ArticlePDF Available

Abstract

Soil-based cultivation is presently confronting dire challenges to the lack of land availability, massive escalation rate of industrialization and intense urbanization. Land-related agriculture is at stake due to irrepressible climate vicissitudes, relentless soil degradation, unbefitting management practices and other adversative effects. The settings are further exacerbated by the increment in population with respect to diminutive land availability to cultivate. Hence, soilless media culture would make ways as an auspicious auxiliary in current pressing scenario. Proper management practices and technological advancements can utterly exploit the soilless substrates effectively and efficiently. Optimization of yield pertaining to incorporation of soilless media can also result in superior quality and growth performance in relevance to less agricultural inputs being consumed.
OPEN ACCESS Asian Journal of Crop Science
ISSN 1994-7879
DOI: 10.3923/ajcs.2018.1.9
Review Article
Soilless Media Culture-A Propitious Auxiliary for Crop Production
1Amjad Farhan Ashraf Farhan, 1Abd. Jamil Zakaria, 2Prof Nashriyah Mat and 2Khamsah Suryati Mohd
1Faculty of Agriculture Production and Food Innovation Research Institute (AGROPOLIS), Universiti Sultan Zainal Abidin,
22200 Besut Terengganu, Malaysia
2Faculty of Bioresource and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut Terengganu, Malaysia
Abstract
Soil-basedcultivationispresentlyconfrontingdirechallengestothelackoflandavailability,massiveescalationrateofindustrialization
and intense urbanization. Land-related agriculture is at stake due to irrepressible climate vicissitudes, relentless soil degradation,
unbefittingmanagementpracticesandotheradversativeeffects.Thesettingsarefurtherexacerbatedbytheincrementinpopulation
withrespecttodiminutivelandavailabilitytocultivate.Hence,soillessmediaculturewouldmakewaysasanauspiciousauxiliaryincurrent
pressingscenario.Propermanagementpracticesandtechnologicaladvancementscanutterlyexploitthesoillesssubstrateseffectively
and efficiently. Optimization of yield pertaining to incorporation of soilless media can also result in superior quality and growth
performanceinrelevancetolessagriculturalinputsbeingconsumed.
Keywords: Soillessculture,burntricehusk,peatmoss,coirdust,perlite,vermiculite
Received: October04,2017 Accepted: December01,2017 Published: December15,2017
Citation: AmjadFarhanAshrafFarhan,Abd.JamilZakaria,ProfNashriyahMatandKhamsahSuryatiMohd,2018.Soillessmediaculture-apropitiousauxiliary
forcropproduction.AsianJ.CropSci.,10:1-9.
CorrespondingAuthor: AmjadFarhanAshrafFarhan,FacultyofAgricultureProductionandFoodInnovationResearchInstitute(AGROPOLIS),
UniversitiSultanZainalAbidin,22200BesutTerengganu,Malaysia
Copyright: ©2018AmjadFarhanAshrafFarhan
etal
.Thisisanopenaccessarticledistributedunderthetermsofthecreativecommonsattribution
License,whichpermitsunrestricteduse,distributionandreproductioninanymedium,providedtheoriginalauthorandsourcearecredited.
CompetingInterest: Theauthorshavedeclaredthatnocompetinginterestexists.
DataAvailability: Allrelevantdataarewithinthepaperanditssupportinginformationfiles.
AsianJ.CropSci.,10(1):1-9,2018
INTRODUCTION
Soil formation was influenced from different kinds of
parentmaterials,time,bioticfactors,topographyandclimate
inwhichsoilwouldbemadeupofapproximately40-50%of
minerals,0-10%oforganicmattercontent,floraandfauna,
macroscopicandmicroscopicorganismaswellasaround50%
ofporespacemainlyfromairandwater1.Insidethesoil,there
aremassivecoloniesofphylogeneticgroupsofbacteriaina
universally scattered manner and somehow ample in
existence2. It was comprised of organic matter content,
mineralmatter,someporespace,water,air,lifeformsaswell
asvastpresenceofmicro-organismandmacro-organism3.Soil
is also the typically most profound growing media being
conventionally exploited as planting medium for plants4.
Horizonsinsoilarealsopresentedtosegregatetheminerals
and organic constituents as well as the disparate parent
materials in morphology, depth, physical, chemical and
biologicalcharacteristics5.Otherthanthat,animalsandplants
aredirectlyorindirectlyhighlydependentonsoilfornutrients
and support6. Taxonomically, soil is also renowned to be
assortmentofnaturalb o d i e s o f t h eearth ʼ s superfi c i al,whether
amendedbymanor earthly materials, encompassing living
matter and supporting plant progression7. The dynamic
relationshipit possesseswould make itcentral for plantto
thriveamicablywithinitssurroundingenvironment.Healthy
soilwithsufficientorganicmattercontent,humicacids,humin
andfulvic acids can prearrange decent condition tosustain
growingplantswithadvancedyieldandsuperiorgrowth8.It
was also made up of around 40-80% of sand, silt and clay
which the diverse presence of these components with
differentextentscouldresultindissimilarcharacteristicsand
textures9. The settings are further exacerbated by the
increment in population with respect to diminutive land
availabilitytocultivate.Hencetheobjectiveofstudywasthat
soilless media culture would make ways as an auspicious
auxiliary.
Soildegradationandcompaction:Intensiveandunrestrained
exploitation of soil had been a foremost problem to the
proliferationofplantsanditsenvironment10.Disturbedlands
hadbeenfoundtoinhibitsoilmicrobialfunctionaldiversity
suchaslowermetabolicdiversityandcarbon-mineralization
in comparison to undisturbed lands11. Naturally, soils are
resilient yet it can be inclined to relentless deterioration
through soil formation and unfitting cultural practices12.
Degradationofsoilcanleadtomechanicalresistanceviaits
soilmatrix to therootin whichit canobstruct its progress
especiallywhentherootpressurewasoverwhelmedinaway
that it could lead to a decline in root length and root
elongation rate13.Otherthanthat,theoccurrenceof
compactioncanbreedundesirableoutcomessuchasreduced
cropyields,deprivedstateofplantgrowth,constrainedplant
rootgrowthandlessernutrientuptake14,15.Thisiswhycareful
forecasting and administration of soil were obligatory in
ordertoavertthepossibilityofreducedyieldandproductivity
mainly instigated through soil compaction16. Physical
properties of soil could alsobealteredbymeansof
compactioninwhichitwouldconsequencetothechangeof
soilporosity,soiltexturesandwaterholdingcapacity17-20.
Prominentchallengesandconfrontationaleffectsinsoil
managementhadarisenduetomodernizationofcivilization,
which direct to diminishing scale of land availability for
cultivation, apart from rapid industrialization and colossal
urbanizationprojectsworldwide4.Theeffectsaregoingtoget
worseas soil was also proneto degeneration in its quality
particularly under climatic circumstances and irrepressible
manner of conventional farming in which it could further
interrupt plant growth performance21-23. Although, it was
assumedtobearatherintricateinteraction,therewasactually
athresholdofsoilbulkdensityinwhich it could resist root
penetrationtothepointthatitcouldbeutterlyimmobilized24.
Penetrationresistancegivenbythesoilwouldsurelyimpact
root zone and water movement mainly during primary
growth25.Therearefewprimarysoilphysicalpropertiesthat
couldaffectthe blossoming ofplantswhichwould include
heat capacity, soil strength, water holding capacity, soil
texture,hydraulicconductivityandsoilstructure26.Thiscanbe
furtherseenthroughitstexturethatcouldsomehowdefine
thebulkiness,poresizeandmechanicalresistancethatthesoil
couldoffer27.Themechanicalresistancefromthesoilwasalso
foundouttobehighlyinterrelatedtotherootelongationand
cropyield28.Thehydrostaticpressure(turgor)oftheseedlings
mustalsobeensuredtobeappropriateinordertooverwhelm
internal restraints imposed by the surrounding media29.
