Content uploaded by Nashriyah Mat
Author content
All content in this area was uploaded by Nashriyah Mat on Mar 01, 2018
Content may be subject to copyright.
OPEN ACCESS Asian Journal of Crop Science
ISSN 1994-7879
DOI: 10.3923/ajcs.2018.1.9
Review Article
Soilless Media Culture-A Propitious Auxiliary for Crop Production
1Amjad Farhan Ashraf Farhan, 1Abd. Jamil Zakaria, 2Prof Nashriyah Mat and 2Khamsah Suryati Mohd
1Faculty of Agriculture Production and Food Innovation Research Institute (AGROPOLIS), Universiti Sultan Zainal Abidin,
22200 Besut Terengganu, Malaysia
2Faculty of Bioresource and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut Terengganu, Malaysia
Abstract
Soil-basedcultivationispresentlyconfrontingdirechallengestothelackoflandavailability,massiveescalationrateofindustrialization
and intense urbanization. Land-related agriculture is at stake due to irrepressible climate vicissitudes, relentless soil degradation,
unbefittingmanagementpracticesandotheradversativeeffects.Thesettingsarefurtherexacerbatedbytheincrementinpopulation
withrespecttodiminutivelandavailabilitytocultivate.Hence,soillessmediaculturewouldmakewaysasanauspiciousauxiliaryincurrent
pressingscenario.Propermanagementpracticesandtechnologicaladvancementscanutterlyexploitthesoillesssubstrateseffectively
and efficiently. Optimization of yield pertaining to incorporation of soilless media can also result in superior quality and growth
performanceinrelevancetolessagriculturalinputsbeingconsumed.
Keywords: Soillessculture,burntricehusk,peatmoss,coirdust,perlite,vermiculite
Received: October04,2017 Accepted: December01,2017 Published: December15,2017
Citation: AmjadFarhanAshrafFarhan,Abd.JamilZakaria,ProfNashriyahMatandKhamsahSuryatiMohd,2018.Soillessmediaculture-apropitiousauxiliary
forcropproduction.AsianJ.CropSci.,10:1-9.
CorrespondingAuthor: AmjadFarhanAshrafFarhan,FacultyofAgricultureProductionandFoodInnovationResearchInstitute(AGROPOLIS),
UniversitiSultanZainalAbidin,22200BesutTerengganu,Malaysia
Copyright: ©2018AmjadFarhanAshrafFarhan
etal
.Thisisanopenaccessarticledistributedunderthetermsofthecreativecommonsattribution
License,whichpermitsunrestricteduse,distributionandreproductioninanymedium,providedtheoriginalauthorandsourcearecredited.
CompetingInterest: Theauthorshavedeclaredthatnocompetinginterestexists.
DataAvailability: Allrelevantdataarewithinthepaperanditssupportinginformationfiles.
AsianJ.CropSci.,10(1):1-9,2018
INTRODUCTION
Soil formation was influenced from different kinds of
parentmaterials,time,bioticfactors,topographyandclimate
inwhichsoilwouldbemadeupofapproximately40-50%of
minerals,0-10%oforganicmattercontent,floraandfauna,
macroscopicandmicroscopicorganismaswellasaround50%
ofporespacemainlyfromairandwater1.Insidethesoil,there
aremassivecoloniesofphylogeneticgroupsofbacteriaina
universally scattered manner and somehow ample in
existence2. It was comprised of organic matter content,
mineralmatter,someporespace,water,air,lifeformsaswell
asvastpresenceofmicro-organismandmacro-organism3.Soil
is also the typically most profound growing media being
conventionally exploited as planting medium for plants4.
Horizonsinsoilarealsopresentedtosegregatetheminerals
and organic constituents as well as the disparate parent
materials in morphology, depth, physical, chemical and
biologicalcharacteristics5.Otherthanthat,animalsandplants
aredirectlyorindirectlyhighlydependentonsoilfornutrients
and support6. Taxonomically, soil is also renowned to be
assortmentofnaturalb o d i e s o f t h eearth ʼ s superfi c i al,whether
amendedbymanor earthly materials, encompassing living
matter and supporting plant progression7. The dynamic
relationshipit possesseswould make itcentral for plantto
thriveamicablywithinitssurroundingenvironment.Healthy
soilwithsufficientorganicmattercontent,humicacids,humin
andfulvic acids can prearrange decent condition tosustain
growingplantswithadvancedyieldandsuperiorgrowth8.It
was also made up of around 40-80% of sand, silt and clay
which the diverse presence of these components with
differentextentscouldresultindissimilarcharacteristicsand
textures9. The settings are further exacerbated by the
increment in population with respect to diminutive land
availabilitytocultivate.Hencetheobjectiveofstudywasthat
soilless media culture would make ways as an auspicious
auxiliary.
Soildegradationandcompaction:Intensiveandunrestrained
exploitation of soil had been a foremost problem to the
proliferationofplantsanditsenvironment10.Disturbedlands
hadbeenfoundtoinhibitsoilmicrobialfunctionaldiversity
suchaslowermetabolicdiversityandcarbon-mineralization
in comparison to undisturbed lands11. Naturally, soils are
resilient yet it can be inclined to relentless deterioration
through soil formation and unfitting cultural practices12.
Degradationofsoilcanleadtomechanicalresistanceviaits
soilmatrix to therootin whichit canobstruct its progress
especiallywhentherootpressurewasoverwhelmedinaway
that it could lead to a decline in root length and root
elongation rate13.Otherthanthat,theoccurrenceof
compactioncanbreedundesirableoutcomessuchasreduced
cropyields,deprivedstateofplantgrowth,constrainedplant
rootgrowthandlessernutrientuptake14,15.Thisiswhycareful
forecasting and administration of soil were obligatory in
ordertoavertthepossibilityofreducedyieldandproductivity
mainly instigated through soil compaction16. Physical
properties of soil could alsobealteredbymeansof
compactioninwhichitwouldconsequencetothechangeof
soilporosity,soiltexturesandwaterholdingcapacity17-20.
