Content uploaded by Cornelia Betsch
Author content
All content in this area was uploaded by Cornelia Betsch on Jan 23, 2018
Content may be subject to copyright.
Polarization of the Vaccination
Debate on Facebook
!
Ana!Lucía!Schmidt1,!Fabiana!Zollo2,!Antonio!Scala3!,Cornelia!Betsch3,!Walter!Quattrociocchi2!
1IMT!Alti!Studi!Lucca!
2Ca'!Foscari!University!of!Venice!
3ISC-CNR,!Rome!Italy!
4University!of!Erfurt!
Abstract(
Background+
Vaccine! hesitancy! has! been! recognized! as! a! major! global! health! threat.! Having! access! to! any! type! of!
information! in! social! media! has!been!suggested!as!a!potential!powerful!influence!factor! to! hesitancy.! Recent!
studies! in! other! fields! than! vaccin ation! show! that! access! to! a! wide! amount! of! content! through! the! Internet!
without! intermediaries! resolved!into! major! segregation! of! the! users! in! polarized! groups.! Users! select! the!
information!adhering!to!theirs!system!of!beliefs!and!tend!to!ignore!dissenting!information.!!
Objectives+
In!this!paper!we!assess!whether!there!is!polarization!in!Social!Media!use!in!the!field!of!vaccination.!!!
Methods+
We!perform!a!thorough!quantitative!analysis!on!Facebook!analyzing!2.6M!users!interacting!with!298.018!posts!
over! a! time! span! of! seven! years! and! 5! months.! We! used! community! detection! algorithms!to! automatically!
detect!the!emergent!communities!from! the! users’! activity!and!to!quantify!the! cohesiveness! over! time! of!the!
communities.!
Results+
Our!findings!show!that!content!consumption!about!vaccines!is!dominated!by!the!echo-chamber!effect!and!that!
polarization!increased!over!years.!Communities!emerge!from!the!users’!consumption!habits,!i.e.!the!majority!of!
users!only!consumes!information!in!favor!or!against!vaccines,!not!both.!!
Conclusion+
The!existence!of!echo-chambers!may!explain!why!social-media!campaigns!providing!accurate!information!may!
have!limited!reach,!may!be!effective!only!in!sub-groups!and!might!even!foment!further!polarization!of!opinions.!
The! introduction! of! dissenting! information! into! a! sub-group! is! disregarded! and! can! have! a! backfire! effect,!
further!reinforcing!the!existing!opinions!within!the!sub-group.!
Keywords+
Social!media,!vaccine!hesitancy,!network!analysis,!computational!social!science,!misinformation!
!
Introduction(
Undeterred!by!the!scientific!consensus! that! vaccines! are! safe! and! effective,! unsubstantiated!claims!doubting!
their!safety!still! occur! to! this!day.!Perhaps!the!most! famous!case!is!the! multiple!times!disproved! [1,2,3]!myth!
that! the! MMR! vaccine! causes! au tism.!However,! outbreaks! and! deaths!resulting! from! objections! to! vaccines!
continue!to!happen![4,5],!with!the! anti-vaccination!movement!gaining!media!attention!as!a!result.!Mandatory!
vaccination!policies!only!seem!to!foment!the!controversy![6].!
Since! 2013,! the! World! Economic! Forum! lists! massive! digital! misinformation! among!the! main! threats! to! our!
societies![7].!Recent!studies!outline!that!misinformation!spreading!is!a!consequence!of!the!shift!of!paradigm!in!
the! consumption! of! content! induced! by! the!advent! of! social!media.! Social! media! platforms!like! Facebook!or!
Twitter!have!created! a! direct!path!for!users!to! produce! and! consume! content,!reshaping!the!way!people!get!
informed![8-13].!
Like! for! other! misinformation! campaigns,! Facebook!provides! an! ideal! medium! for! the!diffusion! of! anti-
vaccination! ideas.!Users! can! access! a! wide! amount! of! information! and! narratives! and! selection! criteria! are!
biased! toward! personal! viewpoints! [14,15,16].! Online! users! select! information! adhering! to! their! system! of!
beliefs!and!tend!to!ignore!dissenting!information!and!to!join!polarized!groups!that!cooperated!to!reinforce!and!
frame! a! shared! narrative! [17,18,19].! The! interaction! with! content! dissenting! the! shared! narrative! is! mainly!
ignored!or!might!even!foment!segregation!of!users,!heated!debating!and!thus!bursting!polarization!of!opinions!
[20].!Such!a!scenario!is!not!limited!just!to!conspiracy!theories,!but!it!is!related!to!all!issues!that!are!perceived!as!
critical! by! the! users! such! as! geopolitics! and! health! [21].! This! effect! allows! for! the! emergence! of! polarized!
groups![12],!i.e.!clusters!of!users!with!opposing!views!that!rarely!interact!with!one!another.!!
In! this! paper!we! use! quantitative! analysis! to! understand! the! evolution! of! the! debate! about!vaccines! on!
