B. J. Mullan, R. N. Cox and R. P. Clark, "Aerodynamics of
the human microenvironment," Lancet, pp. 12731277, 1969.
[18]
S. Murakami, J. Zeng and T. Hayashi, "CFD analysis of wind environment around a
human body," Journal of Wind Engineering and Industrial Aerodynamics, vol. 83, pp.
393408, 1999.
[19]
C. Suárez, A. Iranzo, J. A. Salva, E. Tapia, G. Barea and J. Guerra, "Parametric
Invest igatio n Using C omputational Fluid Dynamics o f the HVAC Air Distribution in a
Railway Vehicle for Representative Weather and Operat ing Conditions," Energies, vol.
10, no. 1074, pp. 113, 2017.
[20]
K. Intha vong, Y. Tao, P. Peters en, K. M ohanara gam, W. Yang and J. Tu, "A smoke
visualisation technique for wake flow from a moving human manikin," Journal of
Visualization, vol. 20, no. 1, pp. 125137, 2017.
[21]
Y. Yan, X. Li, L. Yang and J. Tu, "E valuat ion of ma nikin simpli fication met hods for
CFD simulations in occupied indoor environments," Energy and Buildings, vol. 127,
2016.
[22]
Google, "miss kobayashis dragon maid,
小林さんちのメイドラゴン
 Google
Trends," [Online]. Available:
https://trends.google.com/trends/explore?date=all&q=miss%20kobayashis%20dragon
%20maid,%E5%B0%8F%E6%9E%97%E3%81%95 %E3%82%93%E3%81%A1%E3
%81%AE%E3%8 3%A1%E3%82%A4%E3%83%89%E3%83%A9%E3%82%B4%E3
%83%B3.
[23]
Samek ichi Kis eki, " Miss K obaya shi's Dragon Maid  KnowYourMe me," L itera lly
Media Ltd., 08 April 2017. [Online]. Available:
http:// know yourme me.com/me mes/s ubcul tures/misskobayashisdragonmaid.
[24]
"Kobayashisan Ch i no Maid Dragon," [On line]. Available:
https://myanimelist.net/a nime/33206.
[25]
"Gag Boobs  TV Tropes," [Online]. Available:
http://tvtropes.org/pmwiki/pmwiki.php/Main/GagBoobs.
[26]
Rando mMan, "Anime Tiddies  Know Your Meme," Literally Media Ltd., 29 April
2015. [Online]. Available: http ://knowyourmeme.com/memes/animetid dies.
[27]
"Quetzalcoatl  Kobayashisan Chi no Maid Dragon Wiki  FANDOM powered by
Wikia," 29 July 2017. [Online]. Avai lable : http://maid
dragon.wikia .com/ wiki/ Quetzalcoa tl.
14 Copyright © 2018 N. Rabino
[28]
"Official Statistics by Ministry of Education, Culture, Sports, Science and Technology,"
28 March 2013. [Online]. Ava ilable:
http://www.mext.go.jp/component/b_menu/ other/__icsFiles/afieldfile/2014/03/28/1345
147_1.pdf.
[29]
icemega 5, "
ケツァルコアトル
Ver . 1.00  Bo wlRoll," Bow lRoll, 11 July 2017.
[Online]. Available: https://bowlroll. net/file/141884.
[30]
D. Tracey, "Standing, Line of Gravity at Joints, Postural Sway and Correction of
Perturbations".
[31]
J. F. R. Mcllveen, "T he ever yday effects of wind dra g on peo ple," Weather, vol. 57, pp.
410413, November 2002.
[32]
D. E. McGhee and J. R. Steele, "Breast volume and bra size," International Journal of
Clothing Science and Technology, vol. 23, no. 5, pp. 351360, 2011.
[33]
Japanese Industrial Standards, Sizing systems for foundation garments, 1998.
[34]
H. Schlichting and K. Gersten, "Fundamentals of BoundaryLa yer Theo ry, " in
BoundaryLayer Theory, SpringerVerlag Berlin Heidelberg, 2017, pp. 2949.