Prominentchallengesandconfrontationaleffectsinsoil
managementhadarisenduetomodernizationofcivilization,
which direct to diminishing scale of land availability for
cultivation, apart from rapid industrialization and colossal
urbanizationprojectsworldwide4.Theeffectsaregoingtoget
worseas soil was also proneto degeneration in its quality
particularly under climatic circumstances and irrepressible
manner of conventional farming in which it could further
interrupt plant growth performance21-23. Although, it was
assumedtobearatherintricateinteraction,therewasactually
athresholdofsoilbulkdensityinwhich it could resist root
penetrationtothepointthatitcouldbeutterlyimmobilized24.
Penetrationresistancegivenbythesoilwouldsurelyimpact
root zone and water movement mainly during primary
growth25.Therearefewprimarysoilphysicalpropertiesthat
couldaffectthe blossoming ofplantswhichwould include
heat capacity, soil strength, water holding capacity, soil
texture,hydraulicconductivityandsoilstructure26.Thiscanbe
furtherseenthroughitstexturethatcouldsomehowdefine
thebulkiness,poresizeandmechanicalresistancethatthesoil
couldoffer27.Themechanicalresistancefromthesoilwasalso
foundouttobehighlyinterrelatedtotherootelongationand
cropyield28.Thehydrostaticpressure(turgor)oftheseedlings
mustalsobeensuredtobeappropriateinordertooverwhelm
internal restraints imposed by the surrounding media29.
Severalstudieshadalsoindicateddetrimentaloutcomesdue
to soil compaction pertaining to the growth of plants30-32.
Unhealthyandunreservedpracticesofutilizingavailableland
mayleadtoinfertileandlessproductivelandsuchashighly
degradedsoilandBRISsoil.Thesesoilshavehightemperature
and dry condition contributed to its excessively low water
holdingcapacityandloworganicmattercontentwhichwould
makeitsuitableonlytofewcropsandhashigheroverallcosts
for cultivation33,34. Hence, the application of soilless media
cultureincropcultivationwouldgreatlybenefitthefarmers
andconsumersalikeaswellasprovidinganalternativetothe
usageofproblematicsoilsanditsadditionalcostofinputs.
2
AsianJ.CropSci.,10(1):1-9,2018
Soillessmedia:Soillessmediacanbeintheformofsubstrates
originated from peat moss, bark, coir, compost, rice hulls,
vermiculiteandperlite35.Thissoillesscultureisamainstream
practicein developing countries asnormalgroundsoilsare
typicallydiscontentedinusageforcropproduction12.Hence,
therudimentarycharacteristicsofgoodsoillessmediawould
be easy to acquire, economical, abundant in nature, light
weight, possess upright chemical properties and has a
satisfactorywaterretentioncapabilities36.Thequalityofthe
growingmedia must also be greatlymaintained to ensure
good growth of seedlings37. This was because sustainable
production of ornamental flower and other crops would
needtocompensate decentgrowingmedia with sufficient
waterholding capacityandaeration38,39.Themostcommon
incorporatedsoilless media are coir-dustbased substrates
andsphagnumpeatinwhichitisamongthemostpreferred
andcommercializedprimarymedia40.Thiswasbecauseit is
occasionally acknowledged as substrates or growth media
withthe most prominentcrop productionmechanisms for
containerizedorraisedbedswithrestrictedvolumesandwas
appropriate for continuous supply of nutrients through
fertilization41-43.Plantscultivatedinsoillessculturenaturally
tendtohavesmallerroot-systemvolume than those in soil
cultureyettherootdensityofsoillessgrownplantswasmore
complex44.Thistechniqueofcultivationhasalsononeedto
adhere itself to traditional technique of using soil in crop
productionwhichmaycutsomeoftheinputcosts45.Current
trends of growing seedlings, plant proliferation and
production of ornamental plants are also immensely
dependentonsoillesssubstratesespeciallyincontainerized
plantingasitwouldensureoverallgoodplantproliferation
andgrowthperformance46-48.
Coir dust: Coir dust also acknowledged as cocopeat, is
customarilyextractedfromcoconuthuskintheformoffiber
as an agricultural by-product49. This coir dust was usually
madeintopottingmix,yetcarefulattentionwasrequiredto
ensuretheporosityofmediawasnotcompromiseddueto
deprivedstateofaerationaswellaslowermetabolicenergy
required for seed germination12,50. This is because the
interrelationinbetweenairandwaterwithinthecontextof
mediaporositywasveryprecarioustoplantgrowth51,52.On
theotherhand, optimum water retention iscompulsoryas
water discrepancy would momentously inflicts substantial
reductions in crop yield as it was greatly inclined to the
abridgedleafcarbonfixationandgeneralgrowthinhibition53.
Coconut coir dust has also adequate physical and
chemical properties, making it an apt soilless media for
growing plants54. Coir products usually obligate to
extraordinary K contents yet low in calcium, hence it
necessitatesincorporationofcalciuminordertoimprovethe
media55. It was also further elaborated that coir-based
productshas pH valueof approximately six,makingliming
practices a bit improper due to the probabilities of pH
exceedingoptimumlevelyetgypsummightbeasalvationto
bothlack of calciumand sulfur. Itwas also stated thatthis
byproductofcoconutindustrywouldalsoembraceprodigious
significance as an alternative to peat moss pertaining to
soilless media application56. However, coconut coir is also
knowntoexpresscomplicationsregardingitshighsalinityyet
its mixtures are noteworthy as an environment friendly
substituteforpeatsubstancesincontainerizedplanting57,58.