Severalstudieshadalsoindicateddetrimentaloutcomesdue
to soil compaction pertaining to the growth of plants30-32.
Unhealthyandunreservedpracticesofutilizingavailableland
mayleadtoinfertileandlessproductivelandsuchashighly
degradedsoilandBRISsoil.Thesesoilshavehightemperature
and dry condition contributed to its excessively low water
holdingcapacityandloworganicmattercontentwhichwould
makeitsuitableonlytofewcropsandhashigheroverallcosts
for cultivation33,34. Hence, the application of soilless media
cultureincropcultivationwouldgreatlybenefitthefarmers
andconsumersalikeaswellasprovidinganalternativetothe
usageofproblematicsoilsanditsadditionalcostofinputs.
2
AsianJ.CropSci.,10(1):1-9,2018
Soillessmedia:Soillessmediacanbeintheformofsubstrates
originated from peat moss, bark, coir, compost, rice hulls,
vermiculiteandperlite35.Thissoillesscultureisamainstream
practicein developing countries asnormalgroundsoilsare
typicallydiscontentedinusageforcropproduction12.Hence,
therudimentarycharacteristicsofgoodsoillessmediawould
be easy to acquire, economical, abundant in nature, light
weight, possess upright chemical properties and has a
satisfactorywaterretentioncapabilities36.Thequalityofthe
growingmedia must also be greatlymaintained to ensure
good growth of seedlings37. This was because sustainable
production of ornamental flower and other crops would
needtocompensate decentgrowingmedia with sufficient
waterholding capacityandaeration38,39.Themostcommon
incorporatedsoilless media are coir-dustbased substrates
andsphagnumpeatinwhichitisamongthemostpreferred
andcommercializedprimarymedia40.Thiswasbecauseit is
occasionally acknowledged as substrates or growth media
withthe most prominentcrop productionmechanisms for
containerizedorraisedbedswithrestrictedvolumesandwas
appropriate for continuous supply of nutrients through
fertilization41-43.Plantscultivatedinsoillessculturenaturally
tendtohavesmallerroot-systemvolume than those in soil
cultureyettherootdensityofsoillessgrownplantswasmore
complex44.Thistechniqueofcultivationhasalsononeedto
adhere itself to traditional technique of using soil in crop
productionwhichmaycutsomeoftheinputcosts45.Current
trends of growing seedlings, plant proliferation and
production of ornamental plants are also immensely
dependentonsoillesssubstratesespeciallyincontainerized
plantingasitwouldensureoverallgoodplantproliferation
andgrowthperformance46-48.
Coir dust: Coir dust also acknowledged as cocopeat, is
customarilyextractedfromcoconuthuskintheformoffiber
as an agricultural by-product49. This coir dust was usually
madeintopottingmix,yetcarefulattentionwasrequiredto
ensuretheporosityofmediawasnotcompromiseddueto
deprivedstateofaerationaswellaslowermetabolicenergy
required for seed germination12,50. This is because the
interrelationinbetweenairandwaterwithinthecontextof
mediaporositywasveryprecarioustoplantgrowth51,52.On
theotherhand, optimum water retention iscompulsoryas
water discrepancy would momentously inflicts substantial
reductions in crop yield as it was greatly inclined to the
abridgedleafcarbonfixationandgeneralgrowthinhibition53.
Coconut coir dust has also adequate physical and
chemical properties, making it an apt soilless media for
growing plants54. Coir products usually obligate to
extraordinary K contents yet low in calcium, hence it
necessitatesincorporationofcalciuminordertoimprovethe
media55. It was also further elaborated that coir-based
productshas pH valueof approximately six,makingliming
practices a bit improper due to the probabilities of pH
exceedingoptimumlevelyetgypsummightbeasalvationto
bothlack of calciumand sulfur. Itwas also stated thatthis
byproductofcoconutindustrywouldalsoembraceprodigious
significance as an alternative to peat moss pertaining to
soilless media application56. However, coconut coir is also
knowntoexpresscomplicationsregardingitshighsalinityyet
its mixtures are noteworthy as an environment friendly
substituteforpeatsubstancesincontainerizedplanting57,58.
Diversecoirdustoriginswouldalsoobligatesignificantly
unalike physical and chemical properties59. However, this
growingmediawaspromisingasareplacementforthe
diminishing scale of sphagnum peat60. Both coir and peat
based substrate would have different water retention
especiallyifitwasmingledwithothermediayetcoirdustis
acknowledgedasaprominentgrowingmediawithrelationto
decent pH, electrical conductivity and other chemical
characteristicsmaking it beingincorporated widely in crop
cultivation48,61-63. Its good characteristics would somehow
contributetoagreateremploymentofcocopeatespeciallyin
growingcropswithsatisfactoryvalueinthetropics64,65.
Burntricehusk:Biocharhasaremarkablepotentialtoactas
asubstitutefortheincorporationofmanureandcompostas
itcouldpreservethecarbonʼsstabilityinsidethesoil66.Ithad
alsobeenfoundthattherewasamicrobialimmobilizationin
biocharwhichmaycontributeinretainingnitrogeninside
soil from being leached67. This may be due to the higher
availability of carbon that had led to the stimulation of
microbialactivitywhichresultedingreaternitrogendemand,
higher immobilization rate and the recycling of NO3. The
examplecanbeseenfromtheincorporatedcharcoalwhich
wasdonebythenativesinAmazoniawhichhadfacilitatedto
the formation of a rich dark soil called Terra Preta or Dark
Earth68. In several researches, it was found that nitrogen
contentinsidethecharcoalwasdeterminedat0.67and1.09%,
respectively69. The persistency of the charcoal had also
contributedtothestabilityoftheTerraPretainwhichtheland
can still be intensively cultivated untilnow due to its high
fertility.Theapplicationofflyashandricehuskashhadalso
elevated the soil properties via plummeting the soil bulk
density,enrichedorganiccarboncontent,nutrients,soilpHas
wellasriceyield70.
Additionally, it was found that the cation exchange
capacity(CEC)canbefurtherimprovedby50%bythe
3
AsianJ.CropSci.,10(1):1-9,2018
incorporationofcharcoal71.Otherthanthat,ithadalsobeen
demonstrated that rice husk and rice husk ash had the
capabilities in eradicating heavy metals72. Biochar
incorporation as soil amendment is utterly favorable in
diminishingthebulkdensity,soilstrength,exchangeable
Al and soluble Fe, escalating the soil water content,
porosity,soilpH, cation exchangecapacity(CEC) as wellas
exchangeableKandCa73.Ricehuskswereconsideredasone
oftheagriculturalwasteproductsinwhichitsexistencewas
somehowabundantinthetropical countries comprising of
Indonesia,Thailandand Malaysia74.Infact,theexistenceof
TerraPretahadproventhateventheunfertilesoilcouldalso
beconverted into fertilesoil with theaid of thecharcoal75.
Hence,itiswisetofullyutilizetheabundanceavailabilityof
rice husk charcoal as it is alsoaby-productthatexistsin
enormous extents that could lead to environmental
pollution76.
Peat moss: In recent decades, peat substrates had
accomplisheditself as theforemostcomponentswith
well-known characteristics of retaining water in greater
capacitythan mostof other soillesspotting media77,78 .This
naturally existing and organic soil conditioner can also
regulateairandmoistureforareaneighboringtheplantroots,
making it a superlative and prized constituents for both
horticultureandfloricultureindustry79.Soilamendmentsand
topdressingfrompeatwasalsoacommonpracticeingardens
andnurseries,particularlycontributedbyitscharacteristicsto
embracewaterlikeaspongeanddeliberatelyemancipating
ittotheenvironmentwhentheadjoiningsoildries80.