Facebook,!taking!into! account!two!opposing!views:!anti-vaccines!and!pro-vaccines.!Considering!the!liking!and!
commenting! behavior! of! 2.6M!users! we! study! the! evolution! of! the! two! communities! over! time,! taking!into!
account!the! number! of! users,!the!number! of! pages,! and! the! cohesiveness! of! the! communities.!The! analyses!
confirm! the! existence! of! two! polarized! com munities.!Additionally,! we! find! evidence! that! selective! exposure!
plays!an!pivotal!role!in!the!way!users!consume! content!online.!The!two!communities!display!different!rates!at!
which! the! variety! of! news! sources!consu med! diminishes!for! increasing! levels! of! u ser! activity,! with! the! anti-
vaccines!community!being!more!engaged.!!
Data(Description(
Ethics(Statement(
The!data!collection!process!was!carried!out!using!the!Facebook!Graph!API![22],!which!is!publicly!available.!The!
pages!from! which! we! downloaded!data! are! public! Facebook! entities! and! can! be! accessed! by! anyone.!Users'!
content!contributing! to! such! pages! is!also!public! unless! users'! privacy! settings!specify!otherwise,!and!in!that!
case!their!activity!is!not!available!to!us.!
Data(Collection(
The!dataset!was!generated!through!requests!to!Facebook!for!pages!containing!the!keywords!!"##$%&,!!"##$%&'!
or!!"##$%"($)%!in!their!name!or!description.!We!then!filtered!the!raw!Facebook!data!in!order!to!include!only!the!
ones!relevant!for!the!study.!Inclusion!criteria!were!language!(English),!a!minimum!level!of!activity!(at!least!10!
posts),!date!of!the!posts!(between!1st!January!2010!to!31st!May!2017),!and!relation!of!the!page!to!vaccination.!
This!last!step!was!essential,!as!having!one!of!the!keywords!in!the!description!does!not!necessarily!mean! the!
page's!topic!is!about!vaccines.!Some!examples!of!those!false!positive!search!results!are!the!pages!*+&,-"##$%&'!
(an!UK!music!band),!and!./(+0/,12!"##$%&!(a!comedian).!
From!the!resulting!set!of! Facebook!pages!we!downloaded!all!posts!as!well!as!all!likes!and!comments!made!on!
those! posts.!Considering! the! content! of!the!posts!made! on! the! pages,! all! the! Facebook! pages! were! also!
manually!classified!by!two!raters!into!two!groups:!145!3/)4!"##$%&'!with!1,388,677!users!and!98!"%($4!"##$%&',
5$(+,1,277,170!users.!The!Cohen’s!kappa!inter-agreement!between!both!raters!is!0.966,!showing!nearly!perfect!
agreement.!
A!list!of!Facebook!pages!with!their!respective!community!label!and!a!breakdown!of!the!dataset!in!numbers!of!
posts,!likes,!likers,!comments,!commenters!and!users!can!be!found!in!the!Appendix.!
Preliminaries(and(Definitions(
The!likes!(or!comments)!given!by!users!to!the!posts!of!different!Facebook!pages!form!a!6$3"/($(&,%&(5)/7.!The!
6$3"/($(&,%&(5)/7!is! formed!by!a!set!of! users! and! a! set!of!pages!where! links! only! exist!between!a! user! and! a!
page!if!the!user!liked!(or!commented)!anything!on!that!page.!!
We!can!represent!the!bipartite!network!with!a!matrix!where!each!column!is!a!user!and!each!row!is!a!page,!and!
the!content!of!each!cell!equals!1!if!the!user!liked!at!least!one!post!of!that!page.!If!we!multiply!the!matrix!by!its!
transpose,!we!get!the!3/)8&#($)%,)9,(+&,6$3"/($(&,%&(5)/7.!This!new!matrix!will!have!a!row!and!column!for!each!
page,!and!the!content!of!each!cell!will!represent!the!number!of!common!users!between!the!2!pages!that!define!
that!cell,!that!is,!the!number!of!users!who!liked!any!post!on!both!pages.!The!same!method!can!also!be!applied!
considering!the!matrix!formed!by!the!users’!comments.!
For!illustration,!Figure!1!visualizes!a!simplified!example!of!a!bipartite!network!with!5!users!and!4!pages!and!the!
corresponding!projection.!
(
,
:$;0/&,<,=,>"?,@$3"/($(&,%&(5)/7,5$(+,A,0'&/',"%B,C,3";&'D,(+&,E$%7',6&(5&&%,(+&F,$%B$#"(&,(+"(,",0'&/,E$7&B,",3";&G,>6?,*+&,3/)8&#($)%,)9,
(+&,6$3"/($(&, %&(5)/7D,(+&,5&$;+(',)%,(+&, E$%7',6&(5&&%,(+&,3";&','+)5, (+&,%0F6&/,)9,0'&/',(+&H, +"!&,$%, #)FF)%G,>#?, *+&,#)FF0%$(H,
'(/0#(0/&,"',B&(&#(&B,5$(+,(+&,"E;)/$(+F,:"'(I/&&BHG,J)B&','+"/$%;,(+&,'"F&,#)E)/,6&E)%;,(),(+&,'"F&,#)FF0%$(HG,
Once! we! have! the! network! of! pages! linked! by! their! common! users! (Figure! 1b),! we! can! apply! different!