Diversecoirdustoriginswouldalsoobligatesignificantly
unalike physical and chemical properties59. However, this
growingmediawaspromisingasareplacementforthe
diminishing scale of sphagnum peat60. Both coir and peat
based substrate would have different water retention
especiallyifitwasmingledwithothermediayetcoirdustis
acknowledgedasaprominentgrowingmediawithrelationto
decent pH, electrical conductivity and other chemical
characteristicsmaking it beingincorporated widely in crop
cultivation48,61-63. Its good characteristics would somehow
contributetoagreateremploymentofcocopeatespeciallyin
growingcropswithsatisfactoryvalueinthetropics64,65.
Burntricehusk:Biocharhasaremarkablepotentialtoactas
asubstitutefortheincorporationofmanureandcompostas
itcouldpreservethecarbonʼsstabilityinsidethesoil66.Ithad
alsobeenfoundthattherewasamicrobialimmobilizationin
biocharwhichmaycontributeinretainingnitrogeninside
soil from being leached67. This may be due to the higher
availability of carbon that had led to the stimulation of
microbialactivitywhichresultedingreaternitrogendemand,
higher immobilization rate and the recycling of NO3. The
examplecanbeseenfromtheincorporatedcharcoalwhich
wasdonebythenativesinAmazoniawhichhadfacilitatedto
the formation of a rich dark soil called Terra Preta or Dark
Earth68. In several researches, it was found that nitrogen
contentinsidethecharcoalwasdeterminedat0.67and1.09%,
respectively69. The persistency of the charcoal had also
contributedtothestabilityoftheTerraPretainwhichtheland
can still be intensively cultivated untilnow due to its high
fertility.Theapplicationofflyashandricehuskashhadalso
elevated the soil properties via plummeting the soil bulk
density,enrichedorganiccarboncontent,nutrients,soilpHas
wellasriceyield70.
Additionally, it was found that the cation exchange
capacity(CEC)canbefurtherimprovedby50%bythe
3
AsianJ.CropSci.,10(1):1-9,2018
incorporationofcharcoal71.Otherthanthat,ithadalsobeen
demonstrated that rice husk and rice husk ash had the
capabilities in eradicating heavy metals72. Biochar
incorporation as soil amendment is utterly favorable in
diminishingthebulkdensity,soilstrength,exchangeable
Al and soluble Fe, escalating the soil water content,
porosity,soilpH, cation exchangecapacity(CEC) as wellas
exchangeableKandCa73.Ricehuskswereconsideredasone
oftheagriculturalwasteproductsinwhichitsexistencewas
somehowabundantinthetropical countries comprising of
Indonesia,Thailandand Malaysia74.Infact,theexistenceof
TerraPretahadproventhateventheunfertilesoilcouldalso
beconverted into fertilesoil with theaid of thecharcoal75.
Hence,itiswisetofullyutilizetheabundanceavailabilityof
rice husk charcoal as it is alsoaby-productthatexistsin
enormous extents that could lead to environmental
pollution76.
Peat moss: In recent decades, peat substrates had
accomplisheditself as theforemostcomponentswith
well-known characteristics of retaining water in greater
capacitythan mostof other soillesspotting media77,78 .This
naturally existing and organic soil conditioner can also
regulateairandmoistureforareaneighboringtheplantroots,
making it a superlative and prized constituents for both
horticultureandfloricultureindustry79.Soilamendmentsand
topdressingfrompeatwasalsoacommonpracticeingardens
andnurseries,particularlycontributedbyitscharacteristicsto
embracewaterlikeaspongeanddeliberatelyemancipating
ittotheenvironmentwhentheadjoiningsoildries80.
Sphagnumpeatmoss had remainedatypicalgrowing
media for many years, hence there was some expressed
distressonthisnon-renewableresource56,81.Peatmossisthe
most mainstream constituent in nursery and greenhouse
mixesforcontainerizedplantingmediawherebyitwasusually
incorporatedtoamplifywaterretentionandplummetingthe
mediatotalweight82,83.Intheenvironments,materialization
andbuildupofcarbon-richpeatdepositscanbeperceivedup
to ten meters thick due to its net primary production that
exceeded decomposition84. Upright characteristics of peat
mosssuchaslowbulkdensity,structuralstability,lowpH,little
nutrient and nitrogen immobilization as well as structural
stabilityhadgivenitspecialattentionasappositehorticultural
growing medium85. However, care should be taken in its
over-utilizationaspeatmossesareveryindispensabletothe
ecosystemswheretheyusuallythriveparticularlyatwetlands.
Sand: Sand is one of the mainstream soilless media
incorporated in agriculture despite its infertility and
incompatibility for cultivation86.Itwasusuallymixedwith
differentkindsofsoilandmediatoabefittingratiowhereby
itcouldoffer decentqualityof growing mediawithoutthe
needtocompromisedrainageaswellaswaterandnutrient
retentioncapabilities87.Gasdiffusion,waterretentionandair
withinporespacearereliantonparticlesizeandporesofthe
media52,88.Thecolonization of
G.intraradices
and infectious
propaguleswasalsofoundtobe40-50%higherinsandthan
thoseplantsgrowninothermedia89.Otherthanthat,majority
of standard mixed medium would feature fine sand or
concretesandwithsphagnumpeatorcoconutcoirtoupliftits
properties90.Sandisalsoparticularlyconvenientforplantsthat
necessitate growing media with loose soil and dry
environmentduetoitscompetenciesinnotretainingmuch
moisture as well as alleviating the porosity of planting
medium4,91.It was usually emanates inthe formof silica
which is the heaviest material for growth media, inert,
incompressible and assuring less exchange capacity and
waterretention92.Itwasalsofoundthatsandysoilalsohad
the greatest pH and lowest exchangeable acidity and Al
amongothertypeofsoils93.
Perlite:Perliteistypicallycombinedwithothersoillessmedia
inordertoattainpromisingresultsincropgermination94.This
gleaming-like volcanic rock will expand itself under rapid
controlled heating in which it would retain its lightweight
aggregation, low bulk density, chemically inert in many
environment,exceptionalasfilteraidsandfillersfornumerous
aswellasexpansiveinitsusedmainlyinplantcultivation95,96.