Sphagnumpeatmoss had remainedatypicalgrowing
media for many years, hence there was some expressed
distressonthisnon-renewableresource56,81.Peatmossisthe
most mainstream constituent in nursery and greenhouse
mixesforcontainerizedplantingmediawherebyitwasusually
incorporatedtoamplifywaterretentionandplummetingthe
mediatotalweight82,83.Intheenvironments,materialization
andbuildupofcarbon-richpeatdepositscanbeperceivedup
to ten meters thick due to its net primary production that
exceeded decomposition84. Upright characteristics of peat
mosssuchaslowbulkdensity,structuralstability,lowpH,little
nutrient and nitrogen immobilization as well as structural
stabilityhadgivenitspecialattentionasappositehorticultural
growing medium85. However, care should be taken in its
over-utilizationaspeatmossesareveryindispensabletothe
ecosystemswheretheyusuallythriveparticularlyatwetlands.
Sand: Sand is one of the mainstream soilless media
incorporated in agriculture despite its infertility and
incompatibility for cultivation86.Itwasusuallymixedwith
differentkindsofsoilandmediatoabefittingratiowhereby
itcouldoffer decentqualityof growing mediawithoutthe
needtocompromisedrainageaswellaswaterandnutrient
retentioncapabilities87.Gasdiffusion,waterretentionandair
withinporespacearereliantonparticlesizeandporesofthe
media52,88.Thecolonization of
G.intraradices
and infectious
propaguleswasalsofoundtobe40-50%higherinsandthan
thoseplantsgrowninothermedia89.Otherthanthat,majority
of standard mixed medium would feature fine sand or
concretesandwithsphagnumpeatorcoconutcoirtoupliftits
properties90.Sandisalsoparticularlyconvenientforplantsthat
necessitate growing media with loose soil and dry
environmentduetoitscompetenciesinnotretainingmuch
moisture as well as alleviating the porosity of planting
medium4,91.It was usually emanates inthe formof silica
which is the heaviest material for growth media, inert,
incompressible and assuring less exchange capacity and
waterretention92.Itwasalsofoundthatsandysoilalsohad
the greatest pH and lowest exchangeable acidity and Al
amongothertypeofsoils93.
Perlite:Perliteistypicallycombinedwithothersoillessmedia
inordertoattainpromisingresultsincropgermination94.This
gleaming-like volcanic rock will expand itself under rapid
controlled heating in which it would retain its lightweight
aggregation, low bulk density, chemically inert in many
environment,exceptionalasfilteraidsandfillersfornumerous
aswellasexpansiveinitsusedmainlyinplantcultivation95,96.
In terms of input costs, perlite is also cheaper than the
rockwooland has been incorporated aroundthe worldfor
agricultural productions97. The comparisons in between
rockwoolandperlitepertainingtothecultivationofsoilless
melon(
Cucumismeloreticulatus
)hadalsobeenfoundtobe
indifferent98. Other than that, perlite is widely known
originatedfrom mined mineral that was crushed and then
expanded under high temperature99. It was also able to
simulatedecentpropertiessimilartorockwool especiallyin
tomato(
Lypersiconesculentum
)cultivation100.
Additionally, this siliceous material has closed-cell
structure so that water would only adhere to its surface,
without absorbing it making perlite well drained and
lightweight101.Italsoencompassesdecentporosityduetoits
foam-like cellular structure, good thermal capabilities, low
densityandquitecheapinitsproductioncost102.Thissoilless
media had also demonstrated itself to be superior to
polystyrenebeadasanadditiveingrowingmediaduetoits
elevatedmoistureretentioncapabilities103,6.Thepresence
ofwaterinperlitewillbereleasedgraduallyatrelativelylow
4
AsianJ.CropSci.,10(1):1-9,2018
tension,whichwouldmakeittopossessgooddrainageand
aerationattherhizosphere104.Theincorporationofperliteis
rather a mainstream practice in nursery propagation and
greenhousegrowingmedia83.Itwasalsoestablishedthat
the practice of coarse-grade perlite and pine bark in the
productionofbeitalphacucumberhad shown to lead to a
greater degreeofleachateincomparisontothe
medium-gradeperlite105.
Vermiculite:Vermiculiteispreferableduetoitslowmoisture
retentionyet it could still uphold greater amountof water
than perlite which can lead to the optimization of plant
germination106.Itwasfoundthatvermiculitehadslightly
better effective cation exchange capacity (ECEC) and
exchangeable calcium than peat107. Vermiculite is typically
neutralinpH,possessdecentwaterholdingcapacityaswell
ascontaininglittleamountsofmagnesiumandpotassium101.
Thissoillessmedia was also knowntobe porous duetoits
foam-likecellularstructure,withdecentcharacteristicssuchas
uprightthermalstability,lowmoistureretention,lowdensity
and relatively cheap in cost102. The heating process had
contributed to its sterilization, nimble in weight, decent
bufferingcapacities,goodwaterretentionaswellashaving
relatively good cation exchange capacity108. Vermiculite is
quiterelatedtoperlitefromthepointthatbothoriginateas
minedminerals thatwereheatedtoafinishedproduct,yet
perlite was incorporated to increase drainage whereas
vermiculite was used to retain water and positive-charged
nutrientssuchaspotassium,calciumandmagnesium83.
CONCLUSION
Cropproductionbymeansofsoillesscultureispromptly
successfully in both momentum and acceptance in
agricultural sectors. The amassed popularity and positive
trends across the globe can be especially grasped in
commercialcropproductionscontributedfromthedearth
of arable land and population increment. Demand on
horticulturalproductsiscertainlyonariseandthetechnology
ofexploitingsoillesssubstrateanditsmanagementpractices
iscurrentlybeingrefinedtoitsfullestextent.Conversely,the
bottlenecktoproperpracticeandcultureisbeingthwartedby
thelackofknowledgeandawarenessofpublicpertainingto
soillesscropproduction.Accesstostate-of-the-arttechnology
andprecisionfarmingisstillratherreservedfor developing
countriesand thestartup expenditurewould somehowbe
enormousandextravagant.Hence,appropriateemployment
ofsoillessmediainagricultureismandatoryspecificallytoits
availability, suitability and expenditure in order to make it
efficaciousandfeasible.
SIGNIFICANCESTATEMENT
Thisstudy addressed theissues ofcurrent diminishing
trendsofavailablesoilfitsforcultivation.Thus,thisstudywill
aidindeterminingthebenefitsandsuitabilityofsoillessmedia
cultureasanalternativetosoil-basedcultivation.
REFERENCES
1. CASFS., 2016. Soils and soil physical properties. Center of
AgroecologyandSustainableFoodSystem,USA.
2. Davis, K.E., S.J. Joseph and P.H. Janssen, 2005. Effects of
growth medium, inoculum size and incubation time on
culturabilityandisolationofsoilbacteria.AppliedEnviron.
Microbiol.,71:826-834.
3. FAO.,2006.Plantnutritionforfoodsecurity:Soilfertilityand
cropproduction.FoodandAgriculture Organizationofthe
UnitedNations,Rome,Italy.
4. Hussain,A.,K.Iqbal,S.Aziem,P.MahatoandA.K.Negi,2014.
A review on the science of growing crops without soil
(soillessculture):Anovelalternativeforgrowingcrops.
Int.J.Agric.CropSci.,7:833-842.
5. Jenny, H., 1994. Factors of Soil Formation: A System of
QuantitativePedology.DoverPublications,NewYork.