community!detection!algorithms!to!detect!group!of!pages!that!are!strongly!connected!(Figure!1c).!To!do!this!
we! apply! five! well! known! community! detection! algorithms:! FastGreedy1[23],! WalkTrap2[24],! MultiLevel3[25]!
and! LabelPropagation4[26].!Different! algorithms! are! used! as! they! allow! for! unsupervised! clustering,! i.e.,! no!
human!intervention,!and!they!each!have!different!approaches!to!detecting!of!communities!in!the!networks.!To!
compare!the! communities! detected! with! the! various!algorithms!we! use! standard! methods! that!compute!the!
similarity!between!different!community!partitions!by!considering!how!the!algorithms!assign!the!nodes!to!each!
community![27].!Due!to!its!speed!and!its!lack!of!parameters!in!need!of!tuning,!the!FastGreedy!algorithm!will!be!
the! main! reference! to! compare! against! the! partitions! resulting! from! the! application! of! other! community!
detection!algorithms.!
Results(and(Discussion(
Validation(of(the(Community(Partition(
In!order!to!validate!the!manual! partition! of! the! pages! into!two!communities! we!generated!the!projections!of!
the! bipartite! networks! considering! the! user! likes!and! the! user! comments.!We! then! applied!the! community!
detection!algorithms!to!extract!the!communities!of!pages!according!to!the!users'!behavior!and!compared!those!
to!the!expert-based!partitioning.!
Table! 2! shows! the! comparison! between! a! random! partition! of! the! pages,! the! manual! partition,! and! the!
FastGreedy! partition! against! those! resulting! from! the! different! algorithms.!We! can! see! that! the! manual!
classification!matches!well! against! the!unsupervised! approaches!and! that! the! FastGreedy! results! have! a! high!
agreement! with! the! other! algorithms.!This! indicates! that! the! users'! behavior! generates! well! defined!
communities! of! pages! and! that! these! communities! are! similar! to! the! anti-vaccines! and! pro-vaccines! as!
manually!tagged.!
*"6E&,<,=,-"E$B"($)%,)9,(+&,#)FF0%$(H,3"/($($)%G,
Graph&
Communities&
FastGreedy&
WalkTrap&
MultiLevel&
LabelProp.&
Likes&
Random&
0.496!
0.497!
0.495!
0.497!
Manual&
0.774!
0.721!
0.738!
0.714!
FastGreedy&
1!
0.935!
0.950!
0.901!
Comments&
Random&
0.497!
0.499!
0.495!
0.496!
Manual&
0.590!
0.610!
0.567!
0.570!
FastGreedy&
1!
0.909!
0.876!
0.824!
Note:! We! compared! a! random! partition!of! the! pages! into! communities,! the! manual! classification,!and ! the!FastGreedy!
classification!against!the!community!partitions!detected!with!the!different!community!detection!algorithms.!The!values!of!
the!comparison!range!from!0!to!1,!where!1!is!an!exact!match!and!0!is!no!match.!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!It!optimizes! the!modularity!score! in!a! greedy!manner!to!calculate!the!communities.!The!modularity!is! a!benefit!function!
that!measures!the!quality!of!a!particular!division!of!a!network!into!communities.!A!high!modularity!score!corresponds!to!a!
dense! connectivity! between! nodes! inside! a! cluster! and! sparse! connections! between! clusters.! This! algorithm! takes! an!
agglomerative! bottom-up! approach:! initially! each! vertex! belongs! to! a! separate! community! and,! at! each! iteration,! the!
communities!are!merged!in!a!way!that!yields!the!largest!increase!in!the!current!value!of!modularity.!!
2!It!exploits!the!fact!that!a!random!walker!tends!to!become!trapped!in!the!denser!parts!of!a!graph,!i.e.,!in!communities.!
3!It!uses! a!multi-level!optimization!procedure!for! the!modularity!score.!It!takes!a!bottom-up!approach!where!each!vertex!
initially!belongs!to!a!separate!community!and!in!each!step,!unlike!FastGreedy,!vertices!are!reassigned!to!a!new!community.!
4!It!uses!a!simple!approach!where!each!vertex!is!assigned!a!unique!label,!which!is!updated!according!to!majority!voting!in!
the!neighboring!vertices.!Dense!node!groups!quickly!reach!a!consensus!on!a!common!label.!
Thus,!the!pages!cluster!together!according!to!the!users'!activity.!In!a!next!step,!we!analyzed!the!polarization!of!
the!users.!
Polarization(
Assuming!that!a!user!u!has!performed!x!likes!on!community!C1!and!y!likes!on!community!C2,!we!calculate!the!
users’!polarization!as!ρ(u)!=!(x!−!y)/(x!+!y).!Thus,!a!user!u!for!whom!ρ(u)!=!−1!is!polarized!towards!C2,!whereas!a!
user! whose! ρ(u)! =! 1! is! polarized! towards!C1.! We! then! measure!the! pola rization! of! all! users! considering! the!
communities!they!commented!and!liked!content!on.!We!examine!two!partitions:!the!manual!classification!of!
pages,!pro-vaccine!and!anti-vaccine,!and!the!two!biggest!communities!as!detected!with!FastGreedy,!C1!and!C2.!