In terms of input costs, perlite is also cheaper than the
rockwooland has been incorporated aroundthe worldfor
agricultural productions97. The comparisons in between
rockwoolandperlitepertainingtothecultivationofsoilless
melon(
Cucumismeloreticulatus
)hadalsobeenfoundtobe
indifferent98. Other than that, perlite is widely known
originatedfrom mined mineral that was crushed and then
expanded under high temperature99. It was also able to
simulatedecentpropertiessimilartorockwool especiallyin
tomato(
Lypersiconesculentum
)cultivation100.
Additionally, this siliceous material has closed-cell
structure so that water would only adhere to its surface,
without absorbing it making perlite well drained and
lightweight101.Italsoencompassesdecentporosityduetoits
foam-like cellular structure, good thermal capabilities, low
densityandquitecheapinitsproductioncost102.Thissoilless
media had also demonstrated itself to be superior to
polystyrenebeadasanadditiveingrowingmediaduetoits
elevatedmoistureretentioncapabilities103,6.Thepresence
ofwaterinperlitewillbereleasedgraduallyatrelativelylow
4
AsianJ.CropSci.,10(1):1-9,2018
tension,whichwouldmakeittopossessgooddrainageand
aerationattherhizosphere104.Theincorporationofperliteis
rather a mainstream practice in nursery propagation and
greenhousegrowingmedia83.Itwasalsoestablishedthat
the practice of coarse-grade perlite and pine bark in the
productionofbeitalphacucumberhad shown to lead to a
greater degreeofleachateincomparisontothe
medium-gradeperlite105.
Vermiculite:Vermiculiteispreferableduetoitslowmoisture
retentionyet it could still uphold greater amountof water
than perlite which can lead to the optimization of plant
germination106.Itwasfoundthatvermiculitehadslightly
better effective cation exchange capacity (ECEC) and
exchangeable calcium than peat107. Vermiculite is typically
neutralinpH,possessdecentwaterholdingcapacityaswell
ascontaininglittleamountsofmagnesiumandpotassium101.
Thissoillessmedia was also knowntobe porous duetoits
foam-likecellularstructure,withdecentcharacteristicssuchas
uprightthermalstability,lowmoistureretention,lowdensity
and relatively cheap in cost102. The heating process had
contributed to its sterilization, nimble in weight, decent
bufferingcapacities,goodwaterretentionaswellashaving
relatively good cation exchange capacity108. Vermiculite is
quiterelatedtoperlitefromthepointthatbothoriginateas
minedminerals thatwereheatedtoafinishedproduct,yet
perlite was incorporated to increase drainage whereas
vermiculite was used to retain water and positive-charged
nutrientssuchaspotassium,calciumandmagnesium83.
CONCLUSION
Cropproductionbymeansofsoillesscultureispromptly
successfully in both momentum and acceptance in
agricultural sectors. The amassed popularity and positive
trends across the globe can be especially grasped in
commercialcropproductionscontributedfromthedearth
of arable land and population increment. Demand on
horticulturalproductsiscertainlyonariseandthetechnology
ofexploitingsoillesssubstrateanditsmanagementpractices
iscurrentlybeingrefinedtoitsfullestextent.Conversely,the
bottlenecktoproperpracticeandcultureisbeingthwartedby
thelackofknowledgeandawarenessofpublicpertainingto
soillesscropproduction.Accesstostate-of-the-arttechnology
andprecisionfarmingisstillratherreservedfor developing
countriesand thestartup expenditurewould somehowbe
enormousandextravagant.Hence,appropriateemployment
ofsoillessmediainagricultureismandatoryspecificallytoits
availability, suitability and expenditure in order to make it
efficaciousandfeasible.
SIGNIFICANCESTATEMENT
Thisstudy addressed theissues ofcurrent diminishing
trendsofavailablesoilfitsforcultivation.Thus,thisstudywill
aidindeterminingthebenefitsandsuitabilityofsoillessmedia
cultureasanalternativetosoil-basedcultivation.
REFERENCES
1. CASFS., 2016. Soils and soil physical properties. Center of
AgroecologyandSustainableFoodSystem,USA.
2. Davis, K.E., S.J. Joseph and P.H. Janssen, 2005. Effects of
growth medium, inoculum size and incubation time on
culturabilityandisolationofsoilbacteria.AppliedEnviron.
Microbiol.,71:826-834.
3. FAO.,2006.Plantnutritionforfoodsecurity:Soilfertilityand
cropproduction.FoodandAgriculture Organizationofthe
UnitedNations,Rome,Italy.
4. Hussain,A.,K.Iqbal,S.Aziem,P.MahatoandA.K.Negi,2014.
A review on the science of growing crops without soil
(soillessculture):Anovelalternativeforgrowingcrops.
Int.J.Agric.CropSci.,7:833-842.
5. Jenny, H., 1994. Factors of Soil Formation: A System of
QuantitativePedology.DoverPublications,NewYork.
6. McDaniel,P.A.,A.L.FalenandM.A.Fosberg,2012.Soilsand
Environment: A Land and Homestic Evaluation Handbook
andTrainingGuide. UniversityofIdaho,CALSPublications,
USA.
7. NRCS.,2006.Soils-fundamentalconcept.NaturalResources
ConservationService,USA.
8. Pettit,R.E.,2004.Organicmatter,humus,humate,humicacid,
fulvicacid andhumin:Theirimportanceinsoilfertility and
planthealth.http://www.humates.com/pdf/ORGANICMATTE
RPettit.pdf
9. USGS., 2011. What's in my soil? United States Geological
Survey,ScienceEducationHandout,March2011.https://ed
ucation.usgs.gov/lessons/soil.pdf
10. Ayers,P.D.,1987.Moistureanddensityeffectsonsoilshear
strengthparametersforcoarsegrained soils.Trans.ASABE,
31:1282-1287.