6. McDaniel,P.A.,A.L.FalenandM.A.Fosberg,2012.Soilsand
Environment: A Land and Homestic Evaluation Handbook
andTrainingGuide. UniversityofIdaho,CALSPublications,
USA.
7. NRCS.,2006.Soils-fundamentalconcept.NaturalResources
ConservationService,USA.
8. Pettit,R.E.,2004.Organicmatter,humus,humate,humicacid,
fulvicacid andhumin:Theirimportanceinsoilfertility and
planthealth.http://www.humates.com/pdf/ORGANICMATTE
RPettit.pdf
9. USGS., 2011. What's in my soil? United States Geological
Survey,ScienceEducationHandout,March2011.https://ed
ucation.usgs.gov/lessons/soil.pdf
10. Ayers,P.D.,1987.Moistureanddensityeffectsonsoilshear
strengthparametersforcoarsegrained soils.Trans.ASABE,
31:1282-1287.
11. Alia,A.H.N.A.,S.Tosiah,Z.Z.Norziana,Z.A.Jamiland
M.M. Radzali, 2013. Characterization of soil microbial
functionaldiversityinPulauTekakBesar,TasikKenyir.J.Trop.
Agric.FoodSci.,41:95-108.
12. Baiyeri,K.P.andB.N.Mbah,2006.Effectsofsoillessand
soil-based nursery media on seedling emergence, growth
andresponsetowaterstressof Africanbreadfruit(
Treculia
Africana
Decne).Afr.J.Biotechnol.,5:1405-1410.
5
AsianJ.CropSci.,10(1):1-9,2018
13. Bennie, A.T.P. and R. du T. Burger, 1988. Penetration
resistanceof fine sandyapedalsoilsasaffectedbyrelative
bulkdensity,watercontentandtexture.S.Afr.J.PlantSoil,
5:5-10.
14. Bowen, H.D., 1981. Alleviating Mechanical Impedance. In:
Modifying the Root Environment to Reduce Crop Stress,
Arkin, G.F. and H.M. Taylor (Eds.), American Society for
AgriculturalEngineers(ASAE),St.Joseph,MI.,pp:21-57.
15. Carr, M.K.V. and S.M. Dodds, 1983. Some effects of soil
compactiononrootgrowthandwateruse oflettuce.
Exp.Agric.,19:117-130.
16. Daddow,R.L.andG.E.Warrington,1983.Growth-limitingsoil
bulk densities as influenced by soil texture. Watershed
SystemsDevelopmentGroup,USDAForestService,USA.
17. Froehlich, H.A., 1979. Soil compaction from logging
equipment:Effectsongrowthofyoungponderosapine.
J.SoilWaterConserv.,34:276-278.
18. Glinski, J. and J. Lipiec, 1990. Soil Physical Conditions and
PlantRoots.CRCPress,BocaRaton,Florida.
19. Hayashi, Y., K.I. Kosugi and T. Mizuyama, 2009. Soil water
retention curves characterization of a natural forested
hillslope using a scaling technique based on a lognormal
pore-sizedistribution.SoilSci.Soc.Am.J.,73:55-64.
20. Henderson,C.,A.LevettandD.Lisle,1988.Theeffectsofsoil
watercontentandbulkdensityonthecompactibilityandsoil
penetration resistance of some Western Australian sandy
soils.SoilRes.,26:391-400.
21. Iovieno,P.,L.Morra,A.Leone,L.PaganoandA.Alfani,2009.
Effectoforganicandmineralfertilizersonsoilrespirationand
enzymeactivities of two Mediterranean horticulturalsoils.
Biol.Fertil.Soils,45:555-561.
22. Ishaq,M., M. Ibrahim,A.Hassan,M. SaeedandR.Lal,2001.
Subsoilcompactioneffects on cropsinPunjab,Pakistan: II.
Rootgrowthandnutrientuptakeofwheatandsorghum.
SoilTillageRes.,60:153-161.
23. Lull,H.W.,1959.SoilCompactiononForestandRange
Lands.ForestService,U.S.DepartmentofAgriculture,USA.,
Pages:33.
24. Ocanell,D.J., 1975. Themeasurement of apparent specific
gravityofsoilsandits r e l a tionshi p t o m echanic a l c o m p o s i t i o n
andplant rootgrowth.In:Soilphysical conditionandcrop
production.MAFFTechnol.Bull.,29:298-313.
25. Pabin,J.,J.Lipiec,S.W»odek,A.BiskupskiandA.Kaus,1998.
Criticalsoilbulkdensityandstrengthforpeaseedling
rootgrowthasrelatedtoothersoilfactors.SoilTillageRes.,
46:203-208.
26. Van Quang, P., P.E. Jansson and L. van Khoa, 2012. Soil
penetrationresistanceanditsdependenceonsoilmoisture
andageoftheraised-bedsintheMekongDelta,Vietnam.
Int.J.Eng.Res.Dev.,4:84-93.
27. Schuurman, J.J., 1965. Influence of soil density on root
developmentandgrowthofoats.PlantSoil,22:352-374.
28. Stelluti,M.,M.MaioranaandD.deGiorgio,1998.Multivariate
approachtoevaluatethepenetrometerresistanceindifferent
tillagesystems.SoilTillageRes.,46:145-151.
29. Taylor, H.M., G.M. Roberson and J.J. Parker, 1966. Soil
strength-root penetration relationsformedium-to
coarse-texturedsoilmaterials.SoilSci.,102:18-22.
30. Veihmeyer,F.J.andA.H.Hendrickson,1948.Soildensityand
rootpenetration.SoilSci.,65:487-494.
31. Wert, S. and B.R. Thomas, 1981. Effects of skid roads on
diameter,heightandvolumegrowthinDouglas-fir.SoilSci.
Soc.Am.J.,45:629-632.
32. Wilshire,H.G.,J.K.Nakata,S.ShipleyandK.Prestegaard,1978.
ImpactsofvehiclesonnaturalterrainatsevensitesintheSan
FranciscoBayarea.Environ.Geol.,2:295-319.
33. Mustapha, Z., N. Mat, R. Othman and A.J. Zakaria, 2017.
Growth of BRIS soil bacteria in organic material and
potassium nitrate. Proceedings of the 5th International
Conference on Chemical, Agricultural, Biological and
EnvironmentalSciences,April18-19,2017,Kyoto,Japan,
pp:6-11.
34. Mustapha, Z., N. Mat, R. Othman and A.J. Zakaria, 2017.
Quantification of BRIS soil bacteria at tembila, besut
terengganu.AGRIVITAJ.Agric.Sci.,39:252-256.
35. Aquatrols,2009.Understandingmediasurfactantsforusein
soillessmedia.http://s3.amazonaws.com/aquatrols/2009121
4131635.pdf
36. Chang,C.P.andS.M.Lin,2007.Theformationandgrowing
properties of poly (Ethylene terephthalate) fiber growing
mediaafterthermo-oxidativetreatment.Mater.Sci.Eng.:A,
457:127-131.
37. Corti,C., L. Crippa, P.L. Geneviniand M. Centemero, 1998.
Compost use in plant nurseries: Hydrological and
physicochemicalcharacteristics.CompostSci.Util.,6:35-45.
38. Dresboll,D.B.,2010.Effect of growing media composition,
compaction and periods of anoxia on the quality and
keepingqualityofpottedroses(
Rosa
sp.).Scient.Horticult.,
126:56-63.
39. Erstad,J.L.andH.R.Gislerod,1994.Wateruptakeofcuttings
andstempiecesasaffectedbydifferentanaerobicconditions
intherootingmedium.Scient.Horticult.,58:151-160.