Figure!2!shows!the!Probability!Density!Function!(PDF)!of!ρ(u)!for!all!users!who! have! given! at! least! 10! likes! in!
their!lifetime.!The!PDF!for!the!polarization!of!all!users!is!sharply!bi-modal,!that!is,!the!majority!of!the!users!are!
either! at! -1!or! at! 1.!This! indicates! a!strong! polarization! among! the! communities,! that! is,! the! majority!of! the!
users!are!active!either!in!the!pro-vaccines!or!anti-vaccines!community,!not!both.!
!
:$;0/&,K,4, L/)6"6$E$(H,1&%'$(H,:0%#($)%,>L1:?,)9,(+&,0'&/'M,E$7$%;,>E&9(?,"%B,#)FF&%($%;,>/$;+(?,6&+"!$)/,$%,(+&,F"%0"E,#)FF0%$($&',>()3?,
"%B,(+&,K,E"/;&'(,#)FF0%$($&',B&(&#(&B,5$(+,:"'(I/&&BH,>6)(()F?G,*+&,B$'(/$60($)%,)9,(+&,0'&/',$',6$F)B"E,9)/,"EE,#"'&'D,5+$#+,$%B$#"(&',",
'(/)%;,3)E"/$N"($)%,"F)%;,(+&,#)FF0%$($&'D,(+"(,$'D,(+&,F"8)/$(H,)9,(+&,0'&/',"/&,"#($!&,$%,)%EH,)%&,#)FF0%$(HG,
Selective(Exposure(
Facebook!users!differ!in!the!time!they!spend!with!the!pages!and!in!how!frequently!they!interact!with!the!pages.!
The!E$9&($F&!of!a!user!is!defined!as!the!period!of!time!where!the!user!started!and!stopped!interacting!with!the!
included!set!of!pages.!It!can!be!approximated!by!the!time!difference!between!a!user’s!latest!and!earliest!liked!
post.!The! total!number!of!likes! per!user!is!a! good!proxy!for!the! user’s!"#($!$(H,!i.e.,!their!level!of!engagement!
with!the!Facebook!pages.!These!two!measures!provide!important!insights!on!how!users!consume!information!
in!each!echo!chamber!as!demonstrated!in!the!following!analyses.!
Figure!3! shows!the!number!of! unique!pages!users!from! the!anti-vaccines!(red)!and!pro-vaccines!communities!
(blue)!interact!with,!considering!increasing!levels!of!lifetime!and!activity!for!different!time!windows!(yearly!left,!
monthly!middle!and!weekly!right!panel).!For!a!comparative!analysis,!we!standardized!lifetime!and!activity!to!
range!between!0!and!1,!both!over!the!entire!user!set!of!each!community,!and!the!number!of!pages.!
Note!that!for!both!communities,!users!usually!interact!with!a!small!number!of!Facebook!pages.!Longer!lifetime!
and!higher! levels! of! activity!correspond! with!less! number!of!pages!being!consumed.!This!suggests!that!more!
time! on! Facebook! corresponds! to ! a! smaller! variety! of! sources! being! consumed.! This! is! consistent! with! [12]!
showing!that! content! consumption! on! Facebook! is! dominated! by! selective! exposure!and,! over! time,! users!
personalize!their!information!sources!accordingly!with!their!tastes!which!results!in!a!smaller!number!of!sources.!
Pro-vaccine! users! interact! with! M! =! 1.42! pages! (SD! =! 0.79),! anti-vaccine! users! with! 2.45! (SD! =! 2.13).! This!
difference!is!displayed!in!Figure!3:!users!in!the!anti-vaccines!community!(red!line)!consume!information!from!a!
more! diverse! set! of! pages! than! those! in! the! pro-vaccines!community,! regardless! of! the! time! window!
considered.!Grey! shades! are! 95%! CI!of! the! local! regression! of! the! data,! indicating! significant! differences!
between! the! groups! at! any! time.! So! while! there! is! a! natural!tendency! of! users! to! confine! their! activity! to! a!
limited!set! of! pages! [12],! the!two!communities!display!different! rates! of!selective! exposure.!The!anti-vaccine!
community!shows!more!commitment!to!the!consumption!of!their!posts.!
!