11. Alia,A.H.N.A.,S.Tosiah,Z.Z.Norziana,Z.A.Jamiland
M.M. Radzali, 2013. Characterization of soil microbial
functionaldiversityinPulauTekakBesar,TasikKenyir.J.Trop.
Agric.FoodSci.,41:95-108.
12. Baiyeri,K.P.andB.N.Mbah,2006.Effectsofsoillessand
soil-based nursery media on seedling emergence, growth
andresponsetowaterstressof Africanbreadfruit(
Treculia
Africana
Decne).Afr.J.Biotechnol.,5:1405-1410.
5
AsianJ.CropSci.,10(1):1-9,2018
13. Bennie, A.T.P. and R. du T. Burger, 1988. Penetration
resistanceof fine sandyapedalsoilsasaffectedbyrelative
bulkdensity,watercontentandtexture.S.Afr.J.PlantSoil,
5:5-10.
14. Bowen, H.D., 1981. Alleviating Mechanical Impedance. In:
Modifying the Root Environment to Reduce Crop Stress,
Arkin, G.F. and H.M. Taylor (Eds.), American Society for
AgriculturalEngineers(ASAE),St.Joseph,MI.,pp:21-57.
15. Carr, M.K.V. and S.M. Dodds, 1983. Some effects of soil
compactiononrootgrowthandwateruse oflettuce.
Exp.Agric.,19:117-130.
16. Daddow,R.L.andG.E.Warrington,1983.Growth-limitingsoil
bulk densities as influenced by soil texture. Watershed
SystemsDevelopmentGroup,USDAForestService,USA.
17. Froehlich, H.A., 1979. Soil compaction from logging
equipment:Effectsongrowthofyoungponderosapine.
J.SoilWaterConserv.,34:276-278.
18. Glinski, J. and J. Lipiec, 1990. Soil Physical Conditions and
PlantRoots.CRCPress,BocaRaton,Florida.
19. Hayashi, Y., K.I. Kosugi and T. Mizuyama, 2009. Soil water
retention curves characterization of a natural forested
hillslope using a scaling technique based on a lognormal
pore-sizedistribution.SoilSci.Soc.Am.J.,73:55-64.
20. Henderson,C.,A.LevettandD.Lisle,1988.Theeffectsofsoil
watercontentandbulkdensityonthecompactibilityandsoil
penetration resistance of some Western Australian sandy
soils.SoilRes.,26:391-400.
21. Iovieno,P.,L.Morra,A.Leone,L.PaganoandA.Alfani,2009.
Effectoforganicandmineralfertilizersonsoilrespirationand
enzymeactivities of two Mediterranean horticulturalsoils.
Biol.Fertil.Soils,45:555-561.
22. Ishaq,M., M. Ibrahim,A.Hassan,M. SaeedandR.Lal,2001.
Subsoilcompactioneffects on cropsinPunjab,Pakistan: II.
Rootgrowthandnutrientuptakeofwheatandsorghum.
SoilTillageRes.,60:153-161.
23. Lull,H.W.,1959.SoilCompactiononForestandRange
Lands.ForestService,U.S.DepartmentofAgriculture,USA.,
Pages:33.
24. Ocanell,D.J., 1975. Themeasurement of apparent specific
gravityofsoilsandits r e l a tionshi p t o m echanic a l c o m p o s i t i o n
andplant rootgrowth.In:Soilphysical conditionandcrop
production.MAFFTechnol.Bull.,29:298-313.
25. Pabin,J.,J.Lipiec,S.W»odek,A.BiskupskiandA.Kaus,1998.
Criticalsoilbulkdensityandstrengthforpeaseedling
rootgrowthasrelatedtoothersoilfactors.SoilTillageRes.,
46:203-208.
26. Van Quang, P., P.E. Jansson and L. van Khoa, 2012. Soil
penetrationresistanceanditsdependenceonsoilmoisture
andageoftheraised-bedsintheMekongDelta,Vietnam.
Int.J.Eng.Res.Dev.,4:84-93.
27. Schuurman, J.J., 1965. Influence of soil density on root
developmentandgrowthofoats.PlantSoil,22:352-374.
28. Stelluti,M.,M.MaioranaandD.deGiorgio,1998.Multivariate
approachtoevaluatethepenetrometerresistanceindifferent
tillagesystems.SoilTillageRes.,46:145-151.
29. Taylor, H.M., G.M. Roberson and J.J. Parker, 1966. Soil
strength-root penetration relationsformedium-to
coarse-texturedsoilmaterials.SoilSci.,102:18-22.
30. Veihmeyer,F.J.andA.H.Hendrickson,1948.Soildensityand
rootpenetration.SoilSci.,65:487-494.
31. Wert, S. and B.R. Thomas, 1981. Effects of skid roads on
diameter,heightandvolumegrowthinDouglas-fir.SoilSci.
Soc.Am.J.,45:629-632.
32. Wilshire,H.G.,J.K.Nakata,S.ShipleyandK.Prestegaard,1978.
ImpactsofvehiclesonnaturalterrainatsevensitesintheSan
FranciscoBayarea.Environ.Geol.,2:295-319.
33. Mustapha, Z., N. Mat, R. Othman and A.J. Zakaria, 2017.
Growth of BRIS soil bacteria in organic material and
potassium nitrate. Proceedings of the 5th International
Conference on Chemical, Agricultural, Biological and
EnvironmentalSciences,April18-19,2017,Kyoto,Japan,
pp:6-11.
34. Mustapha, Z., N. Mat, R. Othman and A.J. Zakaria, 2017.
Quantification of BRIS soil bacteria at tembila, besut
terengganu.AGRIVITAJ.Agric.Sci.,39:252-256.