40. Evans,M.R.andJ.K.Iles,1997.Growthof
Viburnumdentatum
and
Syringa
×
prestoniae
'DonaldWyman'in
Sphagnum
peatandcoirdust-basedsubstrates.J.Environ.Horticult.,
15:156-159.
41. Ingram,D.L.,2014.Understandingsoillessmediatestresults
and their implications on nursery and greenhouse crop
management:ReportNo. HO-112. Agricultureand Natural
Resources,UK.
42. Macz, O., E.T. Paparozzi and W.W. Stroup, 2001. Effect of
nitrogen and sulfur applications on pot chrysanthemum
productionandpostharvestperformance.I.Leafnitrogenand
sulfurconcentrations.J.PlantNutr.,24:111-129.
6
AsianJ.CropSci.,10(1):1-9,2018
43. MohdAziz,R.,Z.AbdJamil,S.A.H.Armizatul,I.M.Noh,H.Hafiz
andA.R.Norahshekin,2011.Effectsofrootzonecoolingusing
waterchillingsystemonplantphysiologicalresponsesand
fruit yield of tomato var. Baccarat under greenhouse
condition.Proc.Trans.MalaysianSoc.PlantPhysiol.,Vol.19.
44. Raviv, M. and H. Lieth, 2008. Soilless Sulture: Theory and
Practice.ElsevierScience,USA.
45. Sabahy, A., A. Bahnasawy, S. Ali and Z. El-Haddad, 2014.
Physical and chemical properties of some soilless media.
https://pdfs.semanticscholar.org/ea15/d9776c35ef8e1da8
09e9320dfeac4949427c.pdf
46. Sahin,U.,O.AnapaliandS.Ercisli,2002.Physico-chemicaland
physicalpropertiesofsomesubstratesusedinhorticulture.
DieGartenbauwissenschaft,67:55-60.
47. Sahin,U., S. Ors, S. Ercisli, O. Anapaliand A. Esitken, 2005.
Effectofpumiceamendmentonphysicalsoilpropertiesand
strawberryplantgrowth.J.CentralEur.Agric.,6:361-366.
48. Wilson, S.B., P.J. Stoffella and D.A. Graetz, 2001. Use of
compostasamediaamendmentforcontainerized
productionoftwosubtropicalperennials.J.Environ.Hortic.,
19:37-42.
49. Abad,M.,P.Noguera,R.Puchades,A.Maquieiraand
V. Noguera, 2002. Physico-chemical and chemical
properties of some coconut coir dusts for use as a peat
substitute for containerised ornamental plants. Bioresour.
Technol.,82:241-245.
50. Henry,D.,1982.Palmseedgerminationstudy.Proc.Florida
StateHortic.Soc.,95:256-257.
51. Bruckner,U., 1997. Physicalproperties of differentpotting
media and substrate mixtures-especially air-and water
capacity.ActaHort.,450:263-270.
52. Caron, J. and V.N. Nkongolo, 1999. Aeration in growing
media:Recentdevelopments.ActaHort.,481:545-552.
53. Chaves, M.M. and M.M. Oliveira, 2004. Mechanisms
underlying plantresilience to water deficits: Prospects for
water-savingagriculture.J.Exp.Bot.,55:2365-2384.
54. Evans, M.R., S. Konduru and R.H. Stamps, 1996. Source
variationinphysicalandchemicalpropertiesofcoconutcoir
dust.HortScience,31:965-967.
55. Handreck, K. and N. Black, 2002. Growing Media for
OrnamentalPlantsandTurf.UniversityofNewSouthWales
Press,Sydney,Australia.
56. Holman,J.,B.Bugbee and J.Chard,2005.Acomparisonof
coconut coir and sphagnum peat as soil-less media
componentsforplantgrowth:Report.Hydroponics/Soilless
Media,USA.
57. Ma, Y.B. and D.G. Nichols, 2004. Phytotoxicity and
detoxificationoffreshcoirdustandcoconutshell.Commun.
SoilSci.PlantAnal.,35:205-218.
58. Meerow,A.W.,1994.Growthoftwosubtropicalornamentals
using coir (coconut mesocarp pith) as a peat substitute.
Hortic.Sci.,29:1484-1486.
59. Radjagukguk,B.andO.Soeseno,1984.Acomparativestudy
of peats and other media for containerized forest tree
seedlings.ActaHortic.,150:449-458.
60. Shanmugasundaram,R.,T.Jeyalakshmi,S.S.Mohan,
M.Saravanan,A.GoparajuandB.Murthy,2014.Cocopeat-An
alternativeartificialsoilingredientfortheearthwormtoxicity
testing.J.Toxicol.Environ.HealthSci.,6:5-12.
61. Wira,A.B.,Z.AbdJamilandS.A.H.Armizatul,2011.Effectof
K-fertigationlevelsontomatosap and plant performance.
Trans.Malay.Soc.PlantPhysiol.,19:21-24.
62. Wira, A.B., I.M. Razi and Z.A. Jamil, 2011. Composts as
additivesincoconutcoirdustcultureforgrowingrockmelon
(
Cucumismelo
L.).J.Trop.Agric.FoodSci.,39:229-237.
63. Awang, Y., A.S. Shaharom, R.B. Mohamad and A. Selamat,
2009.Chemicalandphysicalcharacteristicsof
cocopeat-based media mixtures and their effects on the
growthanddevelopment of
Celosiacristata
.Am.J.Agric.
Biol.Sci.,4:63-71.
64. Yahya, A., H. Safie and S. Kahar, 1997. Properties of
cocopeat-based growing media and their effects on two
annualornamentals.J.Trop.Agric.FoodSci.,25:151-157.
65. Yahya, A., H. Safie and M.S. Mokhlas, 1999. Growth and
flowering responses of potted chrysanthemums in a coir
dust-basedmedium todifferentratesofcontrolled-release
fertilizer.J.Trop.Agric.FoodSci.,27:39-46.
66. Baldock,J.A.andR.J.Smernik, 2002. Chemicalcomposition
andbioavailability ofthermallyaltered
Pinusresinosa
(Red
pine)wood.Org.Geochem.,33:1093-1109.
67. Bengtsson, G., P. Bengtson and K.F. Mansson, 2003. Gross
nitrogen mineralization-, immobilization- and nitrification
ratesasafunctionofsoilC/Nratioandmicrobialactivity.
SoilBiol.Biochem.,35:143-154.
68. Denevan, W.M., 1996. A bluff modelofriverine
settlementinprehistoricAmazonia.Ann.Assoc.Am.Geogr.,
86:654-681.
69. Eckmeier,E.,M.Rosch,O.Ehrmann,M.W.Schmidt,W.Schier
andR.Gerlach,2007.Conversionofbiomasstocharcoaland
thecarbonmassbalancefromaslash-and-burnexperiment
inatemperatedeciduousforest.Holocene,17:539-542.
70. Karmakar,S.,B.N.MitraandB.C.Gosh,2009.Influence
of industrial solid waste on soil-plant interaction in rice
underacid Lateriticsoils.Proceedingsofthe World ofCoal
Ash(WOCA)Conference,May4-7,2009,Lexington,USA.,
pp:1-13.
71. Lehmann,J.,J.P.daSilva,Jr.,C.Steiner,T.Nehls,W.Zechand
B. Glaser, 2003. Nutrient availability and leaching in an
archaeologicalanthrosolandaferralsolofthecentralamazon
basin: Fertilizer, manure and charcoal amendments. Plant
Soil,249:343-357.
72. Mahvi,A.H.,N.AlaviandA.Maleki,2005.Applicationofrice
huskanditsashincadmiumremovalfromaqueoussolution.
Pak.J.Biol.Sci.,8:721-725.