:$;0/&, O, 4, P"Q$F0F, %0F6&/,)9, 0%$R0&, 3";&', (+"(, 0'&/',5$(+, $%#/&"'$%;, E&!&E',)9, '("%B"/B$N&B, E$9&($F&,>()3?, )/, '("%B"/B$N&B,"#($!$(H,
>6)(()F?, $%(&/"#(, 5$(+, H&"/EH, >E&9(?D, F)%(+EH, >F$BBE&?, "%B, 5&&7EH, >/$;+(?, 9)/, &"#+, #)FF0%$(HG, S'&/'M, E$9&($F&, #)//&'3)%B', (), (+&,
'("%B"/B$N&B,($F&,B$99&/&%#&,6&(5&&%,(+&$/,E"(&'(,"%B,&"/E$&'(,E$7&B,3)'(G,S'&/'M,"#($!$(H,#)//&'3)%B',(),(+&,'("%B"/B$N&B,%0F6&/,)9,E$7&',
;$!&%,$%,(+&$/,E$9&($F&G,S'&/',B$'3E"H,",(&%B&%#H,(),E$7&,E&'',3";&',5+&%,(+&$/,E$9&($F&,"%B,"#($!$(H,$%#/&"'&'G,*+&,0'&/',5+),$%(&/"#(,5$(+,
(+&,"%($4!"##$%&',#)FF0%$(H, "E'), #)%'0F&, ",E"/;&/,!"/$&(H, )9,3";&',(+"%,(+&, 3/)4!"##$%&', 0'&/'G,I/&H,'+"B&', "/&,TAU,VW,)9, (+&,9$((&B,
#0/!&D,$%B$#"($%;,'$;%$9$#"%(,B$99&/&%#&',6&(5&&%,(+&,;/)03',"(,"%H,($F&G,
Growth(of(the(Communities(over(Time(
We! also! analyzed! the! growth! of! the! two! communities! over! time,! considering! the! variety! of! pages! and! the!
number!of! users!that!interact!with!them.!Figures!4!shows!the!evolution!of!the!communities!over!the! years! in!
quarterly!increments.!
The!left!panel!plots!the!number! of! active!pages! in! each! community.!We!define!a!page! as! active! in! a! specific!
quarter! if! it! made! a! post! (bottom! panel),! received! a! like! (middle)! or! comment! in! that! period!(upper! panel).!
Overall,!the!number!of!active!pages!in!both!communities!increases!at!similar!rates,!with!slight!variations!when!
we!consider!the!different! types!of!action!that! marks! a!page!as!active.!If!we!use!the!pages'!posting! activity! or!
the!likes!they!received!to!determine!whether!they!were!active!in!a!given!quarter,!we!can!see!that,!from!2013,!
the!pro-vaccine!community!consistently! tends! to!show!a!higher!number!of! active!pages!than!the!anti-vaccine!
community!(interaction!effect!in!a!MANOVA!with!sentiment!(pro,!anti)!and!time!(until!2012Q4!vs.!following)!as!
factors!and!posts!and!likes!as!dependent!variables!F(2,55)!=!2.708,!p!=!0.076;!eta2!=!0.09;!both!main!effects!are!
highly! significant).! On! the! other! hand,! if! we! focus!on! the! comments,! the! anti-vaccines!community! shows! a!
boost! in! activity! starting! in! 2015!(interaction! effect! in! an! ANOVA! with! sentiment! (pro,! anti)! and! time! (until!
2014Q4!vs.! following)!as!factors!and!comments!as!dependent!variable!F(1,56)! =!5.053,! p!=!0.029;! eta2!=! 0.08;!
both!main!effects!are!significant).!!
The!right! panel!plots!the!number!of! active! users! in!each!community.!We!define!users!as!active!if!they!gave!a!
like! (or! comment)! to! any! page! of! that! community! in! the! given! quarter.! The! plot! shows! that! while! both!
communities!gain!users!throughout!the!entire! period,!the!anti-vaccines!community!has,!until!the!end!of!2015!
and!beginning!of!2016,! more! active! users! than!the!pro-vaccines!community.!After!that,!this! relation!reverses!
(interaction!effect!in!a!MANOVA!with!sentiment!(pro,!anti)!and!time!(until!2015Q4!vs.!following)!as!factors!and!
comments! and! likes! as! dependent! variables! F(2,55)! =! 12.218,! p! <! 0.001;! eta2!=! 0.31;! both ! main! effects! are!
highly!significant).!
!
!
:$;0/&,C,=,J0F6&/,)9,"#($!&,3";&',>E&9(?,"%B,0'&/',>/$;+(?,$%,&"#+,#)FF0%$(HG,X&,B&9$%&,",3";&,"',"#($!&,$%,",'3&#$9$#,R0"/(&/,$9,$(,F"B&,",
3)'(,>6)(()F,3"%&E?D,/&#&$!&B,",E$7&,>F$BBE&,3"%&E?,)/,#)FF&%(,>033&/,3"%&E?,$%,(+"(,3&/$)BG,X&,B&9$%&,",0'&/,"',"#($!&,$%,", #)FF0%$(H,
)%,",;$!&%,R0"/(&/D,$9,(+&H,;"!&,",E$7&,>6)(()F,3"%&E?,)/,#)FF&%(,>()3,3"%&E?,(),"%H,3";&,)9,(+"(,#)FF0%$(H,$%,(+"(,($F&G!!
!