35. Aquatrols,2009.Understandingmediasurfactantsforusein
soillessmedia.http://s3.amazonaws.com/aquatrols/2009121
4131635.pdf
36. Chang,C.P.andS.M.Lin,2007.Theformationandgrowing
properties of poly (Ethylene terephthalate) fiber growing
mediaafterthermo-oxidativetreatment.Mater.Sci.Eng.:A,
457:127-131.
37. Corti,C., L. Crippa, P.L. Geneviniand M. Centemero, 1998.
Compost use in plant nurseries: Hydrological and
physicochemicalcharacteristics.CompostSci.Util.,6:35-45.
38. Dresboll,D.B.,2010.Effect of growing media composition,
compaction and periods of anoxia on the quality and
keepingqualityofpottedroses(
Rosa
sp.).Scient.Horticult.,
126:56-63.
39. Erstad,J.L.andH.R.Gislerod,1994.Wateruptakeofcuttings
andstempiecesasaffectedbydifferentanaerobicconditions
intherootingmedium.Scient.Horticult.,58:151-160.
40. Evans,M.R.andJ.K.Iles,1997.Growthof
Viburnumdentatum
and
Syringa
×
prestoniae
'DonaldWyman'in
Sphagnum
peatandcoirdust-basedsubstrates.J.Environ.Horticult.,
15:156-159.
41. Ingram,D.L.,2014.Understandingsoillessmediatestresults
and their implications on nursery and greenhouse crop
management:ReportNo. HO-112. Agricultureand Natural
Resources,UK.
42. Macz, O., E.T. Paparozzi and W.W. Stroup, 2001. Effect of
nitrogen and sulfur applications on pot chrysanthemum
productionandpostharvestperformance.I.Leafnitrogenand
sulfurconcentrations.J.PlantNutr.,24:111-129.
6
AsianJ.CropSci.,10(1):1-9,2018
43. MohdAziz,R.,Z.AbdJamil,S.A.H.Armizatul,I.M.Noh,H.Hafiz
andA.R.Norahshekin,2011.Effectsofrootzonecoolingusing
waterchillingsystemonplantphysiologicalresponsesand
fruit yield of tomato var. Baccarat under greenhouse
condition.Proc.Trans.MalaysianSoc.PlantPhysiol.,Vol.19.
44. Raviv, M. and H. Lieth, 2008. Soilless Sulture: Theory and
Practice.ElsevierScience,USA.
45. Sabahy, A., A. Bahnasawy, S. Ali and Z. El-Haddad, 2014.
Physical and chemical properties of some soilless media.
https://pdfs.semanticscholar.org/ea15/d9776c35ef8e1da8
09e9320dfeac4949427c.pdf
46. Sahin,U.,O.AnapaliandS.Ercisli,2002.Physico-chemicaland
physicalpropertiesofsomesubstratesusedinhorticulture.
DieGartenbauwissenschaft,67:55-60.
47. Sahin,U., S. Ors, S. Ercisli, O. Anapaliand A. Esitken, 2005.
Effectofpumiceamendmentonphysicalsoilpropertiesand
strawberryplantgrowth.J.CentralEur.Agric.,6:361-366.
48. Wilson, S.B., P.J. Stoffella and D.A. Graetz, 2001. Use of
compostasamediaamendmentforcontainerized
productionoftwosubtropicalperennials.J.Environ.Hortic.,
19:37-42.
49. Abad,M.,P.Noguera,R.Puchades,A.Maquieiraand
V. Noguera, 2002. Physico-chemical and chemical
properties of some coconut coir dusts for use as a peat
substitute for containerised ornamental plants. Bioresour.
Technol.,82:241-245.
50. Henry,D.,1982.Palmseedgerminationstudy.Proc.Florida
StateHortic.Soc.,95:256-257.
51. Bruckner,U., 1997. Physicalproperties of differentpotting
media and substrate mixtures-especially air-and water
capacity.ActaHort.,450:263-270.
52. Caron, J. and V.N. Nkongolo, 1999. Aeration in growing
media:Recentdevelopments.ActaHort.,481:545-552.
53. Chaves, M.M. and M.M. Oliveira, 2004. Mechanisms
underlying plantresilience to water deficits: Prospects for
water-savingagriculture.J.Exp.Bot.,55:2365-2384.
54. Evans, M.R., S. Konduru and R.H. Stamps, 1996. Source
variationinphysicalandchemicalpropertiesofcoconutcoir
dust.HortScience,31:965-967.
55. Handreck, K. and N. Black, 2002. Growing Media for
OrnamentalPlantsandTurf.UniversityofNewSouthWales
Press,Sydney,Australia.
56. Holman,J.,B.Bugbee and J.Chard,2005.Acomparisonof
coconut coir and sphagnum peat as soil-less media
componentsforplantgrowth:Report.Hydroponics/Soilless
Media,USA.
57. Ma, Y.B. and D.G. Nichols, 2004. Phytotoxicity and
detoxificationoffreshcoirdustandcoconutshell.Commun.
SoilSci.PlantAnal.,35:205-218.
58. Meerow,A.W.,1994.Growthoftwosubtropicalornamentals
using coir (coconut mesocarp pith) as a peat substitute.
Hortic.Sci.,29:1484-1486.
59. Radjagukguk,B.andO.Soeseno,1984.Acomparativestudy
of peats and other media for containerized forest tree
seedlings.ActaHortic.,150:449-458.
60. Shanmugasundaram,R.,T.Jeyalakshmi,S.S.Mohan,
M.Saravanan,A.GoparajuandB.Murthy,2014.Cocopeat-An
alternativeartificialsoilingredientfortheearthwormtoxicity
testing.J.Toxicol.Environ.HealthSci.,6:5-12.
61. Wira,A.B.,Z.AbdJamilandS.A.H.Armizatul,2011.Effectof
K-fertigationlevelsontomatosap and plant performance.