[35]
F. Stern, "Flow Over Immersed Bodies," in Mechanics of Fluids and Transport
Processes, 2014.
[36]
W. Donko, "Crunchyroll  FEATURE: Anime vs. Real Life  "Miss Kobayashi's
Dragon Maid"," Crunchyroll, 21 January 2017. [Online]. Available:
www.crunchyroll.com/animefeature/2017/01/211/featureanime vsreallifemiss
kobayashisdrago nmaid.
[37]
Japan Meteorological Agency, "
気象庁｜過去の気象データ検索
," [Online].
Available:
http://www.data.jma.go.jp/obd/stats/etrn/vi ew/nml_sfc_ym.php?prec_ no=44&prec_ch=
%93%8C%8B%9E%93s&b lock_no=47662&block_ch=%93%8C%8B%9E&year=&m
onth=&day=&elm=normal&view=.
[38]
A. D'Aute uil, G. L. Larose and S. J. Zan, "Relevance of similitude parameters for drag
reduction in sport aerodynamics," Proced ia Engineering 2, pp. 23932398, 2010.
[39]
K. Aspelin, "Establishing Pedestrian Walking Speeds," Portland State University,
Portland, Oregon, 2005.
[40]
Met Office, "Beaufort wind force scale," [Online]. Available:
https://www.metoffice.gov.uk/guide/weather/marine/beaufortscale.
[41]
C.K. Choi and D.K. Kwon, "Wind tunnel blockage effects on aerodynamic behavior
of bluff body," Wind and Structures, vo l. 1, no. 4, pp. 351364, 1998.
[42]
M. Lanfrit, "Best practice guidelines for handling Automotive External Aerodynamics
with FLUENT," Darmstadt, Germany, 2005.
[43]
G. Balafas, "Polyhedral Mesh Generation for CFDAnalys is of Co mplex S truct ures,"
2014.
[44]
M. Spiegel, T. Redel, Y. J. Zhang, T. Struffert, J. Hornegger, R. G. Grossman, A.
Doerfler and C. Karmonik, "Tetrahedral vs. polyhedral mesh size evaluation on flow
velocity and wall shear stress for cerebral hemodynamic simulation," Computer
Methods in Biomechanics and Biomedical Engineering, pp. 110, 2010.
[45]
B. Sasanapuri, R. Steed and V. Veera, "ANSYS CFD Results for the AIAA 2nd High
Lift Prediction Workshop," in AIAA 2nd High Lift Prediction Workshop, San Die go,
2013.
[46]
ANSYS® FLUENT, Release 17.0, Help System, Theory Guide, ANSYS, Inc..
[47]
F. R. Menter, "Zo nal Two Equat ion kω Turbulence Models for Aerod ynamic Flows,"
in 24th Fluid Dynamics Conference, Orlando, Florida, 1993.
[48]
S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Washington, DC: Hemisphere,
1980.
[49]
D. J. Mavriplis, "Revisit ing the Least squares Procedure for Gradient Reconstruction
on Unstructured Meshes," National Institute of Aerospace, Hampton, Virginia, 2003.
[50]
Z. J. Chen and A. J. Przekwas, "A coupled pressurebased computational met hod for
incomp ressible/co mpres sible flows," Journal of Computational Physics, vo l. 229, no.
24, pp. 91509165, 2010.
[51]
S. P. Mathiyala gan and B. H. L. Gowda, "Revers e Flow in Conve rging C hannels with
Obstruc tion at the Ent ry," in Fluid Mechanics and Fluid Power – Contemporary
Research: Proceedings of the 5th International and 41st National Conference of FMFP
2014, Kanpur, I ndia, Springe r, 2017, pp. 287298.
[52]
R. S. Kha n and S. Umale, "CFD Aerod ynamic Ana lysis o f Ahmed Bod y," International
Journal of Engineering Trends and Technology, vol. 18, no. 7, pp. 301308, 2014.