Another!important!factor!to!consider!is!the!cohesiveness!of!the!pro-vaccines!and!anti-vaccines!communities.!In!
order! to! analyze! whether! the! growth! of! the! communities! depends! on! the! emergence! of! isolated! pages!or!
whether!it!grows!steadily,!we!split!the!projections!of!the!bipartite!likes!and!comments!graph!by!the!community!
of!the! pages.!This!results!in!4!sub-graphs,!each!containing! the! pages!of!one!community,!pro-vaccines!or! anti-
vaccines,! and! the! common! users! that! linked! them! considering! the! likes! or! the! comments.! We! can! then!
calculate!the!fragmentation!of!each!community!by!applying!the!community!detection!algorithms!and!obtaining!
their!partition.!
Figure!5!shows!the!number!of!pages!of! the! biggest! sub-community! of! the! anti-vaccines!(left)! or! pro-vaccines!
communities! (right)! in! a! given! quarter,! that! is,! the! largest! connected! component! found! with! the! different!
community!detection!algorithms.!The!black!line!represents!the!total!number!of!pages!in!the!sub-graphs!in!that!
quarter.!It! marks!the!maximum! possible! size!for!the!largest!connected! component!to!take!in!that!moment!in!
time.!The!closer!the!size!of!the!largest!connected!component!is!to!the!total!number!of!pages!in!the!system,!the!
more!tightly!linked!that!community!is!in!that!moment!in!time.!
!
:$;0/&, A, 4, Y$N&, )9, (+&, E"/;&'(, #)%%&#(&B, #)F3)%&%(, 5$(+$%, (+&, '&(, )9, 3";&', (";;&B, "', "%($4!"##$%&', "%B, 3/)4!"##$%&', )!&/, ($F&D,
#)%'$B&/$%;,!"/$)0',#)FF0%$(H,B&(&#($)%,"E;)/$(+F'G,*+&,6E"#7, E$%&,/&3/&'&%(',(+&,()("E,%0F6&/,)9,3";&', )!&/,($F&,$%,(+&,"%($4!"##$%&',
"%B,3/)4!"##$%&', #)FF0%$($&'D,(+"(, $'D, (+&, F"Q$F0F,3)''$6E&,'$N&, 9)/, (+&,E"/;&'(,#)%%&#(&B, #)F3)%&%(,$%,(+"(, F)F&%(, $%, ($F&G,*+&,
;/"3+,'+)5',(+"(,(+&,"%($4!"##$%&',#)FF0%$(H,;/)5',#)+&'$!&EHD,5$(+,(+&,%&5,3";&',8)$%$%;,(+&,"E/&"BH,&Q$'($%;, ;/)03,)9, 3";&'D,5+$E&,
(+&,3/)4!"##$%&',#)FF0%$(H,;/)5',$%,",F)/&,9/";F&%(&BD,$%B&3&%B&%(,5"HG,,
The!plots!show! that!in! the!anti-vaccines! community! the! number! of! pages! in! the! largest! component!remains!
close!to!the!total!number!of!pages!in!the!system.!In!the!case!of!the!pro-vaccines!sub-graphs,!however,!the!size!
of!the!largest!community!does!not!increase!closely!with!the!number!of!pages!in!the!system.!This!signifies!that!
the!anti-vaccines!community!grows!in!a!more!cohesive!manner,!with!pages!tightly!linked!by!their!users'!activity,!
while!the!pro-vaccines!community!is!more!fragmented.!!
Discussion((
By!means!of!quantitative!analysis!of!Facebook!likes!and!comments!we!validated!the!existence!of!two!opposing!
narratives! regarding! the! vaccination! debate! on! Facebook.! We! show! that! the! communities! emerge! from! the!
users’!consumption!habits!and!that!users!are!highly!polarized,!that!is,!the!majority!of!users!only!consumes!and!
produces!information!in!favor!or!against!vaccines,!not!both.!
We!also!showed!that!both!narratives!are!subjected!to!selective!exposure,!and!that!the!more!active!a!user!is!on!
Facebook!the!smaller! is!the!variety!of! sources! they!tend!to!consume.!We!note,! however,! that!the!users!from!
the!anti-vaccination!community!consume!more!sources!compared!to!the!pro-vaccine! users.! This! is!consistent!
with! the! results! of! previous! studies! [14]!that! show! that! people! in! conspiracy-like! groups! show! higher!
engagement!with!the!community.!
We!also!analyzed!the!communities’!evolution!over!time.!While!the!pro-vaccine!pages!are!generally!more!active,!
the!anti-vaccine!pages!concentrate!the!majority!of!the!debate,!receiving!more!comments!from!users.!We!show!
that!the!anti-vaccine!community!had!a!more!active!user!base!until!the!end!of!2015,!where!the!activity!seems!to!
stall.!This!matches!with!the!outbreak!of!measles!at!Disneyland![4],!which!put!the!anti-vaccination!movement!in!
the!spotlight! and!gained!the!attention!of!mainstream!media![28-34].!Further!studies!are!needed!to!determine!
the!reason!for!this!stagnation.!
Finally,!we! show! that! while!both!narratives!have!gained! attention! on! Facebook!over!time,!anti-vaccine!pages!
display!a!more!cohesive!growth!(i.e.!pages!are!liked!by!the!same!people),!while!the!pro-vaccine!pages!seem!to!
grow!in!a!highly!fragmented!fashion!(i.e.!pages!are!liked!by!different!people).!