Trans.Malay.Soc.PlantPhysiol.,19:21-24.
62. Wira, A.B., I.M. Razi and Z.A. Jamil, 2011. Composts as
additivesincoconutcoirdustcultureforgrowingrockmelon
(
Cucumismelo
L.).J.Trop.Agric.FoodSci.,39:229-237.
63. Awang, Y., A.S. Shaharom, R.B. Mohamad and A. Selamat,
2009.Chemicalandphysicalcharacteristicsof
cocopeat-based media mixtures and their effects on the
growthanddevelopment of
Celosiacristata
.Am.J.Agric.
Biol.Sci.,4:63-71.
64. Yahya, A., H. Safie and S. Kahar, 1997. Properties of
cocopeat-based growing media and their effects on two
annualornamentals.J.Trop.Agric.FoodSci.,25:151-157.
65. Yahya, A., H. Safie and M.S. Mokhlas, 1999. Growth and
flowering responses of potted chrysanthemums in a coir
dust-basedmedium todifferentratesofcontrolled-release
fertilizer.J.Trop.Agric.FoodSci.,27:39-46.
66. Baldock,J.A.andR.J.Smernik, 2002. Chemicalcomposition
andbioavailability ofthermallyaltered
Pinusresinosa
(Red
pine)wood.Org.Geochem.,33:1093-1109.
67. Bengtsson, G., P. Bengtson and K.F. Mansson, 2003. Gross
nitrogen mineralization-, immobilization- and nitrification
ratesasafunctionofsoilC/Nratioandmicrobialactivity.
SoilBiol.Biochem.,35:143-154.
68. Denevan, W.M., 1996. A bluff modelofriverine
settlementinprehistoricAmazonia.Ann.Assoc.Am.Geogr.,
86:654-681.
69. Eckmeier,E.,M.Rosch,O.Ehrmann,M.W.Schmidt,W.Schier
andR.Gerlach,2007.Conversionofbiomasstocharcoaland
thecarbonmassbalancefromaslash-and-burnexperiment
inatemperatedeciduousforest.Holocene,17:539-542.
70. Karmakar,S.,B.N.MitraandB.C.Gosh,2009.Influence
of industrial solid waste on soil-plant interaction in rice
underacid Lateriticsoils.Proceedingsofthe World ofCoal
Ash(WOCA)Conference,May4-7,2009,Lexington,USA.,
pp:1-13.
71. Lehmann,J.,J.P.daSilva,Jr.,C.Steiner,T.Nehls,W.Zechand
B. Glaser, 2003. Nutrient availability and leaching in an
archaeologicalanthrosolandaferralsolofthecentralamazon
basin: Fertilizer, manure and charcoal amendments. Plant
Soil,249:343-357.
72. Mahvi,A.H.,N.AlaviandA.Maleki,2005.Applicationofrice
huskanditsashincadmiumremovalfromaqueoussolution.
Pak.J.Biol.Sci.,8:721-725.
7
AsianJ.CropSci.,10(1):1-9,2018
73. Masulili,A.,W.H.UtomoandM.S.Syechfani,2010.Ricehusk
biochar for rice based cropping system in acid soil 1. The
characteristicsofricehuskbiocharanditsinfluenceonthe
propertiesofacidsulfatesoilsandricegrowthinWest
Kalimantan,Indonesia.J.Agric.Sci.,2:39-47.
74. Muntohar,A.S.,2004.Utilizationofuncontrolledburnt
ricehuskashinsoilimprovement.CivilEng.Dimension,
4:100-105.
75. Steiner,C.,W.G.Teixeira,J.Lehmann,T.Nehls,
J.L.V.deMacedo,W.E.H.BlumandW.Zech,2007.
Long term effects of manure, charcoal and mineral
fertilization on crop production and fertility on a highly
weatheredCentralAmazonianuplandsoil.PlantSoil,
291:275-290.
76. Theeba,M.,R.T.Bachmann,Z.I.Illani,M.Zulkefli,M.H.A.Husni
and A.W. Samsuri, 2012. Characterization of local mill rice
husk charcoal and its effect oncompostproperties.
Malay.J.SoilSci.,16:89-102.
77. Alexander,P.D.,N.C.Bragg,R.Meade,G.Padelopoulos
and O. Watts, 2008. Peat in horticulture and
conservation:TheUKresponsetoachangingworld.Mires
Peat,3:1-10.
78. Boelter,D.H.,1968.Importantphysicalpropertiesof
peat materials. U.S. Department of Agriculture, USA.
https://www.nrs.fs.fed.us/pubs/jrnl/1968/nc1968boelter
001.pdf
79. CSPMA.,2015.Industrialsocialresponsibilityreport.Canadian
SphagnumPeatMossAssociation,Canada.
80. Chalker-Scott,L.,2015. The myth ofpermanent peatlands.
WashingtonStateUniversity,Washington,USA.
81. Whyman,S.,K.SladeandK.Childerhouse,2009.Catalogueof
sphagnum peat mosses in amgueddfa cymru-national
museum wales. https://museum.wales/media/14447/Sp
hagnum-Catalogue-Analysis.pdf
82. Joosten,J.H.J.,1995.Thegoldenflow:Thechanging
worldofinternationalpeattrade.Regionalvariation
andconservationofmireecosystems.Gunneria,
70:269-292.
83. Robbins,J.A.andM.R.Evans,1914.Greenhouseandnursery
series: Growing media for container production in a
greenhouse or nursery. Part I-components and mixes.
Agriculture and Natural Resources. https://www.uaex.
edu/publications/PDF/FSA-6097.pdf
84. Rydin, H. and J. Jeglum, 2006. The Biology of Peatlands.
OxfordUniversityPress,England.
85. Schmilewski,G.,2008.Theroleofpeatinassuringthequality
ofgrowingmedia.MiresPeat,3:1-8.