7
AsianJ.CropSci.,10(1):1-9,2018
73. Masulili,A.,W.H.UtomoandM.S.Syechfani,2010.Ricehusk
biochar for rice based cropping system in acid soil 1. The
characteristicsofricehuskbiocharanditsinfluenceonthe
propertiesofacidsulfatesoilsandricegrowthinWest
Kalimantan,Indonesia.J.Agric.Sci.,2:39-47.
74. Muntohar,A.S.,2004.Utilizationofuncontrolledburnt
ricehuskashinsoilimprovement.CivilEng.Dimension,
4:100-105.
75. Steiner,C.,W.G.Teixeira,J.Lehmann,T.Nehls,
J.L.V.deMacedo,W.E.H.BlumandW.Zech,2007.
Long term effects of manure, charcoal and mineral
fertilization on crop production and fertility on a highly
weatheredCentralAmazonianuplandsoil.PlantSoil,
291:275-290.
76. Theeba,M.,R.T.Bachmann,Z.I.Illani,M.Zulkefli,M.H.A.Husni
and A.W. Samsuri, 2012. Characterization of local mill rice
husk charcoal and its effect oncompostproperties.
Malay.J.SoilSci.,16:89-102.
77. Alexander,P.D.,N.C.Bragg,R.Meade,G.Padelopoulos
and O. Watts, 2008. Peat in horticulture and
conservation:TheUKresponsetoachangingworld.Mires
Peat,3:1-10.
78. Boelter,D.H.,1968.Importantphysicalpropertiesof
peat materials. U.S. Department of Agriculture, USA.
https://www.nrs.fs.fed.us/pubs/jrnl/1968/nc1968boelter
001.pdf
79. CSPMA.,2015.Industrialsocialresponsibilityreport.Canadian
SphagnumPeatMossAssociation,Canada.
80. Chalker-Scott,L.,2015. The myth ofpermanent peatlands.
WashingtonStateUniversity,Washington,USA.
81. Whyman,S.,K.SladeandK.Childerhouse,2009.Catalogueof
sphagnum peat mosses in amgueddfa cymru-national
museum wales. https://museum.wales/media/14447/Sp
hagnum-Catalogue-Analysis.pdf
82. Joosten,J.H.J.,1995.Thegoldenflow:Thechanging
worldofinternationalpeattrade.Regionalvariation
andconservationofmireecosystems.Gunneria,
70:269-292.
83. Robbins,J.A.andM.R.Evans,1914.Greenhouseandnursery
series: Growing media for container production in a
greenhouse or nursery. Part I-components and mixes.
Agriculture and Natural Resources. https://www.uaex.
edu/publications/PDF/FSA-6097.pdf
84. Rydin, H. and J. Jeglum, 2006. The Biology of Peatlands.
OxfordUniversityPress,England.
85. Schmilewski,G.,2008.Theroleofpeatinassuringthequality
ofgrowingmedia.MiresPeat,3:1-8.
86. Ang,L.H.,1994.Problemsandprospectsofafforestation
onsandytintailingsinPeninsularMalaysia.J.Trop.For.Sci.,
1:87-105.
87. Barker,D.G.,T.Pfaff,D.Moreau,E.GrovesandS.Ruffel
etal
.,
2006. Growing
M. truncatula
: Choice of Substrates and
GrowthConditions.In:The
Medicagotrunca
-TulaHandbook.
Mathesius,U., E.P.JournetandL.W.Sumner (Eds.).,Samuel
RobertsNobleFoundation,Ardmore,OK.
88. Caron, J.A., L.M.B. Rivie!re and G.B. Guillemain, 2005. Gas
diffusion and air-filled porosity: Effect of some oversize
fragmentsingrowingmedia.Can.J.SoilSci.,85:57-65.
89. Gaur,A.andA.Adholeya,2000.Effectsoftheparticlesizeof
soil-lesssubstratesuponAMfungusinoculumproduction.
Mycorrhiza,10:43-48.
90. Havis,J.R.andW.W.Hamilton,1981.Physical
properties of container media. Ornamentals Northwest
Arch.,5:7-8.
91. Indriyani, N.L.P., S. Hadiati and A. Soemargono, 2011. The
effect of planting medium on the growth of Pineapple
seedling.J.Agric.Biol.Sci.,6:43-48.
92. Spomer,L.A.,W.L.BerryandT.W.Tibbitts,1997.PlantCulture
in Solid Media. In: Plant Growth Chamber Handbook,
Langhans,R.W.andT.W.Tibbitts(Eds.).,Chapter7.IowaState
University,Ames,IA.,pp:105-118.
93. Zhao,Y.G.,G.L.Zhang,Z.Wen-JunandZ.T.Gong,2005.Soil
characteristicsand cropsuitabilityofsandysoilsinHainan,
China.Proceedings ofthe Managementof TropicalSandy
Soils for Sustainable Agriculture: A Holistic Approach for
Sustainable Development of Problem Soils in the Tropics,
November27-December2,2005,KhonKaen,Thailand,
pp:49-53.
94. Atiyeh, R.M.,C.A.Edwards,S. Subler and J.D. Metzger,
2000.Earthworm-processedorganicwastesas
components of horticultural potting media for growing
marigoldandvegetableseedlings.CompostSci.Utilization,
8:215-223.
95. Chesterman,C.W.,1975.IndustrialRocksandMinerals.
4thEdn.,PortCityPress,USA.
96. Ercisli,S.,U.Sahin,A.EsitkenandO.Anapali,2005.Effectsof
some growing media on the growth of strawberry cvs.
'Camarosa'and'Fern'.ActaAgrobot.,58:185-181.
97. Grillas,S.,M.Lucas,E.Bardopoulou,S.Sarafopoulosand
M. Voulgari, 2001. Perlite based soilless culture systems:
Currentcommercialapplicationsandprospects.ActaHortic.,
548:105-114.
98. Guler,H.G.,C.OlympiosandD.Gerasopoulos,1995.
The effect of the substrate on the fruit quality of
hydroponicallygrownmelons(
Cucumis melo
, L). Acta
Hortic.,379:261-266.
99. Hochmuth, G.J. and R.C. Hochmuth, 2016. Keys to
successful tomato and cucumber production in perlite
media.UniversityofFlorida,InstituteofFoodandAgricultural
Science,USA.
8
AsianJ.CropSci.,10(1):1-9,2018
100. Jensen,M.H.,2002.Controlledenvironmentagriculturein
deserts, tropics and temperate regions: A world review.
ActaHortic.,578:19-25.
101. Landis,T.D.,D.F.Jacobs,K.M.WilkinsonandT.Luna,2014.
Growing Media. In: Tropical Nursery Manual: A Guide to
StartingandOperatingaNurseryforNativeandTraditional
Plants,Wilkinson,K.M., T.D. Landis, D.L.Haase,B.F. Daley
andR.KDumroese(Eds.).,U.S.DepartmentofAgriculture,
ForestService,USA.
102. Li,R.G.,J.Q.Zhu,W.B.Zhou,X.M.ChengandY.Y.Li,2015.
The Adsorption Performance of Sodium Nitrate for
Vermiculite,PerliteandCeramsite.In:MaterialScienceand
EnvironmentalEngineering:Proceedingsofthe3rdAnnual
2015 International Conference on Material Science and
EnvironmentalEngineering(ICMSEE2015, Wuhan, Hubei,
China,5-6June2015),Chen,P.(Ed.).,CRCPress,China,
pp:159-162.
103. Matkin,O.A.,2005.ComparativegrowthstudiesPerlitevs.
Polystyrene media. The Perlite Institute Incorporation,
California,USA.