Limitations((
The! data! collection! process! was! done! the! 5th! of! June! 2017! and!represents! a! snapshot! of! the! pages,! posts,!
comments!and!likes!available!at!the!time.!Pages,!posts,!likes!and!comments!that!were!made!in!the!downloaded!
period!(1st! January! 2010!to!31st!May!2017)! and! were! removed!before!the!download!date!are!not!present!in!
the! dataset.! The! data! only! includes! the! likes! and! comments! by! users! whose! privacy! settings! allowed! pub lic!
access!to!their!activity!on!public!pages!on!the!download!date.!!
Conclusions((
Facebook! allows! echo-chambers! to! emerge,! in! which! pro-! and! anti-vaccination! attitudes! polarize! the! users.!
Social!media!campaigns!that!advocate! for!vaccination!and!provide!accurate!information!should!expect!to!only!
reach!pro-vaccination!users!as!there!is!nearly!no!interaction!between!the!groups.!Overall,!social!media!seem!to!
be!a! powerful!promoter!of!different!sentiments!about!vaccination!and!therefore!it!is! likely! that! it!contributes!
to!vaccine!hesitancy.!!
Appendix(
*"6E&,K,4,1"("'&(,1&'#/$3($)%G,
!
Anti-vaccines!
Pro-vaccines!
Pages!
98!
145!
Posts!
189,759!
108,259!
Likes!
12,696,440!
11,459,295!
Likers!
1,145,650&
1,325,511!
Comments!
1,351,839!
749,209!
Commenters!
271,598!
146,196!
Users!
1,277,170!
1,388,677!
Note:!The!posts,!likes!and! comments!are! considered!pro!or!anti!vaccines!if!they!were!made!on!a!page! classified!as!such.!
Likers! is! the! number! of! unique! users! who! have! given! at! least! one! like! to! the! community.! Commenters! is! the! unique!
number!of!users!who!have!given!at!least!one!comment!to!the!community.!Users!is!the!number!people!who!have!given!at!
least!a!like!or!a!comment!to!the!community.(
References(
[1] Chen,!W.,!Landau,!S.,! Sham,! P.,! &! Fombonne,!E.!(2004).!No! evidence! for! links! between!autism,!MMR!and!measles!
virus.!Psychological!medicine,!34(3),!543-553.!
[2] DeStefano,!F.!(2007).!Vaccines!and!autism:!evidence!does!not!support!a!causal!association.!Clinical!Pharmacology!&!
Therapeutics,!82(6),!756-759.!
[3] American!Academy!of!Pediatrics!(2013)!Vaccine!safety:!Examine!the!evidence.!American!Academy!of!Pediatrics.!
[4] Zipprich,!J.,!Winter,!K.,!Hacker,!J.,!Xia,!D.,!Watt,!J.,!Harriman,!K.,!&!Centers!for!Disease!Control!and!Prevention!(CDC).!
(2015).! Measles! outbreak—California,! December! 2014-February! 2015.!MMWR! Morb! Mortal!Wkly! Rep,!64(6),! 153-
154.!
[5] Bocci,!E.,!&!Naselli,!M.!(2017).!Morbillo,!muore!una!bambina!di!9!anni!a!roma.!La!Repubblica,!June!2017.!
[6] Betsch,! C.,! &! Böhm,! R.! (2015).! Detrimental! effects! of! introducing! partial! compulsory! vaccination:! experimental!
evidence.!The!European!Journal!of!Public!Health,!26(3),!378-381.!
[7] Quattrociocchi,! W.! (2017).! Part! 2-Social! and! Political! Challenges:! 2.1! Western! Democracy! in! Crisis?.! In!World!
Economic!Forum.!
[8] Brown,! J.,! Broderick,! A.! J.,! &! Lee,! N.! (2007).! Word! of! mouth! communication! within! online! communities:!
Conceptualizing!the!online!social!network.!Journal!of!interactive!marketing,!21(3),!2-20.!
[9] Kahn,!R.,!&!Kellner,!D.!(2004).!New!media!and!internet!activism:!from!the!‘Battle!of!Seattle’!to!blogging.!New!media!
&!society,!6(1),!87-95.!
[10] Quattrociocchi,!W.,! Caldarelli,! G.,!&!Scala,!A.! (2014).!Opinion!dynamics!on!interacting!networks:!media!competition!
and!social!influence.!Scientific!reports,!4,!4938.!
[11] Kumar,!R.,!Mahdian,! M.,!&!McGlohon,!M.! (2010,!July).!Dynamics! of! conversations.!In!Proceedings!of!the! 16th! ACM!
SIGKDD!international!conference!on!Knowledge!discovery!and!data!mining!(pp.!553-562).!ACM.!
[12] Schmidt,!A.!L.,!et! al.! (2017).! Anatomy! of! news!consumption!on!Facebook.!Proceedings! of!the!National!Academy!of!
Sciences,!201617052.!