86. Ang,L.H.,1994.Problemsandprospectsofafforestation
onsandytintailingsinPeninsularMalaysia.J.Trop.For.Sci.,
1:87-105.
87. Barker,D.G.,T.Pfaff,D.Moreau,E.GrovesandS.Ruffel
etal
.,
2006. Growing
M. truncatula
: Choice of Substrates and
GrowthConditions.In:The
Medicagotrunca
-TulaHandbook.
Mathesius,U., E.P.JournetandL.W.Sumner (Eds.).,Samuel
RobertsNobleFoundation,Ardmore,OK.
88. Caron, J.A., L.M.B. Rivie!re and G.B. Guillemain, 2005. Gas
diffusion and air-filled porosity: Effect of some oversize
fragmentsingrowingmedia.Can.J.SoilSci.,85:57-65.
89. Gaur,A.andA.Adholeya,2000.Effectsoftheparticlesizeof
soil-lesssubstratesuponAMfungusinoculumproduction.
Mycorrhiza,10:43-48.
90. Havis,J.R.andW.W.Hamilton,1981.Physical
properties of container media. Ornamentals Northwest
Arch.,5:7-8.
91. Indriyani, N.L.P., S. Hadiati and A. Soemargono, 2011. The
effect of planting medium on the growth of Pineapple
seedling.J.Agric.Biol.Sci.,6:43-48.
92. Spomer,L.A.,W.L.BerryandT.W.Tibbitts,1997.PlantCulture
in Solid Media. In: Plant Growth Chamber Handbook,
Langhans,R.W.andT.W.Tibbitts(Eds.).,Chapter7.IowaState
University,Ames,IA.,pp:105-118.
93. Zhao,Y.G.,G.L.Zhang,Z.Wen-JunandZ.T.Gong,2005.Soil
characteristicsand cropsuitabilityofsandysoilsinHainan,
China.Proceedings ofthe Managementof TropicalSandy
Soils for Sustainable Agriculture: A Holistic Approach for
Sustainable Development of Problem Soils in the Tropics,
November27-December2,2005,KhonKaen,Thailand,
pp:49-53.
94. Atiyeh, R.M.,C.A.Edwards,S. Subler and J.D. Metzger,
2000.Earthworm-processedorganicwastesas
components of horticultural potting media for growing
marigoldandvegetableseedlings.CompostSci.Utilization,
8:215-223.
95. Chesterman,C.W.,1975.IndustrialRocksandMinerals.
4thEdn.,PortCityPress,USA.
96. Ercisli,S.,U.Sahin,A.EsitkenandO.Anapali,2005.Effectsof
some growing media on the growth of strawberry cvs.
'Camarosa'and'Fern'.ActaAgrobot.,58:185-181.
97. Grillas,S.,M.Lucas,E.Bardopoulou,S.Sarafopoulosand
M. Voulgari, 2001. Perlite based soilless culture systems:
Currentcommercialapplicationsandprospects.ActaHortic.,
548:105-114.
98. Guler,H.G.,C.OlympiosandD.Gerasopoulos,1995.
The effect of the substrate on the fruit quality of
hydroponicallygrownmelons(
Cucumis melo
, L). Acta
Hortic.,379:261-266.
99. Hochmuth, G.J. and R.C. Hochmuth, 2016. Keys to
successful tomato and cucumber production in perlite
media.UniversityofFlorida,InstituteofFoodandAgricultural
Science,USA.
8
AsianJ.CropSci.,10(1):1-9,2018
100. Jensen,M.H.,2002.Controlledenvironmentagriculturein
deserts, tropics and temperate regions: A world review.
ActaHortic.,578:19-25.
101. Landis,T.D.,D.F.Jacobs,K.M.WilkinsonandT.Luna,2014.
Growing Media. In: Tropical Nursery Manual: A Guide to
StartingandOperatingaNurseryforNativeandTraditional
Plants,Wilkinson,K.M., T.D. Landis, D.L.Haase,B.F. Daley
andR.KDumroese(Eds.).,U.S.DepartmentofAgriculture,
ForestService,USA.
102. Li,R.G.,J.Q.Zhu,W.B.Zhou,X.M.ChengandY.Y.Li,2015.
The Adsorption Performance of Sodium Nitrate for
Vermiculite,PerliteandCeramsite.In:MaterialScienceand
EnvironmentalEngineering:Proceedingsofthe3rdAnnual
2015 International Conference on Material Science and
EnvironmentalEngineering(ICMSEE2015, Wuhan, Hubei,
China,5-6June2015),Chen,P.(Ed.).,CRCPress,China,
pp:159-162.
103. Matkin,O.A.,2005.ComparativegrowthstudiesPerlitevs.
Polystyrene media. The Perlite Institute Incorporation,
California,USA.
104. Ors, S. and O. Anapali, 2010. Effect of soil additionon
physicalpropertiesofperlitebasedmediaand
strawberrycv.Camarosaplantgrowth.Scient.Res.Essays,
5:3430-3433.
105. Shaw, N.L., D.J. Cantliffe, J. Funes and C. Shine III, 2004.
Successful beit alpha cucumber production in the
greenhouseusingpinebarkasanalternativesoillessmedia.
HortTechnology,14:289-294.
106. Arenas,M.,C.S.Vavrina,J.A.Cornell,E.A.Hanlonand
G.J. Hochmuth, 2002. Coir as an alternative to peat in
mediafortomatotransplantproduction.HortScience,
37:309-312.
107. Headlee,W.L.,C.E.BrewerandR.B.Hall,2014.Biocharasa
substituteforvermiculiteinpottingmixforhybridpoplar.
BioenergyRes.,7:120-131.
108. Resh,H.M.,2012.HydroponicFoodProduction:ADefinitive
Guidebook for the Advanced Home Gardener and the
CommercialHydroponicGrower.7thEdn.,CRCPress,USA.,
ISBN:9781439878675,Pages:560.
9