Conference Paper

Minimum Pearson distance based detection for data transmission over fading wireless channels

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... For example, the redundancy of a full set of balanced codewords is O(log m), where m is the number of user bits [48]. 1. INTRODUCTION (iii) A promising decoding technique with asymptotic zero redundancy as the codeword length increases is proposed in [49], where it is shown that decoders using the Pearson distance have immunity to offset and/or gain mismatch. A study [50] shows that a digital modulation transceiver based on Pearson distance detection provides excellent error performance for noisy channels with Rayleigh fading. The use of the Pearson distance requires that the set of codewords satisfies several specific properties. ...
... The simulation results show that the proposed scheme achieves considerable coding gain compared with the non-concatenated codes with an even higher code rate over noisy channels with offset mismatch. 50 3. NOISY CHANNELS WITH UNKNOWN OFFSET MISMATCH ...
Article
In many channels, the transmitted signals do not only face noise, but offset mismatch as well. In the prior art, maximum likelihood (ML) decision criteria have already been developed for noisy channels suffering from signal independent offset . In this paper, such ML criterion is considered for the case of binary signals suffering from Gaussian noise and signal dependent offset . The signal dependency of the offset signifies that it may differ for distinct signal levels, i.e., the offset experienced by the zeroes in a transmitted codeword is not necessarily the same as the offset for the ones. Besides the ML criterion itself, also an option to reduce the complexity is considered. Further, a brief performance analysis is provided, confirming the superiority of the newly developed ML decoder over classical decoders based on the Euclidean or Pearson distances.
Article
Full-text available
The Pearson distance has been advocated for improving the error performance of noisy channels with unknown gain and offset. The Pearson distance can only fruitfully be used for sets of $q$-ary codewords, called Pearson codes, that satisfy specific properties. We will analyze constructions and properties of optimal Pearson codes. We will compare the redundancy of optimal Pearson codes with the redundancy of prior art $T$-constrained codes, which consist of $q$-ary sequences in which $T$ pre-determined reference symbols appear at least once. In particular, it will be shown that for $q\le 3$ the $2$-constrained codes are optimal Pearson codes, while for $q\ge 4$ these codes are not optimal.
Article
Full-text available
The performance of certain transmission and storage channels, such as optical data storage and nonvolatile memory (flash), is seriously hampered by the phenomena of unknown offset (drift) or gain. We will show that minimum Pearson distance (MPD) detection, unlike conventional minimum Euclidean distance detection, is immune to offset and/or gain mismatch. MPD detection is used in conjunction with (T) -constrained codes that consist of (q) -ary codewords, where in each codeword (T) reference symbols appear at least once. We will analyze the redundancy of the new (q) -ary coding technique and compute the error performance of MPD detection in the presence of additive noise. Implementation issues of MPD detection will be discussed, and results of simulations will be given.
Article
Full-text available
We explore a novel data representation scheme for multi-level flash memory cells, in which a set of n cells stores information in the permutation induced by the different charge levels of the individual cells. The only allowed charge-placement mechanism is a "push-to-the-top" operation which takes a single cell of the set and makes it the top-charged cell. The resulting scheme eliminates the need for discrete cell levels, as well as overshoot errors, when programming cells. We present unrestricted Gray codes spanning all possible n-cell states and using only "push-to-the-top" operations, and also construct balanced Gray codes. We also investigate optimal rewriting schemes for translating arbitrary input alphabet into n-cell states which minimize the number of programming operations.
Conference Paper
The error performance of optical storage and Non-Volatile Memory (Flash) is susceptible to unknown offset of the retrieved signal. Balanced codes offer immunity against unknown offset at the cost of a significant code redundancy, while minimum Pearson distance detection offers immunity with low-redundant codes at the price of lessened noise margin. We will present a hybrid detection method, where the distance measure is a weighted sum of the Euclidean and Pearson distance, so that the system designer may trade noise margin versus amount of immunity to unknown offset.
Conference Paper
We will present coding techniques for transmission and storage channels with unknown gain and/or offset. It will be shown that a codebook of length-n q-ary codewords, S, where all codewords in S have equal balance and energy show an intrinsic resistance against unknown gain and/or offset. Generating functions for evaluating the size of S will be presented. We will present an approximate expression for the code redundancy for asymptotically large values of n.
Article
Coding schemes for storage channels, such as optical recording and non-volatile memory (Flash), with unknown gain and offset are presented. In its simplest case, the coding schemes guarantee that a symbol with a minimum value (floor) and a symbol with a maximum (ceiling) value are always present in a codeword so that the detection system can estimate the momentary gain and the offset. The results of the computer simulations show the performance of the new coding and detection methods in the presence of additive noise.
Minimum Pearson distance detection for wireless channels
  • M S Chandan
Chandan MS, "Minimum Pearson distance detection for wireless channels," M.Tech. Thesis, Visvesvaraya Technological University, Karnataka India, Sep. 2016.