[53]
D. P. Tselepidakis and L. Collins, "Verification and Va lidation in CFD and Heat
Transfer: ANSYS Practice and the New ASME Standard," in ASME 2012 Verification
and Validation Symposium, 2012.
[54]
M. Kuntz, "Validation and Verification of ANSYS Internal Combustion Engine
Software," in 2012 Automotive Simulation World Congress, Detroit, 2012.
[55]
B. A. Edge, E. G. Pat erson a nd G. S. Settles , "Comp utatio nal St udy of the Wake and
Contaminant Tra nsport of a Walking Human," Journal of Fluids Engineering, vol. 127
,
no. 5, pp. 967977, 2005.
[56]
T. S. Coffey, C. T. Kelley and D. E. Keyes, "Pse udoTransient Continu ation a nd
DifferentialAlgebraic Equations," Center for Research in Scientific Computation,
Raleigh, NC, 2002.
[57]
M. Keating, "Accelerating CFD Solutions," ANSYS Advantage, pp. 4849, 2011.
[58]
C. T. Kelley and D. E. Ke yes, "C onverge nce Analysis of Ps eudoTra nsient
Continuation," Society for Industrial and Applied Mathematics, vo l. 35, no. 2, pp. 508
523, 1998.
[59]
ANSYS, Introduction to ANSYS FLUENT: Lecture 4  Solver Settings, ANSYS, 2012.
[60]
U.S. Department of Defense, "Verification, Validation, and Accreditation (VV&A)
Recommended Practices Guide," Defense Modeling a nd Simulation Office, Office of
the Director of Defense Research and Engineering, Virginia, 1996.
[61]
NASA NPARC Alliance Verificat ion and Validation, "Examining Spatial (Grid)
Convergence," [Online]. Available:
http://www.grc.nasa.gov/WWW/wind/valid /tutorial/spatconv.html.
[62]
ASME, "Guide for Verification and Validation in Computational Solid Mechanics,"
American Society of Mechanical Engineers, Virginia, 2006.
[63]
P. J. Roache, "Verification and validation in computational science and engineering,"
Computing in Science Engineering, no. 1, pp. 89, 1998.
[64]
ASME, "Procedure for Estimation and Reporting of Uncertainty Due to Discretization
in CFD Applications," American Society of Mechanical Engineers, Virginia, 2008.
[65]
L. Kwaśniewski, "Application of grid convergence index in FE computa tion, " Bulletin
of The Polish Academy of Sciences: Technical Sciences, vol. 61, no. 1, pp. 123128,
2013.
[66]
J. R. Shanebrook and R. D. Jaszczak, "Aerodynamic drag analysis of runners,"
Medicine and Science in Sports and Exercise, vol. 8, pp. 4345, 1976.
[67]
A. D. Penw arde n, P. F. Grigg a nd R. R ayment, "Meas uremen ts of Wind D rag on Pe ople
Standing in a Wind Tunnel," Building and Environment, vol. 13, pp. 7584, 1977.
[68]
L. Brownlie, I. Mekjavic, I. Gartshore, B. Mutc h and E. Ba niste r, "The in fluence of
apparel on aerodynamic drag," The Annals of Physiological Anthropology, vol. 6, no. 3
,
pp. 133143, 1987.
[69]
J. J. H. Gómez, V. Marquina and R. W. Gómez, "On the performance of Usain Bolt in
the 100m sprint," European Journal of Physics, vol. 34, pp. 12271233, 2013.
[70]
T. Inoue, T. Okaya ma, T. Teraoka, S. Maeno and K. Hirata, "Windtunnel exper iment
on aerodynamic characteristics of a runner using a movingbelt system," Cogent
Engineering, 2016.
[71]
J.L. Aider, J.F. Beaudoin and J. E. Wesfreid, "Drag and lift reduction of a 3D bluff
body using acti ve vortex gene rators ," Experimental Fluids, vol. 48, pp. 771789, 2010.
[72]
"The Win Tunnel: W hen is a hairdo a hairdon't?," Specialized Bicycles, [Online].
Available: https ://yo utu.be/Lf5jL__kws0.