[13] Betsch,!C.,!Brewer,!N.T.,!Brocard,!P.,!Davies,!P.,!Gaissmaier,!W.,!Haase,!N.,!Leask,!J.,!Renkewitz,!F.,!Renner,!B.,!Reyna,!
V.F.,!Rossmann,!C.,!Sachse,! K.,! Schachinger,! A.! &! Siegrist,! M.! (2012).! Opportunities!and!Challenges!of!Web!2.0!for!
Vaccination!Decisions.!Vaccine,!30,!3727-3733.!
[14] Bessi,!A.,! Coletto,!M.,!Davidescu,!G.! A.,!Scala,!A.,!Caldarelli,!G.,!&!Quattrociocchi,! W.!(2015).!Science! vs! conspiracy:!
Collective!narratives!in!the!age!of!misinformation.!PloS!one,!10(2),!e0118093.!
[15] Bessi,! A.,! et! al.!(2016).! Homophily! and! polarization! in! the! age! of! misinformation.! The! European! Physical! Journal!
Special!Topics,!225(10),!2047-2059.!!
[16] Mocanu,! D.,! Rossi,! L.,! Zhang,! Q.,! Karsai,! M.,! &! Quattrociocchi,! W.!(2015).! Collective! attention! in! the!age! of! (mis)!
information.!Computers!in!Human!Behavior,!51,!1198-1204.!!
[17] Del! Vicario,! M.,! et! al.! (2016).! The! spreading! of! misinformation! online.! Proceedings! of! the! National! Academy! of!
Sciences,!113(3),!554-559.!http://www.pnas.org/content/113/3/554.full!
[18] Quattrociocchi,! W.,! Scala,! A.,! &! Sunstein,! C.! R.! (2016).! Echo! chambers! on! Facebook.!
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2795110!
[19] Del!Vicario,!M.,!Vivaldo,!G.,!Bessi,!A.,!Zollo,!F.,!Scala,!A.,!Caldarelli,!G.,!&!Quattrociocchi,!W.!(2016).!Echo!Chambers:!
Emotional! Contagion! and! Group! Polarization!on! Facebook.! Scientific! Reports,! 6.!
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131349/!
[20] Zollo,!F.,!et!al.!(2017).!Debunking!in!a!world!of!tribes.!PloS!one,!12(7),!e0181821.!
[21] Bessi,!A.,!Zollo,!F.,!Del!Vicario,!M.,!Scala,!A.,!Caldarelli,!G.,!&!Quattrociocchi,!W.!(2015).!Trend!of!Narratives!in!the!Age!
of! Misinformation.! PloS! one,! 10(8),! e0134641.!
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134641!
[22] Facebook! (August! 2013)! Using! the! graph! API! (Facebook,! Menlo! Park,! CA).! Available! at!
https://developers.facebook.com/docs/graph-api/using-graph-api.!Accessed!January!19,!2014.!
[23] Clauset,!A.,!Newman,!M.!E.,!&!Moore,!C.!(2004).!Finding!community!structure!in!very!large!networks.!Physical!review!
E,!70(6),!066111.!
[24] Pons! P,! Latapy!M! (2006)!Computing!communities!in!large! networks!using!random! walks.!J!Graph!Algorithms!Appl!
10(2):191–218.!
[25] Blondel,! V.! D.,! Guillaume,! J.! L.,! Lambiotte,! R.,! &! Lefebvre,! E.! (2008).! Fast! unfolding! of! communities! in! large!
networks.!Journal!of!statistical!mechanics:!theory!and!experiment,!2008(10),!P10008.!
[26] Raghavan,!U.!N.,!Albert,!R.,!&!Kumara,!S.!(2007).!Near!linear!time!algorithm!to!detect!community!structures!in!large-
scale!networks.!Physical!review!E,!76(3),!036106.!
[27] Rand,!W.!M.!(1971).! Objective! criteria!for!the! evaluation! of! clustering!methods.!Journal!of!the!American!Statistical!
association,!66(336),!846-850.!
[28] Salzberg,!S.!(2015).!Anti-vaccine!movement!causes!worst!measles!epidemic!in!20!years.!Forbes,!February!2015.!
[29] Pease,!B.!(2015).!Fear!vs.!fact:!The!modern!anti-vaccination!movement.!Harvard!Science!Review,!March!2015.!
[30] Haberman,! C.! (2015).! A! discredited! vaccine! study’s! continuing! impact! on! public! health.! The! New! York! Times,!
February!2015.!
[31] Healy,!J.,!&Paulson,!M.!(2015).!Vaccine!critics!turn!defensive!over!measles.!The!New!York!Times,!January!2015.!
[32] Kristof,!N.!(2015).!The!dangers!of!vaccine!denial.!The!New!York!Times,!February!2015.!
[33] Barbash,!F.!(2015)!Disneyland!measles!outbreak!strikes!in!antivaccination!hotbed!of!California.!The!Washington!Post,!
January!2015.!
[34] Gumbel,!A.!(2015).!US!states!face!fierce!protests!from!anti-vaccine!activists.!The!Guardian,!April!2015.!