104. Ors, S. and O. Anapali, 2010. Effect of soil additionon
physicalpropertiesofperlitebasedmediaand
strawberrycv.Camarosaplantgrowth.Scient.Res.Essays,
5:3430-3433.
105. Shaw, N.L., D.J. Cantliffe, J. Funes and C. Shine III, 2004.
Successful beit alpha cucumber production in the
greenhouseusingpinebarkasanalternativesoillessmedia.
HortTechnology,14:289-294.
106. Arenas,M.,C.S.Vavrina,J.A.Cornell,E.A.Hanlonand
G.J. Hochmuth, 2002. Coir as an alternative to peat in
mediafortomatotransplantproduction.HortScience,
37:309-312.
107. Headlee,W.L.,C.E.BrewerandR.B.Hall,2014.Biocharasa
substituteforvermiculiteinpottingmixforhybridpoplar.
BioenergyRes.,7:120-131.
108. Resh,H.M.,2012.HydroponicFoodProduction:ADefinitive
Guidebook for the Advanced Home Gardener and the
CommercialHydroponicGrower.7thEdn.,CRCPress,USA.,
ISBN:9781439878675,Pages:560.
9
... Although the pollutant removal capabilities of traditional natural media are well-documented, there is limited research on the newer lightweight materials. Various lightweight media such as Coco coir, Fyto-foam, Growstone, expanded clay, vermiculite, perlite, river sand, LECA (lightweight expanded clay aggregate)-coconut fibers, LECA-sand, and biochar have been utilized in living walls for wastewater treatment (Dalahmeh et al., 2018;Farhan et al., 2018;Lakho et al., 2021;Masi et al., 2016;Prodanovic et al., 2017). The selection of materials was based on criteria such as local availability, weight, sustainability, water distribution, nutrient and water-retention capacity, porosity, and ability to support plant growth (Prodanovic et al., 2017). ...
Chapter
Nature-Based Solutions for Urban Sustainability provides comprehensive insights on existing technologies and up-to-date advances in the field of water, wastewater and waste treatment using nature-based approaches and systems. This book highlights: Process fundamentals of nature-based solutions, including hydrodynamics, media, bacteria/media interactions and phytoremediation for pollution control, resource recovery and energy generation.Critical insights on the status, major challenges and modern engineering solutions in nature-based solutions for the treatment of rainwater, storm water, wastewater and solid waste.Advanced methods for valorisation using nature-based solutions through integration with other technologies, such as composting, anaerobic digestion and bioelectrochemical systems.Up-to-date information on modern approaches for deriving value-added operation, by combining nature-based solutions with agricultural practices such as fish farming or protein production.Case studies of nature-based solutions from countries in transition including Thailand, Vietnam, Indonesia and Philippines. This reference textbook is recommended reading for both undergraduate and graduate students pursuing degrees in environmental sciences, technologies, or engineering. It is equally useful for a broader audience including researchers, engineers, and policy makers interested in the field of nature-based solutions for urban sustainability. It is also tailored to be used as an advanced manual for practitioners and consultancies working in the field of diffuse pollution and climate change mitigation. ISBN: 9781789065008 (paperback) ISBN: 9781789065015 (eBook) ISBN: 9781789065022 (ePub)
... The non-circulating system allows an entire crop to be grown with only one stock solution of nutrient medium 2 . The preference of soilless medium to soil medium in several countries' greenhouses is due to soil impurity, uneasiness in pH control, the electrical conductivity of soil, reduced nutrient presence in soil, delayed growth and crop ripening and limited crop yield, amongst others 4 . Telfairia occidentalis Hooker fil. is a perennial angiosperm plant with enormous economic significance in Nigeria. ...
Article
Full-text available
Background and Objective: The plant, Telfairia occidentalis Hooker fil. contains the varying composition of phytochemicals and has been grown mostly in geoponic media. The study aimed at evaluating the anti-nutrient composition of T. occidentalis leaf grown in different urea hydroponic solutions. Materials and Methods: The Urea solutions varied in the number of Urea granules (25, 50, 75, 100, 125 and 150 g, respectively) dissolved in water containing micronutrients and designated as M 25 U, M 50 U, M 75 U, M 100 U, M 125 U, M 150 U and control. The hydrogen cyanide, oxalate, phytate, tannin, saponin, trypsin-inhibitor, alkaloid and flavonoids contents of T. occidentalis were determined 5 weeks after planting (WAP) following standard procedures. Results: The study showed that the proportion of phytochemicals in T. occidentalis ranged thus: Phytate (4.07-16.88%), tannin (0.80-1.96%), oxalate (3.61-8.80%), trypsin-inhibitor (1.12-2.73%), saponin (6.12-8.58%) and hydrogen cyanide (0.014-0.020 ppm). Higher values of phytochemicals in the leaves were recorded at M 25 U medium (for tannin, oxalate and trypsin-inhibitor), M 100 U treatment (for phytate) and M 125 U treatment (for saponin). The group of alkaloids ranged thus: Purine (0.225-0.988 g/100 g), colchicine (0.185-0.220 g/100 g), quinoline (0.313-0.801 g/100 g), tropane (0.217-0.295 g/100 g), vinca (0.025-0.084 g/100 g), indole/benzopyrrole (0.258-0.413 g/100 g), isoquinoline (0.468-1.054 g/100 g), pyridine (1.436-9.262 g/100 g), imidazole (0.099-0.212 g/100 g), piperidine (0.919-2.350 g/100 g), acridine (0.009-0.017 g/100 g) and β-phenylethylamine (0.198-0.257 g/100 g). Among the growth media, the highest total flavonoids (45.35 g/100 g) of the leaves were recorded at the M 50 U medium while the lowest (21.343 g/100 g) was obtained at the M 150 U medium. The abundant flavonoid was luteolin (7.232 g/100 g) at the M 75 U medium, followed by eriodictyol (5.746 g/100 g) at the M 25 U medium. Conclusion: The growth media with lower urea content (M 25 U growth media) had higher tannin, oxalate, saponin, trypsin-inhibitor and T. occidentalis.
... Soilless media must resemble soil characteristics: facilitate adequate oxygen, water, and nutrients and support plant roots. Examples of soilless media include water, gravel, sand, expanded clay, rock wool, peat moss, coco coir, vermiculite, perlite, foam, and polyester matting (Farhan et al., 2017;Maucieri et al., 2019;Pandey et al., 2009;Resh, 2013) The choice of a media depends on the media characteristics, availability, cost, quality, and plant-growing technique types (Bray, 2018). Among these factors, media characteristics significantly influence optimal plant growth. ...
Article
Full-text available
Recently, there has been a surge of interest in sustainable agriculture to address the impact of urban paradigm shifts on food demand and supply. Vertical Farming (VF) has attracted considerable attention, both scholarly and economically, as a way forward to improve food security in urban areas. Previous studies have documented and reviewed the benefits of VF against traditional agriculture. However, most research papers have only focused on case studies from temperate climate regions. There is a surprising paucity of empirical research in urban farming specifically related to VF in tropical countries. This study set out to examine the new emerging agricultural innovation—VF—in various building typologies the growing system and explores the feasibility in Malaysian high-rise buildings. The findings also revealed several successful outcomes of ongoing urban farming projects in Malaysia, Singapore and Thailand, which can significantly contribute to the planning and development of VF in a tropical climate. As a result, critical assessment criteria were identified for the successful development of the VF system in urban areas. This study implies significant opportunities for Malaysia to implement VF in local high-rise buildings.
... Vermiculite, with low air-filled porosity (b10%), has poor aeration and restricted drainage, whereas perlite, expanded clay, and grow stone have high air-filled porosity (~30%) but low cation exchange capacity. In the case of cococoir and rockwool, the air-filled porosity is intermediate (13%) and the cation exchange capacity is ≤0.5 meqv/g (Prodanovic et al., 2017;Farhan et al., 2018). Column experiments using greywater were performed for two months without plants. ...
Article
Living walls and green roofs offer numerous benefits to densely populated urban areas such as cooling, air filtering and improved aesthetics. However, plants in these two systems are high water consumers making such systems particularly unsuitable for water-scarce arid environments most at need of passive cooling and urban greening. Integrated greywater treatment in these structures provides a possible solution, providing plants not only with water but other required nutrients and organics. However, greywater treatment by living wall and green roof systems is still lacking. This review summarizes the few studies exploring this new integrated technology and provides an in-depth analysis of existing literature on vegetated building structures and greywater treatment to reveal benefits and potential pitfalls of this technology. Appropriate selection of plants and media are essential to successful system design and must meet competing demands compared to those used in existing vegetated building structures for cooling/greening and constructed wetlands for greywater treatment. A variety of operational and user-interaction issues are also explored and will be key areas of future research to enable full-scale implementation. Integrated greywater treatment using green building vegetated structures appears a promising method for dual purpose water recycling and urban cooling, and various future research needs are emphasized to realize this.
Article
Full-text available
Soilless cultivation currently competes with open-field production. Although the substrate used is generally perlite, there is interest in looking for new materials that can help growers produce healthy plants with sustainable practices. Among these new materials, biochar could be an alternative, as it has numerous benefits for substrate health, water retention, carbon sequestration, and nutrient supply. Thus, the objective of this work was to evaluate the effects of almond shell biochar (ASB) addition to perlite on the physicochemical properties of this substrate and its influence on the agronomic characteristics of arugula (Eruca sativa) cultivation. Two variables were included: (a) percentage of ASB added (0, 5, 10, and 15% w/w ASB/perlite) and (b) compost tea for irrigation (0 and 5 g/L of water). In addition, correlations were proposed to describe the dependence of the agronomic variables on the percentage of ASB added and the type of irrigation solution used. The results demonstrated that adding 10% of ASB and irrigating with water improved the characteristics of arugula plants compared with controls, while compost tea did not influence the agronomic parameters evaluated. The models proposed showed that the agronomic variables depend on the percentage of biochar added and compost tea (R² ≥ 0.90). The interaction between both variables was negative. ASB addition improved soilless arugula cultivation, compared to the use of perlite alone. Moreover, the use of almond shell as a raw material in the pyrolysis process to obtain biochar reduces the environmental impact, tending to the circular economy concept. Graphical Abstract
Article
Soilless culture is emerging as a popular tool to grow agricultural and horticultural crops in open systems, closed systems, protected cultivation, vertical farming, and soil affected or stress-affected areas. The climatic factors and biometabolism are integrated in stimulating quality phenological growth and biochemical and physiological processes in soilless crop production. Soilless crop production (SCP) has immense potential to build a soilless green revolution and for sustaining crop production. Information on substrate and water based culture collected for the period from 1996 to 2022 is reviewed and analyzed in this work. The performance of crops in soilless culture improves morphological and physiological parameters compared with soil based cultivation. The distinct environmental factors positively influence soilless culture to exhibit cellular processes, biological processes, molecular processes, and the ecosystem in the crop. The impacts of ecological factors are more efficient in closed systems compared with open systems. The salient features of metabolites and biometabolism in substrate based media were identified with transcriptome analysis and found to be different compared with soil based cultivation. Developing simple nutrient formulations suited for soilless culture is essential to popularize this technology among marginal farmers.
Article
This work evaluated the potential of Catharanthus roseus in phytoremediation of As, Ba, Cd, Cu, Cr, Ni, Pb, Se and Zn in sewage sludge-based substrates. C. roseus was cultivated for 108 days in a treatment containing sewage sludge:vermiculite (70:30%) and in the control with 100% commercial substrate. The plants cultivated in sludge showed approximately four times greater height, number of leaves and stem diameter, as well as 89% higher fresh mass than those of the control. The highest concentrations of the metals were obtained in the roots of plants grown in the sludge, and ranged from 2.04 (Cd) to 1121 mg kg⁻¹ (Zn). Cu, Cd and Zn had a higher bioconcentration factor than 1 in both treatments. On the other hand, the translocation factor value in the control was greater than 1 for Ba, Cd, Cu, Ni, Se and Zn. The results showed that C. roseus was efficient in the phytoremediation of the evaluated metals, in which the translocation process was progressive in the treatment that presented higher metal content.
Book
This book is a specialized monograph on soil physical conditions and root-system relations. It attempts to explain the importance of physical properties of soil by showing how they affect root growth and functions; and on the other hand, how roots themselves change their environment. Emphasis is placed on the interactive effects of soil physical factors. An attempt has been made to analyze the possibilities of the root systems modification by both soil and plant management. The book is addressed to research workers and advanced students in soil and plant sciences and may also be of interest to agronomists and related specialists.
Article
A study was conducted to collect, classify and analyze a large number of compost samples to establish a database for determining the relative quality of different types of composts and their potential use based on their hydrological and physicochemical characteristics. Special attention was devoted to the use of compost for flower growing, which extended the analysis to include substrates, such as peats and organic substrates for pot coltures. Some 64 samples of various composts were collected directly from production plants in northern Italy. Depending on the starting raw materials, compost samples were grouped in six categories: sludge compost; animal manure compost; slaughterhouse waste compost; source separated MSW compost; raw MSW compost and yard waste compost. At the same time, 52 samples chosen from among peats and organic substrates, for professional growers and amateur gardeners, were obtained or bought from greenhouses, garden centres and shops. Hydrological and physicochemical properties of the 116 samples (composts, peats and substrates) were determined including: easily available water (EAW), water buffering capacity, (WBC), air capacity, total porosity, bulk density, real density, pH, specific electrical conductivity, cation exchange capacity, organic carbon and ash
Article
We germinated and grew tomato, pepper, lettuce, and marigold seedlings in a standard commercial soilless plant growth medium (Metro-Mix 360), and in coir/perlite and peat/perlite-based container media substituted with 10% or 20%, by volume, of vermicompost derived from pig manure or food wastes. Half of the treatments were watered with liquid inorganic fertilizer while the other half received only water. Germination rates of tomato, pepper, lettuce, and marigold seeds in the coir/perlite mixture did not differ significantly from that in Metro-Mix 360. However, the germination rate of tomato, pepper and lettuce seedlings was very low in the peat/perlite mixture. Substituting some of the peat/perlite mixtures with equal amounts of vermicomposts, particularly pig manure vermicompost, enhanced germination rates greatly, making it comparable to that in the commercial medium (Metro-Mix 360). Pepper, lettuce, and marigold seedlings grown in Metro-Mix 360, which already contains a starter nutrient fertilizer in its formulation, had greater root and shoot dry weights than those grown in the control media (coir/perlite mix and peat/perlite mix). Substituting coir/perlite and peat/perlite mixtures with 10% or 20% of either vermicompost enhanced the growth of seedlings significantly, resulting in an overall plant growth as good as and sometimes better than that in Metro-Mix 360. When the plants were provided daily with a complete fertilizer solution, marigold seedlings in peat-based substrate with 20% pig waste vermicompost, and lettuce seedlings in both coir and peat-based substrates, mixed with 20% food wastes vermicompost, produced greater shoot dry weights than those grown in the commercial potting medium. The growth enhancements tended to be greater in peat/perlite-based mixes than in coir/perlite-based mixes, more so with the addition of pig manure vermicompost than with food waste vermicompost. Earthworm-processed pig manure and food wastes would be suitable materials for inclusion into the formulation of soilless potting media, since substitution of these media with relatively low concentrations of vermicomposts can promote plant growth.